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Abstract: This paper proposes a new and original course keeping control strategy for an unmanned
surface vehicle in the presence of modeling error, external disturbance and input saturation.
The trajectory linearization control method is used as the basic algorithm to design the course
keeping strategy, and the radial basis function neural network and disturbance observer are used to
compensate modeling error and external disturbance respectively to enhance the robustness of the
control system. Moreover, a robust term is used to compensate various compensation errors to further
improve the robustness of the system. In addition, hyperbolic tangent function and Nussbaum
function are hired to deal with the potential input saturation problem, and the neural shunting model
is adopted to avoid the computational explosion caused by the derivation of virtual control law.
Taking the above facts into account will help to further realize engineering practice. Finally, the control
strategy proposed in this paper is compared with the classical proportional–integral–derivative
control strategy. The simulation results show that the course control results of the proposed control
strategy are more robust than proportional–integral–derivative control, regardless of whether the
external disturbance is weak or strong.
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1. Introduction

An unmanned surface vehicle (USV) is a small surface sports platform that can carry multiple
functional modules and accomplish specific missions, and it is called the Unmanned Three Musketeers
(UTM) together with unmanned vehicle and unmanned aerial vehicle (UAV) [1–6]. Due to the fact that
modern combat methods have undergone tremendous changes, how to protect the personal safety
of soldiers and minimize casualties has become a top priority. It can be said that the development
of unmanned combat platforms is an inevitable measure to adapt to historical development trends.
Therefore, as an important part of the unmanned combat platforms at sea, the USV is gradually
receiving great attention from research institutions from all over the world, especially military powers.
The essential reason why USV has various advantages is that it can navigate independently. In other
words, it is equipped with an autonomous navigation system, in which course keeping control is the
most basic function of the autonomous navigation control system. Course keeping control can ensure
that the USV travels in a fixed course to achieve the goal of safety and energy saving [7,8].

Scholars have made a large number of outstanding contributions to ship course control. The first
generation of ship course autopilot was invented by Elmer Sperry, which uses a gyrocompass to
measure course angle. Another important breakthrough is that the proportional–integral–derivative
(PID) control algorithm is proposed and applied to the autopilot [9]. To cope with these issues,
backstepping technology [10,11], sliding mode control [12,13], adaptive technology [14] and linear
quadratic Gaussian [15], etc., are hired to design control solutions. In [16], under the premise that the

Energies 2020, 13, 5091; doi:10.3390/en13195091 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-1955-2596
https://orcid.org/0000-0001-7828-4902
http://dx.doi.org/10.3390/en13195091
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5091 2 of 16

model parameters are unknown, an adaptive course controller is designed by backstepping method
and adaptive technique. At the same time, an integral term is introduced into the control law to
eliminate static errors. In the design process of designing the ship’s course controller, all uncertainties,
including internal uncertainties and external disturbances, are considered as a whole and compensated
by disturbance observer (DOB) [17]. Kahveci et al. propose a course control law for uncertain ship
dynamics subject to input constraints under changing external disturbance [18]. Peng et al. present an
autopilot design for a robotic unmanned surface vehicle in the presence of unknown yaw dynamics
and measurement noises. Meanwhile, numerical simulation and field experiment are performed to
verify the correctness of the control strategy [19]. Zhang et al. propose a nonlinear feedback strategy
with strong robustness [20]. Based on [20,21], an improved feedback control law which is more suitable
for small USV is proposed. In [22], a fast convergent course control strategy is proposed by combining
a linear sliding mode with a non-singular terminal sliding mode. In engineering practice, the universal
approximation ability of the radial basis function (RBF) neural network and fuzzy logic is most often
employed to estimate unknown functions in the model. In addition, the problem of input saturation
needs to be taken into account. If it is not taken into account, it is possible that the computational
output of the controller is greater than the maximum that the actuator can provide. In [23], an aided
design system is designed to analyze potential input saturation problems in the system.

Motivated by the above analysis, a novel variable bandwidth adaptive course keeping strategy,
which is designed by using the trajectory linearization control (TLC) method, RBF neural network,
disturbance observer, adaptive technology, neural shunting model, hyperbolic tangent function and
Nussbaum function, is developed for an USV with modeling error and external disturbance. The main
innovations of this paper are as follows:

(1) From the author’s point of view, the novel variable bandwidth control has been applied to the
course control of USV for the first time. In the process of controller design, many practical situations
are taken into account, such as modeling error, external disturbance and input saturation. The TLC
method is introduced into the course keeping strategy, and the robustness of the controlled system is
improved by using RBF neural network, disturbance observer, adaptive technology. The TLC method
itself is a simple and effective control method and convenient for engineering application, which is
also introduced into the design of ship motion controller by our team.

