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Abstract: In recent years, with developing technology in the field of electrical machines, more efficient
and high power density electric motors have been produced. The use of high energy efficiency motors
gains importance due to the increase in global energy demand. The main purpose of this study was
to design an Axial Flux Induction Motor (AFIM) with the same efficiency class as the Radial Flux
Induction Motor (RFIM) in premium efficiency (IE3) class which is used commonly in industrial
applications. Various AFIMs are designed with different rotor slot numbers and performance analyses
as efficiency and torque ripple changes are investigated. It is known that torque ripple is one of
the key parameters in electrical machine design which should be kept as low as possible without
decreasing efficiency and torque. Accordingly, AFIMs’ rotor slots are skewed considering the stator
and rotor slot numbers. The use of a Soft Magnetic Composites (SMC) material in design is also
investigated. As a result of the analyses, many premium efficiency classes for AFIMs are obtained.
In addition, using SMC material and skewing the rotor slots provides that torque ripples be reduced.

Keywords: axial flux induction motor; finite element analysis; performance evaluation

1. Introduction

Today, more than 40% of the global energy consumption amount is consumed by induction motors
and this rate exceeds 70% in the industry [1,2]. Additionally, these motors are key components of
many industrial processes, with their reliability, and low cost of maintenance and construction [3,4].
Considering the amount of energy consumed by these motors, it is seen that even a small change in
their efficiency will provide significant savings in worldwide energy consumption. The largest energy
savings, particularly for medium and small power motors, arise for their higher efficiency classes [5,6].
Accordingly, the use of IE3 class motors has become mandatory due to the laws published in many
countries. For instance, IE3 motors have been mandatory since 2011 in the United States and in Turkey,
China, and the EU countries in 2015 [7-9]. Nowadays, energy consumption and environmental impacts
are reduced with high efficiency motors. Additionally, motor reliability increases sustainable use and
demand for investment [10]. In many countries around the world, many programs are encouraged
to increase the use of high-efficiency motors. Among these programs, the Efficiency Increasing
Project and the Efficient Motor Replacement programs are prominent in the world. Replacing existing
low-efficiency motors with high-efficiency motors will result in significant energy savings even if
same-sized motors are used [11,12]. Otherwise, if AFIMs are preferred over conventional RFIMs,
more efficient and smaller volume motors can be designed [13,14].

With the developing technology, electric motors have a more compact structure and many studies
are carried out to increase their efficiency. In many studies, instead of radial flux design of induction
motors, axial flux design was found to have a more compact structure and it was concluded that their
efficiency and torque density could be increased further [14,15].
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AFIMs have the same operating principle as RFIM. However, design of these motors is quite
different. The main difference is the magnetic flux direction. In conventional radial flux machines,
the flux is in radial direction relative to the machine axis. The magnetic flux produced in AFIMs is in
axial direction with respect to the machine axis.

In recent decades, AFIMs have been a popular research topic for researchers. Many studies have
been conducted in the literature on AFIM design and control [16-18]. Among these studies, the most
notable ones are the design and implementation of different structures. Additionally, many AFIMs
have been designed for various applications such as pumps, electric vehicles, wind turbine, etc. [19,20]
For instance, in electric vehicles, which are among the popular topics of today, AFIMs have different
uses such as wheel-directly coupled, on-wheel, or main motor [21]. In some studies, different materials
have been used, such as iron, magneto dielectric, superconductors, etc. [22,23].

In this study, AFIMs are designed to have the same efficiency class as RFIM in IE3 efficiency class
used in industry. In addition, the rotor is skewed to minimize the torque ripple. In the literature,
only stator slot numbers has been taken into consideration to determine the skew angles for the
performance analysis of an induction motor [24-27]. In this study, and different from the literature,
skew angles are selected considering both the ratio of stator and rotor slot numbers. Additionally,
analyses are carried out using SMC material for stator, rotor, and both stator and rotor of the motor,
which provides the best results in terms of efficiency and torque ripple. However, in the analysis
results obtained, a considerable decrease in torque ripple over 11% is observed.

