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Abstract: Anomaly detection for wind turbine condition monitoring is an active area of research
within the wind energy operations and maintenance (O&M) community. In this paper three models
were compared for multi-megawatt operational wind turbine SCADA data. The models used for
comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical
Envelope (EE). Each of these were compared for the same fault, and tested under various different
data configurations. IF and EE have not previously been used for fault detection for wind turbines,
and OCSVM has not been used for SCADA data. This paper presents a novel method of condition
monitoring that only requires two months of data per turbine. These months were separated by a
year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a
greater number in the unhealthy month being considered correct. It was found that for accuracy IF
and OCSVM had similar performances in both training regimes presented. OCSVM performed better
for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an
average accuracy of 82% for all configurations considered, compared to 77% for EE.

Keywords: anomaly detection; gearbox; SCADA; condition monitoring; Isolation Forest; One Class
Support Vector Machine; Elliptical Envelope

1. Introduction

Wind turbines now generate a large proportion of the UK electricity demand. Operations and
maintenance (O&M) has become a more significant area in the wind industry, especially in terms of
cost of energy. The National Renewable Energy Laboratory has stated that operational expenditure
(OPEX) costs for U.S. offshore wind energy is around £62-187/kW/year [1], this can be as much as
25 to 30% of the cost of a wind farm itself [2]. Such costs can be quite prohibitive for offshore wind.
Offshore wind farms on average have a failure rate of 10 failures per turbine per year, with 17.5% being
major repairs, and 2.5% being major replacements [3].

One of the components that is most problematic for wind turbines is the gearbox. The gearbox
itself causes 0.6 days of downtime per year on average according to [4] with 6.21 days of downtime
per failure on average. One paper [3] has stated that the gearbox failed roughly 0.6 times per year per
turbine, with just over 24% of these being a major replacement of the gearbox. When compared to the
previous values stated for the turbine overall, the gearbox requires replacement more regularly.
Offshore major replacements can lead to even longer downtimes when accounting for weather
windows and availability of vessels.
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One technique that has been suggested to reduce the amount of unplanned downtime is
condition based maintenance. Such an approach to maintenance requires monitoring the component
condition. Maintenance action is then carried out based on the health of the component [5]. The other
methods of maintenance being corrective and scheduled maintenance. Corrective maintenance is only
performed when a failure occurs, with no ability to plan around weather and component availability.
Scheduled maintenance is used currently in offshore wind, and this is when maintenance is done
during scheduled visits to the turbine, with corrective maintenance being carried out when required.
Scheduled maintenance then does allow some planning around the factors discussed previously.
By analysing faults with condition monitoring component faults can be predicted or diagnosed,
and one of the most effective methods at this is anomaly detection.

Anomaly detection has been of recent interest to researchers within wind energy as a means to
diagnose or predict faults within one, or multiple components of the turbine. This typically involves
using data features to determine the normal behaviour of the turbine, which can then be used as a
threshold or guide to assess if new data is anomalous.

This paper compares different Anomaly Detection models for use on Supervisory Control and
Data Aquisition (SCADA) data from operational wind turbines. Three different anomaly detection
techniques will be compared based on their performance at identifying healthy and unhealthy
behaviour of wind turbine gearboxes. The authors present a novel method of Anomaly Detection
that utilises less data, only requiring two months of data at a time. The method currently compares
data one year apart, by investigating the difference in anomaly count between months, anomalies
are defined later in Section 3.4. Two different training regimes (Section 3.1) are investigated, with a
comparison being made for both to assess which is more appropriate.

The use of only two months of data was a request from the industrial partner to investigate
whether there is a requirement to store and analyse long term data, or if it were possible to perform
health classification using less data. The advantages of this would be the shorter run time for training
and testing, and also less storage being required to keep the data over such long periods for immediate
access and analysis. This approach is a comparative assessment of the performance of several
models using such restricted data, to find if the turbines are operating in a healthy condition or not.
Whilst computational time, and storage, are not major factors for the quantity of data used in this paper,
the industrial partner is interested due to their management of fleets of turbines. The computational
times presented in this paper would then become a greater factor when looking at many thousands
of turbines.

Based on the authors’ literature review, the contributions of this paper are:

• The use of only two months of data for turbine health classification.
• Isolation Forest and Elliptical Envelope have not previously been used for wind turbine

fault detection.
• One Class Support Vector Machine has not been used for wind turbine SCADA fault detection
• Comparing training techniques, generic and specific, for wind turbines.

The structure of the paper is as follows. Section 2 is a literature review for the three models used
in this paper and how they’ve been used previously. Section 3 explores the methodology used in this
paper, including a description of the data used and the test descriptions. Section 4 shows the accuracy
for each different model for the different data configurations, with some discussion to elaborate on
the results.