(2) Hyperbolic tangent function is hired to solve the input saturation issue. Meanwhile, introducing
Nussbaum function simplifies the problem that control strategies are difficult to design due to
input saturation.

(3) In order to be more practical and convenient for engineering application, neural shunting
model is adopted to reduce the computational burden of the controller. The above considerations lay
the foundation for the application of the control strategy proposed in this paper to the real ship control
in the next step.

The rest of this note is organized as follows. Section 2 states problem formulation and preliminaries.
Section 3 presents the design process of the control scheme. Section 4 verifies the stability of the system.
In Section 5, the simulations are carried out to prove the correctness and robustness of the control
strategy. Section 6 concludes this paper.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

The non-linear response model, namely Norrbin model, is used to describe the relationship
between course and rudder angle [24].
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Define x =
[

x1 x2

]T
, f (x) =

[
x2 − 1

T x2 − α
T x3

2

]T
, g1(x) =

[
0 K

T

]T
, g2(x) =[

0 1
]T

, g3(x) =
[

0 ∆
]T

, and then the nonlinear response model can be expressed as

{
ẋ = f (x) + g3(x) f (x) + g1(x)u + g2(x)d
y = x1

(1)

where x stands for system variable, x1 is the USV’s course, x2 is the yaw rate, K, T and α represent
model coefficients, ∆ is hired to describe the degree of modeling error, u represents the rudder angle,
−35◦ ≤ u ≤ 35◦, and d indicates slow time-varying external disturbance.

Control objective: The control objective is to develop an adaptive course keeping control strategy
to settle the above adverse factors, such that the course of USV can be closely followed and maintained
at the target value x̄1.

Assumption 1. Assume that ∆ and d satisfy |∆| ≤ ∆̄ and |d| ≤ d̄, where ∆̄ and d̄ denote unknown
normal numbers.

2.2. Trajectory Linearization Control

The TLC method is a novel and effective non-linear tracking and decoupling control scheme
emerging in recent years [25]. At present, it has been successfully applied to control systems such as
robots and aircraft [26,27]. Among the control problems, the goal of most designs is to hope that the
state or output of the controlled object tracks the desired nominal instruction under the action of the
corresponding control law. The TLC method uses an open-loop controller to cancel out the nonlinear
part of the controlled object, which makes it more agile to the response and can reduce the trajectory
tracking error caused by the linearization of the model. The design idea is that the problem of trajectory
tracking is transformed into a problem of tracking error adjustment by using the non-linear dynamic
inverse method, and then the feedback control law is designed by using the PD spectrum theory of
linear time-varying system to make the error tracking system stable.

The single input single output nonlinear system is described as follows:{
ẋ = m(x) + m1(x)u + m2(x)d
y = h(x)

(2)

where x ∈ Rn, u ∈ R, y ∈ R are system state, control input and output, respectively, d ∈ Rn can be
viewed as a sum of factors such as system modeling error, unknown dynamics and external disturbance,
m(x), m1(x), m2(x) and h(x) are smooth bounded functions. m3(x) and m2(x) satisfy the matching
condition. That is, there is a reversible nonlinear function matrix m1(x), so that m1(x)m3(x) = m2(x)
is established.

Define d = 0 and according to the TLC design method [28,29], the nominal model can be
expressed as {

˙̄x = m(x̄) + m1(x̄)ū
ȳ = h(x̄)

(3)

where x̄ ∈ Rn, ū ∈ R, ȳ ∈ R are the nominal state, nominal input and nominal output of the system
respectively. The meaning of m(x̄), m1(x̄) and h(x̄) is the same as those in (2).
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The tracking error e0 = x− x̄ is defined, and the control law is selected to be u = ū+ ulc. Based on
this, tracking error can be simplified as (4).

ė0 = m(x̄ + e0) + m1(x̄ + e0)(ū + ulc)−m(x̄)−m1(x̄)ū

= M(x̄, ū, e0, ulc) (4)

At this point, the tracking problem of the original nonlinear system is transformed into a non-linear
regulation problem. That is, the control law consists of two parts: (1) for the open-loop controlled
object, a nominal control input ū is generated according to the desired system output ȳ; (2) the
closed-loop state feedback regulator ulc is used to stabilize the controlled system and make it have
certain response characteristics.