Following the introduction, Section 2 presents the topologies of AFMs and design parameters
of AFIM. Section 3 introduces model properties, results, and discussion of all various types of AFIM
models. Finally, the concluding remarks are presented in Section 4.

2. Methodology

In this section, considering the geometrical properties of the stator/rotor core, radial and axial flux
machine equations are presented after the topologies of AFMs are introduced.

2.1. Axial Flux Machine Topologies

A machine with one air gap is the oldest and simplest structure of AFM, has a single-sided
motor, and a single stator-single rotor (SSSR). The structure of this machine is easier due to a single air
gap [28]. Generally, this machine is the best choice for low torque applications such as fans, pumps,
food processors, etc. [29] Also, it can be said that single-sided AFIMs are more resistant to static
eccentricity than conventional motors [30,31]. The disadvantage of this type of machine is that bearing
life depends on their load. Active material utilization of the SSSR machine is higher [32]. In Figure 1,
single-sided AFIM components are shown.
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Figure 1. Single-sided Axial Flux Induction Motor (AFIM) components.
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There are two air gaps in this type of machine. Both of these air gaps can be axially (double-sided
motor), or one axially and the other radially. Such motors consist of a double stator-single rotor,
with the rotor sandwiched between the stators, or single stator-double rotor with the stator sandwiched
between the rotors. The advantages of double-sided motors include high torque density and balanced
axial forces.

In this context, and in terms of economy, the production of two stators is more costly, especially in
small powerful machines compared to the single-sided structure. However, the difference in production
cost between single-sided motor and double-sided motor for high torque machines is decreasing.
In double-sided motors, the moment of inertia is lower and the rotor is lighter [33].

Although the double-sided motor structure has better performance, for high-powered motors,
the multi-air-gap disc structure is a better choice [34]. Multi air gap machines have two topologies
that are determined by the number of stators and rotors. If the number of stators is more than the
number of rotors, these machines are called external stator and internal rotor machines. If the number
of rotors is more than the number of stators, these machines are called internal stator external rotor type
machines. Internal stator external rotor type machines are preferred due to their high efficiency [35].
This topology can be defined as a concept rather than a machine type. The aim is to place the stators
and rotors alternately to meet the requirements of the application. An advantage of this configuration
is that it offers modularity [36].

In this study, single air-gap motor topology—which is also prominent in terms of ease of design
and analysis—is chosen. It is an advantage that the volume of this structure is smaller. A conventional
radial flux induction motor used industrially in the premium efficiency class is taken as a reference to
the designed AFIMs.

2.2. Design Parameters of AFIM

The rotating magnetic field can be solved analytically by integrating the basic flux with respect to
all radius (r) and pole form factor (). The rotating magnetic field is within a pole range and electrical
angle values are accepted. Axial rotating magnetic field is obtained as in Equation (1).

2B
Pax = —;nax (r5 —13) cos wt )

where ¢,y is axial rotating magnetic field in disk-like air gap; Bmax is maximum induction in the air
gap; p is number of poles; r; is outer radius of the core of axial induction motor and r; is inner radius
of the core of axial induction motor.
Basically, the output power of electrical machines (P;) is a function of flux per pole as in
Equation (2).
Py = f(¢) )

Therefore, both types of induction motors can be compared using the flux equations of the rotating
magnetic field. In 1986, Varga compared both types of motors using the flux equations of the rotating
magnetic field in his study [37]. Thus, the flux equation of AFIM (Equation (1)) has been compared
with the similar equation of RFIM (Equation (3)).