2. Literature Review

This section presents previous work in the field of condition based maintenance for wind turbines.
Typically these techniques utilise either vibration data from bespoke condition monitoring systems
(CMS), or features from SCADA systems.
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Some recent examples of fault detection for vibration data from wind turbines are presented
here. Purarjomandlangrudi et al. [6] presented a technique that extracts Gaussian parameters from
vibration data for wind turbines bearing faults, and compared this to OCSVM. It was shown to be
able to predict its first anomaly 100 hours before failure, and 25 hours before OCSVM. Xu et al. [7]
uses Local Outlier Factor (LOF) to detect abnormal segments within vibration samples from a wind
turbine. Principal components were extracted from time domain features, and then fed into the LOF to
determine abnormality. It was found that the k nearest neighbours in LOF was an important parameter
for this technique. Ogata et al. [8] presented a technique using Gaussian Mixture Models (GMMs)
trained on Fourier local auto-correlation and other time domain features of vibration data for a wind
turbine low speed bearing. The anomaly score could be seen to strongly trend upwards before failure.
Abouel-seoud [9] examined time domain features for vibration data measured from a test rig gearbox.
This test rig had faults introducted artificially to it, and one second measurements were taken six times
over 7 h. The trend of the time domain features was examined and it was found the root mean square
(RMS) of the signal showed a trend upwards towards failure for all cases considered. Huitao et al. [10]
presented a technique utilising a wavelet neural network for a test rig gearbox. The network outputs
a range of probabilities that the input data corresponds to a specific fault out of five possibilities,
and was shown to perform better than Empirical Model Decomposition (EMD). Yu et al. [11] tested a
Deep Belief Network, made up of stacked Restricted Boltzmann Machines trained unsupervised, on a
benchmark 4.8 MW simulink wind turbine model. The model was investigated for different sensor,
actuator, and system faults, and compared against multiple model and data driven techniques. It was
found, based on all metrics examined, to perform better than the others.

SCADA data has also been examined for wind turbine condition monitoring. Zhao et al. [12]
utilised a Deep Auto-Encoder to reconstruct SCADA variables for three different turbine faults.
The errors of the reconstructed features were compared to a threshold developed with extreme value
theory and was found to detect failure up to 10 hours quicker than a conventional neural network
model, and had a comparable computational time. Rezamand et al. [13] presented a technique using a
wavelet probability distribution function (PDF) to detect incipient fault, with a regressional neural
network used for data imputation. Recursive Principal Component Analysis (PCA) was used to extract
features, and the Debauchie wavelet was used to extract the PDF, which was shown to decline close to
failure. If this crossed a threshold then failure was detected. Qu et al. [14] presented a technique that
utilised a combination of linguistic terms and errors produced by a neural network to produce fault
factors, which could predict failure and their severity. Pei et al. [15] presents a technique that uses
K Nearest Neighbours (knn) to detect incipient failure in two turbines up to 6 months before failure.
An instability factor, which was the sequential difference in distances for each new k, was compared to
a threshold to detect the upcoming failure. Sun et al. [16] presented a technique for anomaly detection
using a Stacked Denoised Auto-Encoder (SDAE) to extract features and feed this into a Clustering in
Quest (CLIQUE) model. This method could classify the outlier with unsupervised learning, however
knowledge of the outliers were known in advance for validation. Overall, this technique had a 98%
classification accuracy, which was comparable to other models. Yan et al. [17] uses two back propagated
Neural Networks (BPNNs), one to select relevant features, and the other to detect anomalies based on
the RMSE between the real and predicted target for a 1.5 MW wind turbine. This model was able to
predict failure 15 days in advance. Zhao et al. [18] presented a technique to both detect anomalies and
predict remaining useful life. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
was used to generate an anomaly proportion in the data, and a Support Vector Machine (SVM) was
used to classify these as anomalous or not. An auto-regressive integrated moving average (ARIMA)
model was then used to analyse the future performance of the wind turbine and to generate the
remaining useful life, and this was done with only a mean relative error of 0.27 and could detect
faults ahead of time by 44 days. This technique appears closest to the health classification method
presented here, however it is applied to long term continuous data. Two papers [19,20] present the use
of nonlinear auto-regressive neural networks with exogenous inputs (NARXs) for anomaly detection.
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The NARX models were used to predict some target feature, and then the Mahalanobis distance for
each data pair of the error and actual target value was found. A threshold was developed to then
determine what was anomalous, and if this was crossed continuously then an alarm was generated.
This was successful, however it does require longer term data than provided for this paper. A third
paper [21] utilised the same technique, however the Mahalanobis distances were denoised using a
wavelet transform. For both faults considered, this provided a marked improvement over the raw
Mahalanobis distance—increasing fault detection time by months.

2.1. Previous Examples of the Models Examined in this Paper

Various outlier detection models were considered for the paper, but this was narrowed down to
three. Logistic regression was considered, however this requires supervised learning. As the labels
for the data are not previously known, logistic regression was no longer an option. Another model
considered was local outlier factor (LOF). This is an unsupervised learning model but cannot be trained
and saved for repeated use. This technique would therefore be unsuitable for the generic training
regime presented in this paper.