The frame structure of TLC technology is shown in Figure 1.

Figure 1. Block diagram of trajectory linearization control (TLC) technology.

x̄ and ū can be considered as nonlinear parameters of the system, and (4) can be rewritten as
ė0 = M(t, e0). Consider the following linear time-varying system.

ė0 = A(t)e0 + B(t)ulc (5)

where A(t) = ( ∂m
∂x + ∂m1

∂x u) |x̄,ū and B(t) = m1 |x̄,ū .

Assumption 2. A(t) and B(t) are completely controllable.

Assumption 3. e0 = 0 is an isolated equilibrium point of ė0 = M(t, e0). M : [0, ∞) × De → <n and
De = {e0 ∈ <n ‖e0‖ < υ} is continuously differentiable.

Based on the Assumptions 2 and 3, and TLC theory [27], the linear time-varying feedback control
law can be designed as

ulc = K(t)e0(t) (6)

ulc makes the linear time varying system (5) exponentially stable at equilibrium points and can be
recorded as

AC(t) = A(t) + B(t)K(t) (7)
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According to Theorem 4.13 in [11], ulc can guarantee that ė0 = M(t, e0) is exponentially stable at
e0 = 0. The specific design methods of ū and ulc can be referred to the papers [28–30]. Then define the
following Lyapunov function candidate.

AT
C(t)P(t) + P(t)Ac(t) + Ṗ(t) + Q(t) = 0 (8)

where P(t) is the positive symmetrical solution of Lyapunov equation, Q(t) is a positive symmetrical
matrix. P(t) and Q(t) meet the following conditions: 0 < α1 I ≤ P(t) ≤ α2 I, ∀t ≥ t0, α1, α2 > 0,
0 < β1 I ≤ Q(t) ≤ β2 I, ∀t ≥ t0, β1, β2 > 0.

However, in practical engineering, the factors such as unmodeled dynamics and external disturbances
can not be ignored. In other words, d is not zero. In this case, the tracking error can be re represented as

ė0 = F(t, e0) + m2(x)d (9)

When ‖d‖ is small, the TLC method shows good robustness to both regular and singular
disturbances. Nevertheless, if ‖d‖ is large enough to exceed the control range of TLC, the final
control performance will be unsatisfactory, and even lead to system crash.

2.3. Neural Shunting Model

In 1988, Grossberg proposed a neural shunting model to describe the individual’s real-time
adaptation to the external environment [31]. It has been widely used in the fields of machine vision,
robot path planning, and robot arm trajectory generation [32]. Neural shunting model can be described as

β̇u = −Aβu + (B− βu) f (αu)− (D + βu)g(αu) (10)

where βu stands for the action point of the neuron, A, B and D represent positive parameters to
be designed, f (αu) is the external excitation signal and g(αu) represents the external suppression
signal. f (αu) and g(αu) are threshold functions, which are defined as f (αu) = max {αu, 0} and

g(αu) = max {−αu, 0}. They can be specifically described as f (αu) =

{
αu, αu ≥ 0
0, αu < 0

and g(αu) ={
0, αu > 0
−αu, αu ≤ 0

.

2.4. Input Saturation

Considering the physical limitations in engineering practice, there is input saturation in the
controlled system. The input saturation problem can be described as (11).

u = sat(v) =

{
sgn(v)uM, |v| ≥ uM
v, |v| < uM

(11)

where v is the commanded control value calculated by control law, uM is the limiting amplitude of v,
u is the ultimate control input. Clearly, the relationship between the commanded control value v and
the ultimate control input u has a sharp corner when |v| = uM.

The saturation function can be approximated by the following hyperbolic tangent function [33].

g(v) = uM × tanh(v/u) = uM
ev/uM − e−v/uM

ev/uM + e−v/uM
(12)

The principle of input saturation is shown in Figure 2.
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-uM

v

g(v)

sat(v)
uM

Figure 2. The principle of input saturation.