4Bmax
p

Orad = L, (7, — 1) cos wt 3)
where ¢,,, is radial rotating magnetic field in cylindrical air gap; L, is length of the radial induction
motor, 7y is rotor radius of the radial induction motor; r, is radius of shaft opening.
Flux values for two types of motors are equalized for predictive comparison (¢ax = Pra4),
so Equation (4) becomes;
2L, (1 —15) = r% - r% 4)
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In fact, both sides of equation 4 are cross-sectional areas for total magnetic flux in related type
induction motors. In Figure 2, RFIM and AFIM geometries are shown. This comparison takes into
account only the geometric properties of different types of induction motors under equal magnetic use.
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Figure 2. (a) Radial Flux Induction Motor (RFIM) geometry, (b) AFIM geometry.
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The shaft opening increases the rotor radius , by r,. The equations given AFIM have a single
air gap and no volumetric assumptions are made. In Equation (5), apparent internal power is solved;
r1 and rp are halves of D; and Dy, respectively.

where §; is apparent internal power; Cgy is axial induction motor constant; D, is core outside diameter
with no slots; D is core inside diameter; 11 is synchronous speed.
In Equation (6), Cyy is calculated as;

nzakw BmaxF 1

ax — m maxI'1 = 109.13 (6)

where « is deflection, pole form factor; k;, is winding factor; and F; is distributed MMF; k;, and a
values are taken 0.9 and 0.7, respectively, as the average values usually used [38].
In Equation (7), D, refers to the average diameter of the core;

Dy, +D
Dy =~ — )
In Equation (8), L refers to the radial width of the core;
_Dy-Dy
L= =2 ®)

While establishing equations for diameter dimensions of AFIM, slots are neglected. The motor air
gap is assumed to be constant when the slots are neglected. In these conditions, the outer diameter of
the core D; can be found as in Equation (9).

2pax )

Bmax

Dy = /D?+
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Core volume of the entire stator and rotor (V) is calculated in Equation (10).

T2 _ 2
V—VS+VV—Z(D2—D1)Z‘I1,« (10)

where V; is core volume of stator; V, is core volume of rotor; ) h; is total height of the machine.

1
Efficiency is calculated as in Equation (11) according to IEEE Standard 112-2017 [39].

. Poutput . Pinput = 2. Plosses (11)

p input p input

where 1) is efficiency in percent; Poytput is output power; Pjyyy; is inner output [39]. 3. P is total
losses and presented as in Equation (12);

Z Plosses = Pcore + Pcu + PFW + PSTR (12)

where P, is stator and rotor core losses; P is stator and rotor copper losses; Py is mechanical
losses as frictional and windage losses and Pgrp is stray-load losses. The biggest cause of stray-load
losses is harmonic energies when the motor is operating under load. If the load current consists of
harmonic components, flux magnitude and waveform were distorted, which results in harmonic
torques, vibrations and the noise [40,41]. In the IEEE Standard 112-2017, the assumed values for
stray-load losses are shown in Table 1. According to the table, in the study, stray-load losses percent of
rated load are taken as 1.8% for designed AFIMs [39].

Table 1. Assumed values for stray-load loss.

Machine Rating (kW) Stray-Load Loss Percent of Rated Load
0.7457 to 90 1.8%
91 to 375 1.5%
376 to 1850 1.2%
1851 and greater 0.9%

In this study, transient analyses are carried out and torque values are calculated with the help of
ANSYS Maxwell program. Torque ripple (7;;y) in percent is defined as the ratio of difference between
maximum (Tmax) and minimum torque (Tnin) values to average torque (Tay¢) as in Equation (13).

Trivple = Tmax ~ Tmin 490 (13)
pp Trog

AFIM results based on different rotor slot numbers are examined in the next section. In this study,
the rotor slots are skewed to achieve better efficiency and fewer torque ripple. Skew angles are given
for all slot numbers of the non-skew models, and analyses have been made by taking into account the
stator and rotor slot numbers. Skew angle analyses adjusted according to stator slot number are given
in Equations (14)—(16).

360

== 14

Bs N (14)
360 .

158 =" =1 1

5-Bs N 5 (15)

2-/35:@:20" (16)
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where f; is skew angle according to stator slot number in degrees, N; is stator slot number. By using
Equations (14)—(16); 10°, 15° and 20° are selected. These values are the same for all design and analyzed
for all of them.