The three models used in this paper are commonly used for outlier detection. For the most part
this has been within the realm of computer networks, with little application to wind energy. One Class
Support Vector Machines facilitate a boundary around the normal data during training, this boundary
is then used on to identify outliers, as shown in Figure 1a). Isolation Forest is made up of multiple
Decision Trees, which averages the results of the ensemble of Decision Trees. The Isolation Forest
defines an anomaly by a number of questions that distinguish it from the other data, this is shown in
Figure 1b). Isolation Forest is a random forest of Decision Trees that identify anomalies through taking
the average number of partitions required to isolate each individual data point. The data points with
the fewest partitions are then identified as outliers. For example a sparse data-point would only require
fewer partitions to distinguish it from all other data, compared to a data-point in a denser cluster.
Finally, Elliptical Envelope which tries to fit an ellipse around the data using minimum covariance
determinant (in blue), compared to an ellipse created by Mahalanobis distance (in red), as illustrated
in Figure 1c).

Figure 1. Examples of the models discussed in the literature review. Figure (c) taken from [22],
Wiley Interdisciplinary Reviews: Computational Statistics 2018

The first model examined in this paper is One Class Support Vector Machines (OCSVMs).
This model is a version of Support Vector Machine (SVM) that produces a hyperplane around the
training data, which is then used to decide on whether future data is similar to this class, or is an
anomaly. This model recognises the normal behaviour and then decides on whether the future data is
also normal.

OCSVM uses what are known as support vectors to decide on the boundary. These support
vectors are just data-points that are close to the boundary of the data. In a conventional SVM this would
be the boundary between two or more classes. As OCSVM is a boundary based method, it means that
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outliers in the training data can degrade the performance of the model [23]. OCSVM separates the
data by trying to solve the following equation:[24]

min
w∈F,ε∈Rl ,ρ∈R

1
2
‖w‖2 +

1
νl ∑

i
εi − ρ, (1)

subject to (w ∗Φ(xi)) ≥ ρ− εi, εi ≥ 0. Where w is the weights of the function, ε are the slack variables
in the margin to produce a soft margin that will help prevent overfitting, ρ is an offset parameterising
a hyperplane in the feature space associated with the kernel, xi are the input values, and Φ(xi) maps
these inputs from input space to feature space allowing for a hyperplane splitting the data classes to be
formed. This hyperplane translates to a boundary around the data in the input space. In Equation (1)
non-zero εi are penalised, meaning that the decision function, presented by Scholkopf et al.: [24]

f (x) = sign((w ∗Φ(xi))− ρ), (2)

should be positive for most input examples, i.e., they will be considered normal, while the
regularisation term (‖w‖) shown in Equation (1), should remain small. This is determined by the
variable νl , which is the contamination hyperparameter discussed later in Section 3.3. This model
should then output a positive 1 for most data in the centre, meaning normal, and a negative 1 for data
elsewhere, meaning abnormal.

OCSVM has been used for some applications in wind energy. One method of using OCSVM
on features extracted from vibration signals [25] has been suggested to measure for bearing faults.
Envelope analysis was used to extract the features and OCSVM was then used for fault detection for
the High Speed Shaft bearing on the generator side. Anomaly detection has also been used for blade
damage detection, with OCSVM being trained upon features extracted from a Convolution Neural
Network [26] (CNN). This CNN extracts features from images captured by a drone, with the OCSVM
being used to detect damage, which was shown to be best when compared with other methods.

The second model looked at in this paper the isolation forest model [27]. An isolation forest is a
random forest of decision trees, and it is used to isolate data points, through repeatedly partitioning
the data, until each data point is isolated. Anomalous data should have fewer partitions, or shorter
path lengths in the tree. If data is easily distinguishable then it will have a shorter path length. If a
forest of these trees finds shorter path lengths for some data points, then they can be considered
anomalous. The anomaly score is derived from the path length of the trees within the forest, and this
is dependant on the height of the tree and the average height of the forest. If the score is close to 1,
then the data is considered an anomaly. The score is generated by the following equation, from Liu,
Ting, and Zhou [27]

s(x, n) = 2−
E(h(x))

c(n) , (3)

where h(x) is the average path length to separate input value x, and c(n) is the average path length of
an unsuccessful search of a Binary Search Tree, given by Equation (4).

c(n) = 2H(n− 1)− (2(n− 1)/n), (4)

where H(n− 1) is the harmonic number and can be estimated using ln(n− 1) + 0.5772156649 and n
being the number of instances in the dataset. The use of Equation (4) is due to the fact that an Isolation
Tree has a similar structure to a Binary Search Tree, and the estimation of an average path length is
similar to the average path length of an unsuccessful search. The score will tend to 1 when the expected
path length for an Isolation Tree instance tends to 0.

