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Abstract: Uncertainty of greenhouse gas (GHG) emissions was analyzed using the parametric Monte
Carlo simulation (MCS) method and the non-parametric bootstrap method. There was a certain
number of observations required of a dataset before GHG emissions reached an asymptotic value.
Treating a coefficient (i.e., GHG emission factor) as a random variable did not alter the mean; however,
it yielded higher uncertainty of GHG emissions compared to the case when treating a coefficient
constant. The non-parametric bootstrap method reduces the variance of GHG. A mathematical model
for estimating GHG emissions should treat the GHG emission factor as a random variable. When the
estimated probability density function (PDF) of the original dataset is incorrect, the nonparametric
bootstrap method, not the parametric MCS method, should be the method of choice for the uncertainty
analysis of GHG emissions.

Keywords: uncertainty analysis; GHG emission factor; parametric Monte Carlo simulation;
nonparametric bootstrap; R program

1. Introduction

In accordance with the Paris Accord, many countries around the world set up voluntary goals for
mitigating greenhouse gas (GHG) emissions and implement various action plans, including related
research to achieve the goals. Many industrial sectors set up the goals and action plans to comply with
the Paris Accord. They include, among others, goals related to energy, industrial processes and product
use, agriculture, forest and other land use, and waste. The energy sector, including the transportation
sector, formulated three different policy scenarios for the carbon emission goal in 2050 and computed
GHG emissions for each scenario [1]. Vázquez-Rowe et al. [2] estimated GHG emissions of cement
production in three relevant national cement plants to identify the main GHG mitigation strategies
throughout the whole supply chain in industrial processes and the product use sector. Baek et al. [3]
developed a GHG emission quantification procedure for dairy cow systems based on a life cycle
assessment (LCA) approach incorporating the Intergovernmental Panel on Climate Change (IPCC)’s
GHG emission computation equations in the agriculture sector. The waste sector computed GHG
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emissions from the composting and solid waste treatment processes and suggested recommendations
for improving the current waste management policy [4].

The above literature [1–4] adopted the same methodological approach for estimating GHG
emissions in each sector [5,6]. This approach involves integrating information on the level of human
activity (i.e., activity data) with the quantified emission coefficients per unit activity (i.e., emission
factor) [7]. Therefore, a model used extensively for the computation of GHG emissions from different
sources in a given sector is a linear model, where the activity data are multiplied by the emission factor.

Recently, uncertainty analysis of a mathematical model such as the greenhouse gas (GHG)
emission estimation model is receiving increasing attention. GHG has an environmental impact that
is categorized as global warming impact, one of the many life cycle impact categories in life cycle
assessment (LCA). When estimating GHG emissions, it is always necessary to evaluate and quantify
the uncertainties of estimates. Uncertainty analyses help analysts identify how accurate the estimations
are and the likely range in which the true value of the emissions fall [8].

Uncertainty refers to the difference between the true value and the measured value. All input
random variables to the mathematical model have uncertainty, be it systematic or random [9,10].
Uncertainty of the input random variables often refers to error. As such, this paper defines the
uncertainty of the model output as an uncertainty and the uncertainty of the input random variables
as an error.

A model is a mathematical description of the real-world phenomenon. A model can have any
number of parameters, and they are interrelated through various mathematical operations. Parameters
(e.g., activities, processes, and emission factors) refer to any input random variables comprising a
mathematical model. Error in the parameter originates from the lack of knowledge about the true value
of the parameter [11]. These errors can vary widely from a few percent to orders of magnitude [12].
Errors associated with the parameters are bound to increase due to the compounding effect of the
errors in the parameters. The compounding effect is often termed error propagation [8,13,14].

The variance of the mathematical model output is a measure of uncertainty of the model output.
Statistics such as the confidence interval (CI) and relative uncertainty (U) are used widely for assessing
the uncertainty [10]. The relative uncertainty is defined as a ratio between the half-width of the CI
to the sample mean of the model output [10]. McMurray et al. [8] recommended that analysts apply
the CI method for calculating uncertainty, considering that other methods such as the coefficient of
variation (CV) underestimated uncertainty.