Skew angle analyses adjusted according to rotor slot number are given in Equations (17) and (18).

360
ﬁr = Vr (17)
2.6, = ‘}io (18)

where f3; is skew angle according to rotor slot number in degrees, N, is rotor slot number.

In this context, geometries with three additional skew angles, s, 1.5 s, 2- s, fr and 2 - B, are
applied in the rotor slots of the 28, 30, 32, 34, 38, 40 and 42 slotted models, and analyses results
are presented.

3. Results and Discussion

In this section, general design parameters of analyzed AFIMs with reference RFIM are presented.
In addition, many AFIMs are designed to be in the same energy efficiency class as the RFIM referenced.
While making these designs, no changes are made on the stator. When using the same stator, rotor slot
numbers and skew angles are changed.

3.1. RFIM Model Details

This section provides information about the reference RFIM, which is widely used in the industrial
applications. The analysis results of this motor, which is IE3 efficiency class with 93.2% efficiency and
7.49% torque ripple, was made by using the ANSYS Maxwell program. Analyses in which the motor
model is suitable for 2D analysis are done in two dimensions. The ANSYS model of the model is
shown in Figure 3. In addition, general design parameters of RFIM are shown in Table 2.

B [teslal

2.6488
2.3839
2.2250
2.0660
1.9971
1.7482
1.5893
1.4393
1.2714
1.1125
8, 9536
2. 7946
9. 6357
8. 4765
8. 3179
@, 1589
2.0022

(b)

Figure 3. (a) RFIM model (b) Magnetic field density of RFIM.



Energies 2020, 13, 4991

7 of 15

Table 2. Design parameters of Radial Flux Induction Motor (RFIM).

Parameter Value
Rated power 30 kW
Rated voltage 400V
Rated speed 2980 rpm
Rated frequency 150 Hz
Stator core outer diameter 355 mm
Rotor core outer diameter 236.5 mm
Length of motor 250 mm
Stator/Rotor slot numbers 45/40

Stator material

Steel (M19_24G)

3.2. AFIM Model Details

In this section, Finite Element Analysis (FEA) is needed to perform electromagnetic analysis of
AFIM. Unlike other types of machines, 3D analysis is mandatory because 2D analysis of such machines
does not give detailed results. For this reason, analyses are performed in 3D Cartesian coordinate
system and these analyses take a considerable amount of time due to high meshing. Also, for detailed
analysis, the number of meshes is kept as high as the processor allowed. In this study, ANSYS Maxwell
software is preferred to the FEA analysis, since it is suitable for magnetic field analysis of machines
and has a wide usage area.

Firstly, an AFIM designed with the same number of stator and rotor slots. AFIM model and the
magnetic field density of AFIM is shown in Figure 4. This model is designed with a non-skewed
rotor. According to the analysis results, the efficiency of AFIM is 82.83%, while the torque ripple
is 7.4%. Thereafter, in the next section, AFIMs are designed with different rotor slot numbers and
various skewed rotors to increase the efficiency to IE3 efficiency class. Table 3 shows the general design
parameters of the analyzed AFIMs.

Table 3. General design parameters of Axial Flux Induction Motor (AFIMs).

Parameter Value
Rated power 30 kW
Rated voltage 400V
Rated speed 2895 rpm
Rated frequency 150 Hz
Stator/Rotor core outer diameter 355 mm
Stator/Rotor core inner diameter 140 mm
Air-gap length 2mm
Length of stator/rotor 60/55 mm
Stator slot numbers 36
Rotor slot numbers 28, 30, 32, 34, 38, 40, 42
Stator material Steel (M19_24G)
Winding type Whole Coiled
Number of conductors per slot 16
Number of strands 2
Conductor type Copper
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Figure 4. (a) AFIM model (b) Magnetic field density of AFIM.