Isolation Forest has been used for pre-processing for one paper [28] before a power prediction
technique is done with neural networks. The IF detected outliers in the power curve to clean it,
then the neural network predicted power output for OREC’s 7MW Levenmouth demonstrator turbine.
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The cleaning technique was compared to elliptic envelope method, and was found to be more effective.
Whilst Isolation Forest was shown to be more effective here, this is not yet shown for fault detection.

Elliptic envelope, which is also examined here, generates an ellipse around the central cluster of
data, and outliers are detected using the Minimum Covariance Determinant. The statistical distance
metric used here, from Hubert et al. [22], is shown in the following equation:

d(x, µ, Σ) =
√
(x− µ)′Σ−1(x− µ), (5)

where x are the input data, µ is some location parameter, and Σ is some scatter matrix that is p× p,
where p is the dimension of the data. For Minimum Covariance Determinant, the parameters become
the MCD estimate of the location and covariance respectively. This location estimate is the mean of
the observations for which the determinant of the sample covariance matrix is as small as possible.
The scatter matrix estimate is the corresponding covariance matrix multiplied by a consistency factor.
According to Hubert et al. [22], the outliers from MCD are more robust than Mahalanobis distance,
and provides greater distances for the outliers.

The number of outliers expected in the training is based on an expected contamination parameter
provided to the model by the user. To the best of the authors’ knowledge Elliptical Envelope has not
been considered for fault detection, but as shown previously was used for power curve cleaning [28].

2.2. Literature Review Summary

In summary, the works presented in this literature review have covered a wide range of anomaly
detection techniques for wind energy. One gap that is present in these works, is that few papers
have investigated the effects of utilising minimal data, specifically using only 2 months for health
classification to assist in operator decision making. It appears that minimising data for the benefit of
industry has not been considered as much previously, especially to the scale considered by this paper.

Isolation Forest has not previously been used for fault detection in wind turbines, only as an
outlier detection technique for cleaning the power curve, and whilst OCSVM has been used for fault
detection, this has not been done for SCADA data. Similar to Isolation Forest, Elliptical Envelope has
only been used for cleaning power curves.

Furthermore, to the best of the authors’ knowledge, training the model on multiple turbines combined
is novel and a comparison has not been made with training a model on just each individual turbine.

3. Anomaly Detection Method

This section outlines the method used to compare the three anomaly detection models, starting
with a description of the data made available for this paper. Then the method used to select the
variables for the training data set will be outlined. Finally the tests conducted will be described
and explained.

3.1. Data

The 10-min averaged SCADA data provided for this paper came from 21 wind turbines in
operation. These turbines were rated between 2 and 4 MW, and had a rotor diameter between 90
and 120 m. Each of these turbines had 2 months of data, 1 month recorded 1 year before it failed and
1 month recorded 1 month before it failed. All turbines failed from a high speed stage bearing fault in
the gearbox. The turbines were from various different farms across Europe, and each turbine was less
than 10 years old when it failed.

The turbines failed after the second month recorded, one year after the start of the first month
recorded. It was then assumed that the data-set recorded in the second month is “unhealthy”,
whereas the data recorded in the first month is considered “healthy” relative to this second month.
Since the 2 months were recorded a year apart, seasonality effects will have been removed. It was also
assumed that the year between the 2 months should provide enough time for the fault to progress.
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As the turbines failed at the end of this second month we could be certain that the turbine was
“unhealthy” to a degree in this second month. As the first month was only a year before failure,
it was possible that the fault initiated more than a year before failure. However, this year before was
considered relatively healthy compared to the second month.

The healthy data were then used for training the model. Two different training regimes, generic
and specific, were tested for further comparison of the models. In the first, generic method training,
the first 14 turbines were combined into a single data-set (this is shown in Figure 2a), and then tested
on each of the remaining seven turbines individually (for both the healthy and unhealthy data-sets).
The other training regime was to train on each turbine individually for all 21 turbines, this model
is then tested on each respective turbine for both the healthy and unhealthy data-sets; this will be
referred to as specific training (this is shown in Figure 2b). To avoid overfitting only the first three
weeks of the healthy month were used for training in the specific test, with the final week of the healthy
month being used for the test on the healthy data. To compare between the healthy and unhealthy
data, the percentage of anomalies detected was used as a metric.

Figure 2. The training regimes used in this paper.

The data consisted of 19 different turbine variables, as listed in Table 1. This included the various
gearbox temperatures and pressures, the turbine power output, wind speed, and rotor speed. Some ambient
variables, such as nacelle temperature, were included but not used in this paper. A noticeable absence was
the pitch signal, which could be used during cleaning to remove data that was being curtailed.

The 19 turbine variables then needed to be reduced down for removal of less relevant variables.
To do this required some method of feature selection.
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Table 1. List of the features available.