Uncertainty analysis methods often used for the mathematical model output are the error
propagation, the Monte Carlo simulation (MCS) method and the bootstrap method. However, the error
propagation method is intended for computing the variance of the model output, not for the CI.
Many prior studies used the error propagation method for computing the uncertainty not based on the
CI [9,10,14].

The MCS is run using algorithms that generate stochastic (i.e., random) values based on the
probability distribution function (PDF) of the original dataset [8]. The normal distribution of the original
dataset is often assumed [8]. However, non-normal assumptions such as log-normal assumptions were
also made frequently [9,12,15].

Two widely used uncertainty analysis methods, the parametric MCS method and the non-parametric
bootstrap method, were chosen to assess the uncertainty of GHG emissions. The parametric MCS method
requires estimation of the probability distribution of the original dataset of a parameter, while the
nonparametric bootstrap method does not. Lee et al. [16] showed that the nonparametric bootstrap
method gives smaller relative uncertainty over the parametric MCS method. However, this study did
not estimate the probability distribution of the parameter data but assumed normal and lognormal
distributions. In addition, they relied on commercial software for performing the MCS.

The error propagation equation ignoring the covariance among the parameters in a model
was recommended for use to calculate the uncertainties of GHG emissions from individual input
uncertainty estimates [17]. However, the covariance among the parameters can be significant in
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most cases and cannot be ignored. Besides, there is a matrix operation that allows calculation of
the variance–covariance matrix of the input parameter data [13,16]. A newer version of the IPCC
guidelines [10] recommends MCS as the more detailed uncertainty analysis method.

Estimation of the probability distribution is faced with difficulties because of the limited number
of observations of the original dataset. Inaccurate PDF will lead to inaccurate MCS output such that
accurate estimation of PDF is a prerequisite for proper use of the parametric MCS method.

There are several studies on the uncertainty analysis of GHG emissions based on the MCS method
with an assumed probability distribution. Hong et al. [18] stated that the statistical features of the
total carbon emissions can be determined through its probability distribution when performing MCS.
They assumed the beta distribution of the observed data in the construction industry. Others rely on
expert judgment for choosing probability distribution [3,9].

However, it is rare to find studies that estimate probability distribution explicitly for MCS.
Lee, et al. [16,19] used the Anderson–Darling (AD) test to estimate the probability distribution of the
input variable. The p-value and AD statistics were used to test the null hypothesis for the assumed
probability distributions. McMurray et al. [8] described a step-by-step approach for estimating PDF for
GHG emissions using the goodness-to-fit test of the parameter data. Thus, there is a need to assess the
effect of estimating probability distribution on the uncertainty of the model output.

The emission factor is often expressed as a single point estimate, not an interval estimate. However,
the value of the emission factor can vary. Thus, there is a need to assess the effect of the varying
emission factor (i.e., treating it as a random variable) on the uncertainty of the model output.

As the number of observations (n) of an original dataset increases, its variance decreases.
When increasing n of the dataset, there would be a certain n where the variance of the model output,
and subsequently the value of U, no longer decreases with the increase in n. Thus, there is a need to
assess the effect of n of the original dataset on the value of U and mean of the model output.

Therefore, the objective of this study was to assess: (i) the effect of the number of observations
of an original dataset; (ii) the effect of treating the emission factor as random variable; (iii) the effect
of a probability distribution; and, (iv) the effect of different uncertainty analysis methods—all on the
uncertainty of the model output or GHG emissions.

2. Materials and Methods

2.1. Mathematical Model

GHG emissions are estimated by multiplying the input variables by their corresponding GHG
emission factors. Input variables are the input and output of materials and energies from a product
system such as resources consumed and emissions discharged as well as activities such as transportation.
Of these, those related to GHG emissions are chosen together with their corresponding GHG emission
factor for use in Equation (1).

A mathematical model in Equation (1) for computing GHG emissions from a system is a linear
combination of the input variables.