3.3. AFIM Analyze Results with Different Rotor Slot Numbers

In this section, analyses are made according to seven different slot numbers for the rotor slots
without skewing, 28, 30, 32, 34, 38, 40 and 42 slots, respectively. While determining these numbers,
rotor slot widths are taken into account according to the machine size. Therefore, the maximum slot
number is specified as 42 and the minimum as 28 for the number of rotor slots. Since the stator slot
number is 36, 36-slot rotor design is not feasible, and because the stator slot and rotor slot areas are
overlapped, the magnetic flux production is not possible.

It is known that torque ripple is one of the most challenging parameters in electrical machine
designs. While making designs, decreasing this value is an aim. Therefore, torque ripples are taken
into consideration while making comparisons. Figure 5 shows the efficiency and torque ripples of the
analysis results according to 7 different slot numbers from 28 to 42. In Figure 5, torque ripple in 30 and
42 slotted AFIMs varies a lot compared to others. As the reason for this, it can be said that the number
of these two slots is a multiple of 6; that is, the pole number. Thus, they are forced more in magnetic
field transition. From the other five AFIMs, the torque ripples of only 28 and 34 slotted rotor designs
are over 10%, while the other three designs’ torque ripples at 9%. In this way, AFIM models with the
best performance in terms of torque ripples are 32, 38 and 40 slotted models. There are six models in
the same energy efficiency class (IE3) as RFIM. Only 34 slotted model is in a lower efficiency class (IE2).

60 T .
== Torque Ripple +Efﬁcieucy\ 93
50+
. N N N o N S 1E3
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Figure 5. Efficiency and torque results of AFIM with different slot numbers.

As a result of the analyses made according to different rotor slot numbers, although it does
not have the highest efficiency, it can be said that the 40 slotted model, which is in the same energy
efficiency class and has little difference between its efficiency, is the best model among them since the
torque ripple is much less.
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3.4. Results of AFIM with Skewed Rotor

In the analysis of the rotor with 28 slot non-skew model, torque ripple 13.9%, efficiency 92.6% are
obtained. The efficiency class of this model is in IE3 class. As the first analysis, skew angles are given to
28-slot AFIM. Accordingly, the skew angles in analyses are 10°, 12.86°, 15° and 20°. Torque ripple and
efficiency results of the analyses are presented in Figure 6. Modeling of 25.72° skew is not feasible due
to the overlay occurring between stator and rotor. In Figure 6, it is observed that there is no increase in
efficiency when the rotor is skewed. However, when the models with skewed according to the number
of stator slots are examined, it is seen that the efficiency decreases as the skew angle increases. On the
other hand, when the skew is given according to the number of rotor slots, the efficiency keeps the
same value.

20 .

‘ I "’ Torque Ripple +El'|'|cicncy| 93
~ 15
S -~ =
T e g
=3 g b
£ ~ ZOIE2
& 10 =~ = e g
v PR -2
= =
g =
s el
= s5-

1IE1
0 5 10 15 20
Skew Angle (Degree)

Figure 6. Efficiency and torque results of AFIM with 28 slots.

As a result of the non-skew model analyses, 30-slot AFIM model has the highest torque ripple
value and the best efficiency. In the second analysis, this model is skewed. In addition to the non-skew
model; in Figure 7 the torque ripple and the efficiency results of 10°, 12°, 15° and 20° skewed AFIM
models are presented. In Figure 7, the torque ripple has decreased as the skew angle degree increases
in analyses made only considering the number of stator slots. When analyses made according to the
number of rotor slots are compared among themselves, it is seen that as the skew angle increases,
the torque ripple decreases. In Figure 7, an increment in efficiency was not observed when the rotor is
skewed. However, according to the skewed models, efficiency is increasing with the increment in the
skew angle.