Features

Turbine Variables Gearbox Temperature Variables Gearbox Pressure Variables

Generator Speed (RPM) Bearing A Temperature Filter After Inline Oil Pressure
Nacelle Temperature Bearing B Temperature Filter After Offline Oil Pressure
Rotor Speed (RPM) Bearing C Temperature Filter Before Inline Oil Pressure
Ambient Wind Speed Intermediate Stage Bearing Temperature Gravity Tank Oil Pressure
Ambient Temperature Main Bearing Temperature Main Tank Oil Pressure
Power Production Main Tank Oil Temperature Oil Inlet Pressure

Oil Inlet Temperature

3.2. Pre-Processing

This sub-section looks at the two data pre-processing stages used to prepare the data for use in
the anomaly detection models. Pre-processing was a required stage for both the runtime of the tests
and for more thorough comparison of the different models.

3.2.1. Feature Selection

Feature selection is a method of reducing the dimensionality of data-sets, it removes statistically,
or physically, weakly connected variables from the range of input features for the machine learning
model. This is typically done to help improve the efficiency of the model. With fewer irrelevant
features the run-time of the model should decrease, but not at a cost to the accuracy.

For this purpose, univariate statistics [29] were used to find those features that were most
statistically relevant to the target features set by the user. This method required a target variable
and found the list of features that correlated best with this target. The models used in this paper did
not use target variables, however two target variables were chosen for comparison. These were the
Gearbox Main Bearing Temperature and the Gearbox Oil Pressure after the Inline Filter, as these were
selected as being relevant to the fault in some way. For each of these target variables three different
features were selected using univariate statistics. Table 2 shows the different features selected for
each of the target features used. Typically, class label would be used for automatic feature selection,
however prior knowledge of the data labels was not provided. Univariate statistics finds the features
with a strong statistical relevance to the “target”, and this was performed on the “healthy” data. It is
believed that the statistical relationship began to deteriorate as the fault progressed, this change should
be detected by the models.

It should be made clear that the target variables here were not considered targets for the models.
They were used as inputs along with the other variables. The univariate statistics “targets” were used
to select the most relevant variables to these targets, shown in the first column of Table 2. All four
variables in Table 2 were used as inputs for the models. With one input selected during testing,
this would mean both the target variable and “Input 1”, from Table 2, were fed into the models.

With increasing numbers of inputs in the testing phase, the more poorly-correlated the variables
became. One additional input used the most correlated variable to the target variable discussed
previously. Two additional inputs use the two most correlated variables to the target, and so on.
These inputs are shown in Table 2.

This method of feature selection is mainly data driven and does not take into account any domain
knowledge. The only previous knowledge used was to select the target features for model. Temperature
was selected as it is a standard feature to analyse gearbox failures. Pressure was also considered,
as temperature rises this can cause cooling processes to turn on, causing coolant to flow and therefore
changing the pressure of the oil.
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Table 2. Table shows the corresponding features selected using univariate statistics for the two different
target features.

Feature Target Input 1 Input 2 Input 3

Temperature
Gear Main
Bearing
Temperature

Gear Bearing
B Temperature

Gear Main Tank
Oil Temperature

Average
Power

Pressure
After Inline
Pressure

After Offline
Pressure

Oil Inlet
Temperature

Intermediate
Stage Bearing
Temperature

3.2.2. Data Normalisation

Data were also normalised to facilitate a comparison with raw data. This was considered due to the
use of the generic testing, to help remove some of the differences between the turbines. A comparison
was also made for the specific tests as well.

The method used to normalise the data was to take the maximum value for each feature, for each
turbine, from the healthy month, and use that to normalise. Every value for that feature and turbine was
then divided through by the previously found maximum value. This was kept consistent throughout
all turbines; the reason for normalising both healthy and unhealthy data based on the maximum from
one of the periods was to ensure the differences between the two periods within the data were kept.

3.3. Model Description

Three outlier detection models were considered for this paper. Isolation forest, a decision tree
based model, that isolates datapoints through branching paths and detects anomalies based on path
length. One Class Support Vector Machine, a Support Vector Classifier, that generates a boundary
around normal data. lliptical Envelope, which fits an ellipse around the data and uses Minimum
Covariance Determinant (MCD) to measure if the data is an outlier.

The OCSVM model was set up with a radial basis function kernel to create the shape of boundary
similar to Figure 1, this created a boundary around the data, unlike the other kernels available.
This model had two tunable hyperparameters: gamma, a parameter that affected the smoothness of
the boundary, and nu, which was an upper limit on the expected contamination in training and a lower
limit on the number of support vectors between 0 and 1.

Isolation Forest also had two tunable hyperparameters: the expected contamination, similar to
OCSVM, and number of estimators, which was the number of trees within the forest that could be
limited by the computational expense of having many estimators. Elliptical envelope also had two
hyperparameters, the expected contamination in the data similar to both other models, and the support
fraction, the proportion of points used to support the MCD that can range between 0 and 1.

In this paper the hyperparameters were tuned by changing the hyperparameter combinations
and examining the accuracy of each model. The hyperparameters examined are shown in Table 3.
All 30 combinations of the hyperparameters, for each of the three models, were tested for each
combination of model configuration as discussed in Section 3.4. This was done to provide a thorough
comparison between a range of hyperparameters and model input parameters, 30 combinations of
hyperparameter and 24 combinations of model inputs, for each of the three models. The assessment of
these models was then the accuracy output during testing.