Z = AX (1)

where Z = the model output (e.g., GHG emission), A = the coefficient vector, and X = the input
variable matrix.

The model output has uncertainty originating from the errors of the input variables. The errors of
the input variables to the mathematical model propagate such that the uncertainty of the model output
increases [14,20]. The variance of Z measures the uncertainty of Z. Since Z is a linear combination of
A and X, Equation (2) computes the variance of Z [21]. Most of the time, the input variables are not
independent such that variance computation should include the covariance of X. Equation (2) is also
known as the error propagation equation [20,21].

var(Z) = var(AX) = Avar(X)AT (2)
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where var(X) = the variance–covariance matrix of X, and AT = transpose of A.
In order to reduce errors of the input variables X in Equation (1), many observations of a dataset

should be collected for each input variable. However, this is infeasible and impractical. As such,
stochastic modeling is necessary where many observations of the input variables are generated
artificially, and these observations are used to compute the value of Z by Equation (1).

Application of the uncertainty analysis method, the MCS method and the bootstrap method
to Equation (1) yields many Z values, expressed as z (numerical value of the random variable Z).
These z values are used to compute statistics of interest such as the mean, variance, confidence interval,
relative uncertainty, bias, and standard error, among others.

2.2. Uncertainty Analysis by the Parametric MCS Method

MCS is a random experimentation based on random sampling from the uniform distribution that
generates uniform random variates. These variates are then transformed into the random variates of
the cumulative distribution function (CDF) of the original dataset [14]. The random variates generated
are used to solve Equation (1).

MCS can be performed in four steps: (i) generate uniform random variates vector, u, from the
uniform distribution of (0,1); (ii) the u vector is transformed into the corresponding values of CDF
of the original dataset, the x vector, which are random variates of the original dataset distribution;
(iii) this process repeats many times (e.g., 10,000 times) and generates many sets of x vectors; (iv) these
x vectors are used to solve Equation (1) to obtain z and z vector. Statistics of interest such as the bias,
standard error, CI, and U are computed from the z vector.

The use of the MCS method requires estimation of the probability distribution of the original
dataset. Fitting distribution consists of choosing a probability distribution model that describes
the dataset, finding parameter estimates for that distribution, and the goodness-of-fit test [14,22].
This requires judgment and expertise, and needs an iterative process of distribution choice, parameter
estimation, and quality-of-fit assessment [22].

Before choosing a probability model for a given dataset, graphical techniques such as histograms,
density estimate, empirical CDF, quantile–quantile (Q–Q) plot, and probability–probability (P–P) plot
can be used to suggest the type of probability distribution [16]. Goodness-of-fit tests indicate whether
a dataset comes from a specific probability distribution based on the hypothesis test [23].

The fitdistrplus package of R [22,24] was used to choose the probability distribution. The graphical
comparison of multiple fitted distributions (cdfcomp) was used by plotting the empirical cumulative
distribution and fitted distribution functions (y-axis) against the values of X (x-axis). Other types of
plots such as the Q–Q plot (qqcomp) representing the empirical quantiles (y-axis) against the theoretical
quantiles (x-axis) were also made, but are not presented here.

Akaike’s information criterion (AIC) and Schwarz Bayesian information criterion (BIC) are widely
used indices for the probability distribution selection [25]. Kolmogorov–Smirnov, Cramer-von Mises
and Anderson–Darling statistics [26] were also considered to assess the goodness of fit. Gofstat function
was used to calculate these statistics [24].

All these statistics were computed, and a probability distribution having the smallest indices and
statistic (i.e., distance) was identified. In addition, visual examination of the CDF plots focused not
only on both tails of the plot but also on the center of the distribution plot. The probability distribution
showing the smallest AIC/BIC criterion and smallest goodness-of-fit statistics (distance) and that which
was closest to the empirical CDF was chosen as the probability distribution of the original dataset.