50

== Torque Ripple *Efﬁciency\

IE3
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Figure 7. Efficiency and torque results of AFIM with 30 slots.
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Considering the number of stators and rotor slots, the third analyses are done to 32-slot AFIM
model with the skew angle of 10°, 11.25°, 15°, 20° and 22.5°. The non-skewed 32-slot AFIM model’s
torque ripple is 9.5% and the efficiency is 92.2%, which is in the IE3 class. Torque ripple and efficiency
results of the analyses are shown in Figure 8. A comparison of the non-skew and 10° skew models
shows that 10° skewed model has less torque ripple. On the other hand, a comparison of only skewed
models shows that the torque ripple is lowest at 10° and highest at 15°. Comparing the 32-slot skewed
models and the non-skew model, it is seen that the torque ripple decreases when the skew angle is 10°.

40

T
|'0 Torque Ripple +Efﬁciencv|

§ 30 IE3

z s

L >

% g

= a2

= =

i o=

= = 1E2
IE1

1 1 1 1
0 5 10 15 20
Skew Angle (Degree)

Figure 8. Efficiency and torque results of AFIM with 32 slots.

In addition, efficiency increases and the efficiency class increases from IE2 to IE3. Only from
skewed models according to the number of stator slots, the efficiency decreases while the skew angle
increases. On the other hand, according to the skewed models skewed with rotor slots number,
the torque ripple increases and the efficiency decreases while the skew angle increases.

The fourth analysis is performed to 34-slot AFIM and the skew angles are calculated as 10°, 10.58°,
15°,20° and 21.17°. In the 34-slot non-skewed model, the torque ripple is 11%, the efficiency is 90.8%,
while the efficiency class is in the IE2 class. Torque ripple and efficiency results of the 32-slot AFIM
analyses are shown in Figure 9. It is observed that the torque ripple does not fluctuate very much.
Accordingly, it can be seen that the 15° skewed model is the most efficient model.

20 92
‘-. Torque Ripple ==Efficiency ‘

5

15 &
= < IE2
f=9 -
B g
=~ =
s 2
=) £
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=
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Skew Angle (Degree)

Figure 9. Efficiency and torque results of AFIM with 34 slots.

In the 5th analysis step, the 38-slot AFIM, which has the least torque ripple, is analyzed by
considering the stator and rotor slots numbers. Accordingly, skew angles are determined as 9.47°,
10°,15°, 18.95° and 20°. When the skewed analysis results are compared to the non-skewed model,
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the analysis with the lowest torque ripple is obtained when the skew angle is 9.47. Torque ripple and
efficiency results of the 38-slot AFIM analyses are shown in Figure 10.

20 T

- Torque Rip[;le =+=Efficiency
| /\ 92
g
: \[ é
[ >
[-% e
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“:‘., -— - =h ~ ‘E‘
z = - 91 &:
5 10 =
= - i
T i
IE1
5 : 3 90
0 5 10 15 20
Skew Angle (Degree)

Figure 10. Efficiency and torque results of AFIM with 38 slots.

When the results of the skewed models of the 38-slot AFIM model according to the number of
stator and rotor slots are examined, we do not see a positive effect on efficiency. Although the results
are close to each other, the non-skewed model gives better results than skewed models.

In the sixth analysis step, the skew applied to the rotor of the 40-slot AFIM, which has the second
best efficiency among non-skewed models. This model is also in IE3 energy efficiency class and the
only model with low torque fluctuation. Skew angles for this model are calculated as 9°, 10°, 15°, 18°
and 20°. Figure 11 shows the torque and efficiency results of the non-skewed and skewed models.
In Figure 11, the 18° skewed model has the best torque ripple percentage. It can be seen that giving a
skew to the rotor of 40-slot AFIM affects the efficiency negatively. However, the non-skewed, 9°, 10°,
15° and 18° skewed models are in IE3 energy efficiency class, other 10° and 20° skewed models are in
IE2 energy efficiency class.

20 T

I

== Torque Ripple =*=Efficiency 923

o IE3
e
s 9
=2 .
e 92
z £
= =
E 10 -~-_," =
g =
IE2
5 1 1 ! 91
0 5 10 15 20

Skew Angle (Degree)
Figure 11. Efficiency and torque results of AFIM with 40 slots.