The contamination hyperparameter that proved to be best for all three models was 5%,
the performance improved with greater contamination until 5% and then flattening. No improvement
could be discerned above 5%, so this was selected.
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Table 3. Table of hyperparameters considered in this paper.

All Isolation Forest OCSVM Elliptical Envelope

Contamination (%) No. of Estimators Gamma Support Fraction Case Number

0.1 1 0.001 0.35 1
1 10 0.01 0.4 2
5 50 0.1 0.45 3

10 100 1 0.5 4
20 250 10 0.75 5

500 100 1 6

The gamma parameter for OCSVM only showed clear improvement for 0.001, for the other values
the lowest accuracy was far lower than the lowest for a gamma of 0.001.

Again, similar to the gamma parameter for OCSVM, only 100% support factor for the Elliptical
Envelope showed clear improvement. For contamination levels of 5, 10, and 20%, these were the best
performing hyperparameter pairs for the Elliptical Envelope, so 100% support factor with 5% expected
contamination was selected.

3.4. Test Description

Different combinations of model configurations and data types were tested, and compared.
The different configurations included comparisons between generic and specific training, number of
input features from 1 to 3 from Table 2, target variable (e.g., temperature or pressure), and whether the
data was normalised or not (from Section 3.2.2). Each different combination of these settings was used
for each model to make a thorough comparison of the three. In all there were 24 different tests ran,
and each test was a different combination of settings in the code, for each model type.

Each model detects outliers differently. The OCSVM outliers are detected as beyond the boundary
previously described. If it is beyond the boundary learned of the training data, it is a “detection” from
the OCSVM. Isolation Forest splits data down through branches of partitions. Data with a low enough
number of partitions is considered an outlier. Finally, the EE model detects an outlier if it is beyond the
ellipse defined by the MCD. An anomaly was defined by five consecutive 10-min outlier detections [30]
made by the model, and when five outliers were detected the counter reset to 0. This was done to
remove some false positives that would arise from ordinary random variations in the SCADA data,
as these should not typically last as long as 50 min.

An anomaly is any behaviour deemed an outlier from the normal behaviour learned from the
training month. In these months data that would be considered normal in training and testing should
not be flagged as an outlier. One example of this is the variability of the wind. Whilst this may
be considered normal, it could also be detected as an outlier due to this variability. The use of five
consecutive outliers constituting an anomaly, should then lead to longer term faults to show up as an
anomaly, whilst removing random variations in the weather.

Each model was trained and tested for each configuration, the accuracy of each test was measured
by the number of test turbines that were correctly labelled as unhealthy. For example, with the generic
testing, if six out of the seven test turbines had a greater number of anomalies in the unhealthy data
then this configuration would have an accuracy of 85.71%. Each test was repeated nine times for
each turbine, and the averages for each configuration were found. This value was then used as the
final accuracy.

4. Results

4.1. Table of Accuracies

This section highlights the performance and accuracy of the three different models, with a
thorough comparison of them provided in the discussion.
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The results presented in Table 4 show the accuracies for each model and data configuration,
the values shown are averaged over nine repeated tests for each turbine. Each row shows a different
selection of input data. For example, the first row shows the accuracy for the models using a generic
training regime with raw data with the univariate statistics temperature target and the most correlated
other variable.

Table 4. Table of accuracies for the various tests conducted in this paper. Values in green are when that
model performed better than the others.

Training Regime Normalised? Feature Numbers IF OCSVM EE

2 0.000 0.905 0.905

3 0.857 0.857 0.571Temp

4 0.857 0.714 0.571
2 0.857 0.571 0.714

3 0.714 0.714 0.857

No

Pres

4 0.857 0.857 0.714

2 0.857 0.857 0.714

3 0.857 1.000 0.714Temp

4 1.000 1.000 1.000

2 1.000 1.000 0.857
3 0.714 1.000 0.571

Generic

Yes

Pres
4 0.714 0.714 0.571
2 1.000 0.571 0.857

3 0.667 0.667 0.571Temp
4 0.905 0.714 0.714

2 0.762 0.857 0.810

3 0.952 0.952 0.905

No

Pres
4 0.905 0.810 0.905

2 0.952 0.810 0.905

3 0.667 0.667 0.571Temp
4 0.905 0.810 0.762

2 0.810 0.810 0.810

3 0.952 0.905 0.905

Specific

Yes

Pres
4 0.905 0.952 0.905

The cells highlighted in this table are the tests where that particular model performed better than
the others. For example, the Isolation Forest model performed better than OCSVM and EE when
trained with a generic training regime on raw temperature data with four total inputs. It can be
seen that Isolation Forest performed best for seven configurations, OCSVM performed best for four
configurations, and EE performed best for one configuration.