2.3. Unertainty Analysis by the Nonparametric Bootstrap Method

Relatively small samples generally provide very reliable information about the shape of the
population. The bootstrap method treats this sample as a population and takes repeated samples
with replacements from it; these are bootstrap samples and they give reliable insight into various
sample estimates, and reliable confidence intervals can be constructed from these estimates [27].
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The bootstrap is a widely applicable and extremely powerful statistical tool that can be used to quantify
the uncertainty associated with a given estimator [27,28].

The standard error of an estimator is difficult to estimate in reality. Most of the time, there is no
simple formula for the standard error such as the standard error of the sample mean (σ/

√
n) [19,29].

The estimated variance of the R-bootstrapped estimates gives standard deviation, and this was
used to compute the standard error of the estimator [28]. The diagonal elements of the square root of
the variance–covariance matrix are the standard deviation of the bootstrapped datasets [30]. The bias
of an estimator is the difference between the mean of the bootstrapped datasets and that of the original
dataset [28,31]. With these, the confidence interval of Z is computed [32].

Bootstrapping consists of four steps: (i) collect a sample dataset of size n from the population
(original dataset of size n); (ii) draw a bootstrapped sample of size n from the original dataset with
a replacement and repeat bootstrap sampling R times; (iii) compute the statistics of interest for each
bootstrapped dataset, and there will be a total of R estimates of the estimator; (iv) compute statistics of
interest such as the standard error and CI with the R bootstrapped datasets and the original dataset.

In practice, a bootstrap analysis in R can be implemented in three steps [28]: (i) create a function
that computes the statistic of interest; (ii) use the boot() function [33] in R to perform bootstrapping by
repeatedly sampling from the original dataset with the replacement; and (iii) compute the variance,
standard error, bias, CI and U of the model output Z using the bootstrapped datasets and original dataset.

3. Results and Discussion

The feed data for dairy cows were used as the input data to the mathematical model for computing
GHG emissions [16]. Six different types of feed to cow and corresponding emission factors were
used. These are dry cow feed, lactating cow feed, straw, soybean meal, electricity, and diesel.
The corresponding emission factors are 0.38, 0.64, 0.95, 0.71, 0.50, 3.3 kg CO2-eq/kg (kwh for electricity,
liter for diesel), respectively. There are six different batches of the dataset, and all are subsets of the
dataset of n = 72 (Table A1). Each subset has a differing length of n, where n is 12, 24, 36, 48, 60, and 72.

3.1. The Effect of the Size of the Dataset (n) on the Uncertainty of the Model Output

In order to assess the effect of the size of the dataset (n) on the uncertainty of the model output,
Z, three different scenarios for computing the mean and variance of Z (S1, S2, and S3) were made.
The bootstrap method was used for the assessment. Scenario S1 computes the mean and variance
of Z using Equation (1) and the error propagation equation in Equation (2), respectively, and no
bootstrapping was used. Here, X is the input variable matrix consisting of six columns of the dataset,
each column data with the size of n. Scenario S2 computes the mean and variance of Z by bootstrapping
X while keeping A constant. The bootstrapped datasets together with the original dataset were used
for the computation of the statistics.

Scenario S3 computes the mean and variance of Z similar to S2. Unlike S2, however, coefficient
vector A was treated as a random variable. Since A was constant initially, a linear transformation is
needed to generate random variates from A. Uniform distribution of [EF × fab, EF × (fab + 2 × (1 − fab))]
was assumed, where EF is an emission factor and “fab” is a multiplication factor to generate uniform
variates for A. The value of fab varies from 0.0 to 1.0. Scenario S3 computes the mean and variance
of Z by bootstrapping both X and A. Table 1 shows the summary of the three different scenarios
described above.

Table 1. Summary of the three different scenarios.