The last step of analyses among skewed models is done to 42-slot AFIM, which is another model
with high torque ripple. Analyses results of non-skewed and skewed models of 42-slot AFIM are
shown in Figure 12. The non-skewed model of 42-slot AFIM is in IE3 energy efficiency class. According
to the analyses results, it is observed that there is a different situation between the efficiencies that are
not encountered in the other slot numbers. Efficiency decreased in models with 10° and 20° skewed,
whereas efficiency in skew angle 8.57° and 15° is significantly increased. In fact, it has been observed
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that three of these models are in the IE4 energy efficiency class. These are the highest efficient models
achieved among analyses.

40 T

| 98
== Torque Ripple ==Efficiency

Torque Ripple (%)

Skew Angle (Degree)

Figure 12. Efficiency and torque results of AFIM with 42 slots.

As aresult of all analyses carried out, giving skews to the rotor of the motor affects the efficiency
differently, and the torque ripple in different rotor slot numbers of AFIMs. In some AFIMs, skewing
has a positive effect in terms of torque ripple and decreases the torque ripple, while in others it is
observed that the torque ripple increases. In the same way, it has different effects in terms of efficiency.
For example, the 8.57°, 15° and 17.14° skewed 42-slot AFIMs are given results in IE4 energy efficiency
class. Also, the torque ripple of the same model decreases by 28% to 26.6%. Therefore, the best
configuration among 42-slot models is obtained as 8.57° skew angle.

However, in the analyses performed both in terms of torque ripple and efficiency, the most
optimum condition result is achieved in the design with a 10° skew given to the 32-slot AFIM.
The torque ripple of this model is 8.93%, the efficiency is 93.1% and efficiency class of this motor is IE3.
In the next section, the effect of the material on efficiency and torque ripple by using SMC material
is examined.

3.5. Results of AFIM with SMC Material

In this section, the effect of the SMC material on efficiency and torque is examined. By this
purpose, three analyses are done with using SMC material for stator, rotor and both of them. Somaloy
700-3P is selected as a SMC material with a density 7.57 g/cm3 [42].

According to the analyses results, by changing the material, the efficiencies stayed in the same
efficiency class as IE3. However, only SMC stator has the best efficiency value, both SMC statoré&rotor
has the best torque value. Compared to the non-skewed based model to both SMC stator&rotor used
model over 11% of reduction is observed in torque ripple. Additionally, changing the material has a
positive impact on the efficiency. Figure 13 shows the efficiency and torque results of SMC used AFIM
by different parts.

In the X-axis of Figure 13, skew status and material of AFIM are defined as follows:

(a) Rotor is not skewed and both stator and rotor material are steel,

(b) Rotor is skewed and both stator and rotor material are steel,

(¢c) Rotor is skewed and stator material is SMC and rotor material is steel,
(d) Rotor is skewed and stator material is steel and rotor material is SMC,
(e) Rotor is skewed and both stator and rotor material are SMC.
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Figure 13. Efficiency and torque results of SMC used AFIM.

4. Conclusions

Since the aim in this study is to achieve an AFIM in the same energy efficiency class as RFIM,
the efficiency of AFIMs with torque ripples are investigated. In this study, transient analyses are carried
out and torque values are calculated with the help of ANSYS Maxwell program. Efficiency values
of analysis results according to seven different slot numbers from 28 to 42 are presented. In addition
to the efficiency values, the percentage torque ripples and energy efficiency class are also examined.
To reduce the torque ripple values, rotor is skewed according to stator and rotor slot numbers. It was
seen that the effects of skewing on efficiency and torque ripple are variable. Also, it was observed
that to choose the skewing angle degrees, not only with stator slot number, but also rotor slot number
could affect positive the performance of AFIMs. Using a SMC material on different parts of AFIM had
a positive impact on performance analysis of a model, as reducing the torque ripple over 11% while
the models are in premium efficiency class. For further studies, different materials could be used for
various applications.
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