All models performed well when trained with a generic training regime on normalised
temperature data with four inputs. All models performed poorly when trained with a specific
training regime, on raw temperature data with three inputs, and on normalised temperature data with
three inputs.

There are several examples in the table of performance of the model worsening with increasing
number of inputs. In theory, more information should be provided with increasing number of inputs
and therefore the performance should be improved by better learning. However, with increasing
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dimensionality of the data it can become harder to isolate anomalies, such as for Isolation Forest.
Some form of dimensionality reduction, such as Principal Component Analysis, could be used to
reduce the data down to two dimensions for future study.

According to Guo et al. [23], inclusion of anomalous data in the training data for OCSVM can
cause poorer performance, so further study may be required to compare different pre-processing data
cleaning techniques, to investigate how this improves performance of OCSVM and the other models
compared in this paper.

Table 5 presents the aggregated results of those shown in Table 4. Here it seems that IF and
OCSVM perform evenly when aggregated over all configurations. IF performs better for the specific
training regime and OCSVM performs better for the generic training regime. EE does not perform
best for any regime, however it is still a reasonably accurate model. For both IF and EE, performance
appears to improve for specific training compared to generica, and even OCSVM has a better aggregate
accuracy than EE and IF generic accuracy.

Table 5. Aggregate accuracies for different training regimes.

Aggregate IF OCSVM EE

All 0.819 0.821 0.766
Generic 0.774 0.849 0.730
Specific 0.865 0.794 0.802

For any future work, if access to multiple turbines of the same model is available, then generic
training could be suitable for health classification, however for practicality reasons three months per
turbine would be required instead of the two months used in this paper. This would allow for all
turbines in the dataset to be examined. If access to multiple turbines of the same model is not available,
then it is shown that specific training is equally as effective, and when using IF, can produce an average
accuracy of 86.5%.

More investigation may be needed to see if the models are just detecting extremities rather than
anomalies. Without alarm logs, or work order data, it can be difficult to validate that the model is
detecting these faults correctly, however it is known that at the end of the “unhealthy” period that the
turbine failed due to this gearbox fault. It is expected that more anomalies would be found within this
last month than in the first month. It was then assumed that if the model detects more anomalies in
the unhealthy month, then this can be considered consistent with the progress of the fault.

In terms of data configurations, normalised data appeared to be better. This is expected,
particularly for the generic training, as it removed the differences between the turbines in training.
This would help to eliminate any false alarms arising from differences in these turbines. The different
numbers of inputs did not appear to change the accuracy much for any of the models.

4.2. Selected Results

This section presents some examples from the tests performed in Table 4. Figures 3, 4, and 5a–c
show the anomalies detected during both the training and testing months. Again the “healthy” data
here were taken one year before failure, and the “unhealthy” data were taken one month before failure.
The time series plots the Gearbox Main Bearing Temperature over the period of recording, with the
anomalies overlaid when they occurred.

Figures 3, 4, and 5d–f show the anomalies detected on the graph of the Gearbox Main Bearing
Temperature against the Generator Speed. This helps to indicate what mode of operation the anomalies
tended to occur.

Figure 4 refer to the anomalies detected for turbine 3, Figure 5 is from turbine 13, and Figure 3 is
from turbine 20, from different tests in Table 4. These graphs are used to help analyse the performance
of the models by visualising the anomalies. It can be seen that all three models detect similar numbers
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of anomalies, which is consistent with the expected contamination being the same for all three models.
Figure 3 is an example from a test with high IF accuracy compared to the others. Figures 4 and 5 are
from tests with a high accuracy for all models and low accuracy models for all respectively.

Figure 3. These figures show anomalies for the specific training regime with normalised data from the
temperature target with four inputs. (a–c) The blue (light) line shows the normalised main bearing
temperature data. The pink (dark) triangles show when anomalies were detected during the two
months. (d–f) The blue (light) circles shows the normalised main bearing temperature data. The pink
(dark) diamonds show when anomalies were detected during the two months.
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Figure 4. These figures show anomalies for the generic training regime with normalised data from the
temperature target with four inputs. (a–c) The blue (light) line shows the normalised main bearing
temperature data. The pink (dark) triangles show when anomalies were detected during the two
months. (d–f) The blue (light) circles shows the normalised main bearing temperature data. The pink
(dark) diamonds show when anomalies were detected during the two months.
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Figure 5. These figures show anomalies for the specific training regime with raw data from the
temperature target with three inputs. (a–c) The blue (light) line shows the normalised main bearing
temperature data. The pink (dark) triangles show when anomalies were detected during the two
months. (d–f) The blue (light) circles shows the normalised main bearing temperature data. The pink
(dark) diamonds show when anomalies were detected during the two months.

Figures 3d–f and 5d–f, show a move in anomalies from higher generator speed and gearbox
main bearing temperature to the lower temperatures and speeds. This can be seen partially in
Figure 4d,f, where more anomalies can be seen in the lower left quadrant. This lower left quadrant
was where lower temperatures and lower generator speeds occurred, and typically what would be
normal operational data. This region of the cluster was typically considered normal, however in these
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unhealthy months there is some data considered abnormal. This consistency again could indicate
unusual, or faulty, behaviour.