Scenario Var(Z) Calculation Treatment of A Vector

S1 Error propagation method (no bootstrapping) Keeping A vector constant
S2 Bootstrapping X matrix only Keeping A vector constant
S3 Bootstrapping both X matrix and A vector Treating A vector as a random variable
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Figures 1 and 2 show the effect of the size of a dataset (n) of the three different scenarios on the
U and mean of Z (i.e., the mean GHG emission), respectively. As n increases, the U and mean GHG
emission decrease in all three scenarios and reach an asymptotic value. The plot of U vs. n in Figure 1
shows that the U decreased rapidly initially and then reached a minimum value. This indicates that
the increase in n decreases the variance of Z and remains unchanged beyond a certain number of n
(here, n ≥ 48). The plot of the mean GHG emission vs. n in Figure 2 shows the same trend.
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Scenario S3 exhibited the lowest U and the mean GHG emission followed by Scenario S2 and
then Scenario S1. This was quite obvious for the U, while less obvious for the mean GHG emission.
The variance of Z was the smallest in Scenario S3 (bootstrapping both A and X), followed by Scenario
S2 (bootstrapping X only), and was the largest in Scenario S1 (no bootstrapping). This indicates that
bootstrapping reduces the variance of Z.

In the case of the mean GHG emission, Scenario S1 and S2 exhibited essentially the same trend.
However, Scenario S3 reached an asymptotic value when n was 36, while scenarios S1 and S2 reached
the same asymptotic value when n was equal to and/or greater than 60. A significant decrease in the
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mean GHG emission when the number of data is small indicates that the mean GHG emission is not
stable. As such, there is a certain number of observations of a dataset required before a stable mean
GHG emission can be reached. In this case, the number of observations was 36 for Scenario S3 and 60
for scenarios S1 and S2.

Tong et al. [34] investigated the effect of sample size on the bias of the confidence interval of the
original dataset and the bootstrapped dataset. Using the original dataset to construct a confidence
interval for quantifying the uncertainty of GHG emissions may lead to a significant bias when the
sample size is small. Compared with this, the bootstrapped confidence intervals have smaller interval
mean and smaller interval standard deviation for small sample size (n < 30) under non-normal
distributions [34]. This suggests that there will be a certain sample size above which the uncertainty of
the model output reached a stable value.

3.2. The Effect of Treating the Emission Factor (Coefficient Vector) as a Random Variable on the Uncertainty of
the Model Output

Figure 3 shows the effect of fab on the U and mean GHG emission for the bootstrap method.
The value of U decreases by approximately 90% when fab varies from 0.0 to 1. This indicates that the
variability of the coefficient affects the U. When fab was 0.0, the U was 8.8%. When fab reached 0.9,
no further changes occurred to the U. Thus, treating the coefficient as a random variable increases the
uncertainty of Z or U. This is because the variance of the dataset increases due to increased variance of
the coefficient.
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Meanwhile, the mean GHG emission remains flat in all values of fab, i.e., 440.2 kg CO2-eq/head-year
at fab of 0.0, and 438.5 kg CO2-eq/head-year at fab of 1.0. This indicates that treating the coefficient
in the mathematical model as a random variable does not alter the mean of Z. It affects adversely,
however, the uncertainty of Z. The varying coefficient case yielded higher uncertainty of Z over the
constant coefficient case.

3.3. The Effect of Probability Destribution on the Uncertainty of the Model

The very first step in performing MCS is the estimation of the probability distribution of the
original dataset. Figure 4 shows the empirical and theoretical CDF (y-axis) against the input values of
x (x-axis) for the lactating cow feed dataset.
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Akaike’s information criterion (AIC) provides a measure of the model fit, with smaller values of
AIC indicating a better-fitting model. The same is true for the Bayesian information criterion (BIC).
Table 2 shows that loglogistic distribution fits best for the lactating cow feed dataset, judging from the
smallest AIC and BIC values among the five distributions tested.

Table 2. Goodness-of-fit criterion for the lactating cow feed data case.

Goodness-of-Fit Criterion Probability Distribution

normal lognormal Weibull gamma loglogistic
AIC 845.9 826.5 864.9 830.9 803.5
BIC 850.5 831.1 869.5 835.4 808.1

From the five different distributions shown in Figure 4, loglogistic distribution also exhibits close
proximity to the empirical CDF in all ranges of the input values of X (x-axis). This is in agreement with
the AIC and BIC values in Table 2. Thus, loglogistic distribution was chosen for the distribution of the
lactating cow feed dataset. This process heavily depends on the goodness-of-fit criterion as well as the
CDF plots. Inevitably, this process involves judgment call and thus implies difficulties associated with
the estimation of the probability distribution of the dataset.