Define d1(v) as the approximation error, which can be expressed as d1(v) = sat(v)− g(v). As can
be seen from Figure 2, d1(v) belongs to a bounded function and its bound is

|d1(v)| = |sat(v)− g(v)| ≤ uM(1− tanh(1)) = E (13)

Easy to verify, when |v| ≤ uM, as |v| increases from 0 to uM, |d1(v)| increases from 0 to E;
when |v| > uM, |d1(v)| decreases from E to 0.

2.5. Nussbaum Function

Any continuous function N(s): R → <, if it has the following properties, it can be seen as a
Nussbaum function [34].  lim

k→±∞
sup 1

k

∫ k
0 N(ε)dε = ∞

lim
k→±∞

inf 1
k

∫ k
0 N(ε)dε = −∞

(14)

Lemma 1. VN(·) and ε(·) are smooth functions defined on the interval [0, t f ), and for ∀t ∈ [0, t f ), there is
V(·) ≥ 0. N(ε) is a smooth Nussbaum type function and it is even function. If any [0, t f ) is present,
the following inequality holds.

VN(t) ≤
∫ t

0
(θ0N(ε) + 1)ε̇(µ)dµ + C (15)

where θ0 and C are nonzero constants. The certification process of Lemma 1 can refer to paper [35].

3. Design of Control Strategy

In this section, the main purpose is to design an adaptive course keeping control strategy with
strong robustness based on TLC technology. Meanwhile, in order to improve the robustness of USV
course control system, the disturbance observer is hired to compensate the external disturbance,
and RBF neural network and an adaptive robust term are used to compensate the modeling error.
Finally, the hyperbolic tangent function is introduced into the controlled system to solve the input
saturation issue. The specific form and usage of RBF neural network can be referred to [36–38].
The framework of the course control strategy is described in Figure 3.
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Figure 3. Logic Diagram of course control strategy.

ur is a robust term employed to compensate for various errors, and unn is the output of neural
network to solve the modeling error issue. udob is used to cope with environmental interference.
Tanh represents a hyperbolic tangent function to handle input saturation. g(v) is the final control input.

Step 1: TLC strategy

Define the target course as x̄1, ˙̄x1 = x̄2, x̄d =
[

x1d x2d

]T
, e1 = x− x̄d. According to TLC theory,

when ∆ = 0 and d = 0, ū can be expressed as

ū =
1
K
(T ¨̄x1 + ˙̄x1 + α ˙̄x3

1) (16)

The signal x̄1 is used to obtain ¨̄x1 and ˙̄x1 through G1(s) = 16s2

s2+8s+16 and G2(s) = 4s
s+4 respectively

to ensure the causality of the system. In addition, A(t) =

[
0 1
0 − 1

T −
3α
T x2

2

]
and B(t) =

[
0
K
T

]
can

be obtained from (5). On the basis of PD spectrum theory, the desired closed-loop characteristics can
be described as

Ac =

[
0 1

−ω2
n(t) −2ζωn(t) +

ω̇n(t)
ωn(t)

]
(17)

where ζ is a constant damping, ωn(t) is a time-varying bandwidth. The change rule of ωn(t) is as
follows: if |x1 − x̄1d| ≥

pi
18 , ωn(t) = 0.5; if 0 ≤ |x1 − x̄1d| <

pi
18 , ωn(t) = − |x1 − x̄1d|+ 0.5.

Remark 1. According to TLC theory, the bigger the ωn(t) value, the bigger the bandwidth, the faster the
error convergence. Therefore, the design principle of ωn(t) is to use a larger bandwidth when the error is large,
and when the error is gradually reduced, the bandwidth is also gradually reduced to avoid excessive overshoot,
which is called variable bandwidth control.

After the above analysis and (7), K(t) can be obtained.

K(t) =
T
K
[−ω2

n(t),−2ζωn(t) + ω̇n(t) +
1
T
+

3α

T
x2

2] (18)

ulc can be obtained based on (6) and (18).
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Step 2: Disturbance Observer

For (1), define g1(x)g4(x) = g2(x), g1(x)g5(x) = g3(x), g2(x)g6(x) = g3(x), and one can get that
g4(x) = T

K , g5(x) = ∆T
K and g6(x) = ∆. In order to compensate external disturbance in real time,

the disturbance observer is designed as (19).{
˙̂x2 = − 1

T x2 − α
T x3

2 + d̂ + K
T u + k1 x̃2

˙̂d = k2 x̃2
(19)

where k1 and k2 are positive parameters to be designed, x̃2 = x̂2 − x2, d̃ = d̂− d.
Based on the above analysis, the output of the disturbance observer can be described as

udob = g4(x)d̂ (20)