Figures 3, 4, and 5a–c show that most anomalies are detected at the extremities of the temperature
values, more so at the higher temperatures. This can be expected as faults can cause increased
temperature in components due to operating in a faulty regime.

It should also be noted that whilst these “cluster” plots used generator rotor speed as the x values,
the generator rotor speed was not used as a feature for either the temperature or pressure target tests.

4.3. Analysis of Condition Monitoring Method

Figure 6 presents the average training times for each model for all tests conducted using each
model specific hyperparameter. For example, x-value 1 shows the average training times for all IF
models with one estimator, OCSVM models with a gamma value of 0.001, and EE models with a
support fraction of 35%.

Figure 6. Average execution times for each model specific hyperparameter. The values on the x-axis
correspond to the case numbers in Table 3.

For the selected hyperparameters of the models, the average training times for each model
can be found from Figure 6. IF average training time for 100 estimators was 432,661 microseconds,
OCSVM average training time for a Gamma of 0.001 was 261,492 microseconds, and EE average
training time for a support fraction of 100% was 409,726 microseconds.

Classifier models such as OCSVM, IF, or EE are appropriate for this method of condition
monitoring. However performance could possibly be improved with the addition of some
pre-processing steps. For example, a similar method from Zhao et al. [18] uses PCA to reduce
the dimension of the input data prior to anomaly detection with support vector machine.

Anomaly detection is shown to be appropriate here as a technique for this condition monitoring
method. It is shown that there is an obvious difference shown between the healthy and unhealthy
months. Table 4 shows that normalised data is most appropriate for generic training as expected,
as the use of multiple different turbines in one training dataset would benefit from normalising the
data. The number of inputs and the target variable are not shown to affect the accuracy of the models
consistently. Clean pre-processed healthy training data could be used, however for the validity of the
results it may be more suitable to use raw data.

The results shown in Table 4 highlight that the generic training regime performs well considering
the turbines used in this paper are located across Europe and, even though they are the same model,
are different turbines. It shows that the amount of data available to train can be increased by combining
data sets for multiple turbines of the same model. Further investigation is needed to find if this is
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viable for longer term anomaly detection also, and if this could even be extended to turbines of
different models.

It would appear based on both the accuracies presented in Tables 4 and 5, and the execution
times shown in Figure 6, that OCSVM would be the best model for this form of condition monitoring.
However, for future application, the specific training may be more appropriate, and therefore Isolation
Forest would be the most suitable due to the greater accuracy with specific training and next lowest
execution time.

In summary, this method has the potential to be an effective method of condition monitoring that
utilises less data and therefore is less computationally intensive than other models that utilise longer
term data. This paper looks at an effective farm of turbines where the storage and computational
requirements are slightly more significant. The true benefits of reduced computational loading would
come from examining fleets of turbines. Further testing of this method is needed, for a longer time
period to investigate whether there would be an increasing trend in number of anomalies leading to
failure. An investigation into the use of a fixed healthy month for training, and a moving test month,
should be explored to show how viable the method would be for live operation.

5. Conclusions

Anomaly detection for wind turbine SCADA data is an area of active research in the wind energy
community. In this paper three different outlier detection models for condition monitoring were
compared. The method overall employed a data-driven approach for not just the anomaly detection
but the feature selection as well. It has shown that the performance of the models varied under each of
the different configurations but that Isolation Forest and OCSVM were both the most accurate of the
models for both training regimes. EE was shown to perform the worst, however it was still comparable.
Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared
to 76.6% for EE. It appears that the best configuration of the data would be normalised temperature
data, with four inputs trained using the generic regime. In terms of runtime, OCSVM appeared to
have the shortest training time for the chosen configuration, and IF the longest.

It has been shown that the condition monitoring technique presented in this paper can be an
effective assitive tool for operators and technicians for wind turbine condition monitoring. This method
of condition monitoring can provide a quick snapshot of the turbine’s health, which, when monitoring
the condition of a fleet of turbines, can allow an operator to quickly assess turbine health. OCSVM
would be the recommended model when using a generic training regime, however as this may not be
suitable for other datasets, IF would be recommended for specific training.

With the knowledge of when the turbine failed, and that each turbine failed due to the same fault,
it can be assumed that the model is working correctly. With different turbine data, or different fault
data, the robustness of the model could be examined in more detail. The models could then also be
tested to see if they only detect this one fault, or can detect any fault within the turbine.

This initial test of the condition monitoring method has shown that anomaly detection is capable
of detecting the difference in short periods of operation separated in time. Both the generic and specific
training regimes have been proven to be effective. Future work will look at the investigation of a fixed
reference healthy month, with a sliding test month. Comparison of this method for both a healthy
turbine, and a turbine that failed during the measurement period will also be conducted for validation.
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