Step 3: Adaptive Compensation

Define eT
1 P(t) = Θ1, eT

1 P(t)g2(x) = Θ2 and eT
1 P(t)g3(x) = Θ3, where P(t) has the same meaning

as (8). The output of neural network is selected as

unn = g5(x)ŴTh (21)

where Ŵ is the estimated weight, h is a Gauss function. The estimation error can be defined as
W̃ = W − Ŵ. The adaptive law of neural network is

˙̂W = Γ(Θ3 + x̃2)h + κΓŴ (22)

where Γ and κ are positive parameters to be designed. A robust term ur is employed to compensate for
errors caused by neural network and disturbance observer to improve the robustness of the system,
which can be defined as

ur = g5(x)ω̂sgn(Θ2) (23)

The adaptive law of robust term is

˙̂ω = γΘ2 + γιω̂ (24)

where γ and ι are the corresponding design parameters, and ω̃ = ω− ω̂.

Step 4: Input Saturation

Considering input saturation, the nonlinear model of USV can be rewritten as (25).{
ẋ = f (x) + g3(x) f (x) + g1(x)g(v) + g2(x)d + g1(x)d1(v)
y = x1

(25)

In order to facilitate the design of control law, auxiliary control signal w and the following auxiliary
equation are introduced.

v̇ = −cv + w (26)
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where c is a positive parameter to be designed. Define αu = ū + ulc − unn − udob − ur, and enable αu to
obtain β̇u through (10). Define error variable e2 = g(v)− βu, and take the time derivative ė2 along (12),
we have

ė2 = ġ(v)− β̇u = ς(−cv + w)− β̇u (27)

where ς = ∂g(v)
∂v = 4

(ev/uM+e−v/uM )
> 0. Since ς is variable, this increases the difficulty of design and

analysis, so Nussbaum function N(ε) and auxiliary control law w are introduced into the design of
the controller.

The control law w is selected as (28).

w = N(ε)w̄ (28)

where w̄ = keue2 − cvς− ė2, and keu is a positive parameter. The Nussbaum function is defined as
N(ε) = ε2 cos(ε) and ε̇ = λεw̄e2. So far, the final control law has been designed.

4. Stability Analysis

Based on the course control law designed in Section 3, one can get (29).

ė1=AC(t)e1 + R(·) + g3(x)(∆ f (x)− ŴTh) + g2(x)(d− d̂ +
K
T

d1 − ω̂sgn(Θ2)) (29)

where R(·) expresses the high order term of the Tailorseries expansion [39], and satisfies

‖R(·)‖ ≤ L‖e1‖2, ∀ ‖e1‖ < µ (30)

where L is a normal number. Define error variable e3.

e3 = βu − αu (31)

whose time derivative along (10) can be expressed by

ė3 = −([A + f (αu) + g(αu)]βu − [B f (αu)− Dg(αu)])− α̇u (32)

The meaning of all parameters in (32) is the same as that in (10). Define B = D, then (32) can be
simplified as

ė3 = −Auβu + Bαu − α̇u (33)

where Au = A + f (αu) + g(αu).

Remark 2. α̇u is bounded, and we assume that α̇u ≤ ᾱu, where ᾱu is normal number greater than zero.

Based on the design of control law and the above analysis, the main result of this paper is
summarized as Theorem 1.

Theorem 1. Consider the closed-loop system (25), the final control law g(v), the adaptive laws (22) and (24),
together with the disturbance compensation (20). If we choose α2 > 1 and β1 > 2Lµα2, all signals in the course
control system are uniformly ultimately bounded (UUB).
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Proof of Theorem 1. Consider the following Lyapunov function candidate:

V =
1
2
(eT

1 P(t)e1 + Γ−1W̃TW̃ + γ−1ω̃2 +
1
k2

d̃2 + x̃2
2 + e2

2 + e2
3) (34)

whose time derivative along (19), (28), (30) and (33) can be expressed by

V̇ ≤ −1
2

eT
1 Q(t) + W̃T(Θ3h− Γ−1 ˙̂W) + Θ1R(·) + Θ2(g6(x)ωnn + d̃ +

K
T

d1 − ω̂sgn(Θ2))

− γ−1ω̃ ˙̂ω +
1
k2

d̃ ˙̃d + x̃2 ˙̃x2 + e2 ė2 − (Au −
v

2
)e2

3+
ᾱ2

u
2v

(35)

Define B = Au, and we have Auβu − Auαu = Aue3. −e3α̇u ≤
ve2

3
2 + ᾱ2

u
2v can be obtained from

Young’s inequality, where v is a normal number.

V̇ ≤ −1
2

eT
1 Q(t)e1 + W̃T(Θ3h− Γ−1 ˙̂W) + Θ1R(·) + Θ2(g6(x)ε + d̃ +

K
T

d1 − ω̂sgn(Θ2))

+ γ−1ω̃ ˙̂ω +
1
k2

d̃ ˙̃d + x̃2 ˙̃x2 + e2 ė2 − (Au −
v

2
)e2

3+
ᾱ2

u
2v

(36)

With the disturbance observer (20), V̇ yields

V̇ ≤ −1
2

eT
1 Q(t)e1 + W̃T(Θ3h + x̃2h− Γ−1 ˙̂W) + Θ1R(·) + ω̃(‖Θ2‖ − γ−1 ˙̂ω)− (k1 −

1
2
)x̃2

2

+ e2 ė2 − (Au −
v

2
)e2

3+
ᾱ2

u
2v

+
1
2

ω2
nn

(37)

Submitting the adaptive laws (22), (24) yields

V̇ ≤ −1
2

eT
1 Q(t)e1 −

κ

2
W̃2 − ι

2
ω̃2 − (k1 −

1
2
)x̃2

2 − keue2
2 +

1
λε

(ξN(ε) + 1)ε̇) + Θ1R(·)

+
κ

2
W2 +

ι

2
ω2 − (Au −

v

2
)e2

3+
ᾱ2

u
2v

+
1
2

ω2
nn

(38)

Equation (39) can be obtained by further simplifying (38).

V̇ ≤ −1
2
(β1 − 2Lµα2)e2

1 −
κ

2
W̃2 − ι

2
ω̃2 − (k1 −

1
2
)x̃2

2 − keue2
2 − (Au −

v

2
)e2

3 +
1
λε

(ξN(ε) + 1)ε̇)

+
κ

2
W2 +

ι

2
ω2+

ᾱ2
u

2v
+

1
2

ω2
nn

(39)

Set l1 = 1
2 (β1 − 2Lµα2) > 0, l2 = κ

2 , l3 = ι
2 , l4 = k1 − 1

2 > 0, l5 = −keu, l6 = Au − v
2 > 0,

Ω = κ
2 W2 + ι

2 ω2+ ᾱ2
u

2v + 1
2 ω2

nn, then (39) becomes

V̇ ≤ −l1e2
1 − l2W̃2 − l3ω̃2 − l4 x̃2

2 − l5e2
2 − l6e2

3 + Ω +
1
λε

(ξN(ε) + 1)ε̇) (40)

Define l = min{l1, l2, l3, l4, l5, l6}, then it follows form (40) that

V̇ ≤ −2lV + Ω +
1
λε

(ξN(ε) + 1)ε̇) (41)

Solving inequality (41) gives

V ≤ V(0)e−2lt +
Ω
2l
+

∫ t
0 (ξN(ε) + 1)ε̇dτ + C

2lλε
, ∀t > 0 (42)
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Through the above proof, the following conclusion can be drawn: V is eventually bounded by
Ω
2l+

∫ t
0 (ξN(ε)+1)ε̇dτ+C

2lλε
, thus all the error signals are UUB.

5. Numerical Simulations

In this section, the proposed control scheme is compared with the classical PID control strategy
by numerical simulation to verify its effectiveness and robustness. Meanwhile, the integrated time and
absolute error (ITAE) index is used to describe course error to show the robustness of the proposed
strategy, which is expressed as ITAE =

∫ t
0 t |x1 − x̄1|dt [40]. The research object of this paper is “Lanxin”

USV of Dalian Maritime University, and its specific details and parameters can be referred to [41].
The control parameters are set to uM = 35 degrees, ∆ = 0.3, ζ = 0.707, k1 = 1, k2 = 30, Γ = 0.0001,
κ = 0.01, γ = 0.2, ι = 0.001, c = 100, kue = 100, λε = 0.4, A = 1, B = D = 1+ f (αu) + g(αu).

5.1. Weak External Disturbance

A weaker disturbance d = 2.5 sin(0.6t) is introduced into the control system for simulation to
verify the correctness of the control strategy proposed in this paper. Simulation results are provided in
Figures 4–6, and the ITAE index for course error is shown in Table 1.

Figure 4. The curves of course angle under weak disturbance.

Figure 5. The curves of rudder angle under weak disturbance.
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Figure 6. The curves of disturbance estimation under weak disturbance.

Table 1. Integrated time and absolute error (ITAE) index under weak disturbance.

ITAE Value

The proposed scheme 1500
PID 5345

Figure 4 depicts the course keeping performance of the proposed scheme and PID strategy.
The control strategy proposed in this paper can ensure that the course of USV is kept at the target value
without obvious error, and it also maintains a faster convergence speed. However, the performance of
the classic PID strategy is not ideal, and the USV’s course has been significantly fluctuating above and
below the target value. It can be observed that the proposed scheme has better control performance
than the PID strategy. Figure 5 shows the rudder angle curves of the proposed scheme and PID
strategy. Obviously, in the early stage of control, the PID strategy has reached saturation (35 degrees),
which means it needs more energy. Under the action of hyperbolic tangent function, the rudder angle
curve of the proposed scheme does not reach 35 degrees and its change curve is relatively smooth.
Compared with Figure 4, although the proposed scheme has a relatively gentle rudder angle curve,
its convergence rate is not slower than that of PID strategy. Figure 6 plots actual and estimated external
disturbances. The estimated curve can be well fitted with the actual curve, which shows the correctness
of the proposed disturbance observer.

Furthermore, it can be seen from Table 1 that the ITAE index of the proposed strategy is 1500,
which is only 28.1 percent of the PID strategy. These data further reflect the feasibility and superiority
of the proposed scheme.

5.2. Strong External Disturbance

On the premise that any control parameters and initial conditions remain unchanged,
the robustness of the proposed control strategy are verified by enhancing external disturbance.
The enhanced external disturbance is d = 3× 2.5 sin(0.6t). The specific simulation results are shown
in Figures 7–9, and the ITAE index for course error is shown in Table 2.

Figures 7 and 8 depict the course control results and rudder angle curve of the proposed scheme
and the PID strategy, respectively. It implies that compared with the PID strategy, the control
strategy proposed in this paper still has better performance. It is worth noting that the course
under the proposed strategy is still kept near the target value and there is no obvious fluctuation.
Instead, the course error under PID control increases significantly compared to the result under weaker
disturbance. The operation result of disturbance observer under strong disturbance is shown in
Figure 9. Obviously, the disturbance observer presented in this paper has good performance in both
strong and weak disturbances.
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Figure 7. The curves of course angle under strong disturbance.

Figure 8. The curves of rudder angle under strong disturbance.

Figure 9. The curves of disturbance estimation under strong disturbance.
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Table 2. ITAE index under strong disturbance.

ITAE Value

The proposed scheme 1950
PID 6788

It can be seen from Table 2 that the ITAE index of the proposed strategy is 1950, which is only
28.7 percent of the PID strategy. Furthermore, the ITAE value of course error under strong external
disturbance is only 450 higher than that under weak external disturbance, but the ITAE value of PID
strategy increases by 1443. The robustness and effectiveness of the proposed control strategy are
proved by simulation under weak and strong disturbances respectively.

6. Conclusions

This paper has presented a course keeping strategy with modeling error, external disturbance
and input saturation. The scheme is proposed by combining the TLC strategy, RBF neural network,
disturbance observer, hyperbolic tangent function and Nussbaum function, which is obviously different
from traditional adaptive course control strategy. Based on the introduction of TLC technology into
the control strategy, the neural network, the disturbance observer and the robust term improve the
robustness of the system. Finally, the course keeping error is described by ITAE index: in the case
of weak external disturbance, the ITAE index of the proposed scheme is only 28.1 percent of PID
control; under strong external disturbance, the ITAE index of the proposed scheme is only PID control
28.7 percent, and only increased by 450. The feasibility and robustness of the proposed strategy are
verified by numerical simulations.

Although this note has taken into account many practical situations, there are still many issues
that need to be addressed. For example, the disturbance observer designed in this paper can only
estimate the slow time-varying disturbance, but the estimation effect of the non-slow time-varying
disturbance is not satisfactory. Or, the dynamic characteristics of the actuator are not taken into account,
which is one of the future research directions of the author.
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