Table 3 shows the chosen distribution of the original dataset for the six columns of the dataset.
It lists statistics of each distribution.

Table 3. Chosen distribution of the data with relevant statistics.

Column (Data) Name Distribution Mean Sd 1 Shape Scale

Dry cow feed Weibull 1.57 189.82
Lactating cow feed loglogistic 12.28 390.54

Straw normal 29.36 6.36
Soy bean meal loglogistic 6.97 17.81

Electricity loglogistic 10.92 120.97
Diesel loglogistic 6.20 4.36

1 Standard deviation.
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3.4. Comparison of the Confidence Interval Computation Method

The confidence interval is the base for assessing the uncertainty of Z. The U is based on the CI
width. Three different CI computation methods including the percentile method, normal method,
and basic method were tested to examine any difference among them. The bootstrap method was used
for the test. Table 4 shows that the three CI computation methods produce essentially the same results.

Table 4. Comparison of the confidence interval computation methods.

Statistic Percentile Normal Basic

95% CI (418.13–458.57) (418.55–458.00) (416.88–457.32)
CI width 40.44 39.45 40.44

U (%) 4.64 4.51 4.64

Orloff and Bloom [35] emphasized that the percentile method is preferred to the other methods.
This is because the X − µ distribution is approximated by the X∗ −X distribution, where µ, X and
X∗ are the true mean, mean of the original dataset, and mean of the bootstrapped data, respectively.
Tong et al. [34] compared different methods for computing the confidence interval; they were the
normal method, percentile method, bias-corrected percentile method, and bias-corrected accelerated
percentile (BCa) method. Essentially, there were no significant differences among the four methods;
however, the BCa method gave shorter CI compared to the others. McMurray et al. [8] concluded that
the benefit of using the percentile method to other methods is that it can be applied to any type of
bootstrapped distribution. As such, this study adopted the percentile method for computing the CI of
Z at the 95% confidence level.

3.5. The Effect of Different Uncertainty Analysis Methods on the Uncertainty of the Model Output

The effect of three uncertainty analysis methods on the uncertainty of the model output was
assessed by comparing the magnitude of statistics of the model output. The statistics considered are
the mean, bias, standard error, confidence interval, confidence interval width, and relative uncertainty.
Three uncertainty methods chosen are no simulation method, the nonparametric bootstrap method,
and the parametric MCS method. No simulation method refers to the case where the original dataset
and emission factor were applied directly to Equation (1) (no simulation case is identical to Scenario S1).
No simulation method was served as a control to both the nonparametric bootstrap method and the
parametric MCS method. The nonparametric bootstrap method refers to the method described in
Section 2.3 while treating coefficient vector A constant (this is identical to Scenario S2). The parametric
MCS method refers to the method described in Section 2.2.

Table 5 shows that the mean GHG emission was the largest for the control, followed by the
nonparametric bootstrap method and parametric MCS. The difference between the largest and smallest
was less than 0.7%. This indicates that three mean GHG emissions were essentially identical.

Table 5. Uncertainty of GHG emissions of the three uncertainty analysis methods: no simulation,
nonparametric bootstrap and parametric Monte Carlo simulation (MCS) (unit: kg CO2-eq/head-year).

Statistic
Uncertainty Analysis Method

No Simulation Nonparametric Bootstrap Parametric MCS

Mean 438.27 437.72 435.36
Bias 0 −0.55 −2.91

Standard error 61.66 10.07 105.47
95% CI (317.41–559.14) (418.13–458.57) (263.64–679.29)

CI width 241.73 40.44 415.65
U (%) 27.60 4.64 47.74



Energies 2020, 13, 4965 10 of 15

In the case where is no simulated dataset for the control, we use the sample mean to estimate
the true mean of the population, and, as such, the sample mean is the unbiased estimator [28]. Thus,
the bias of the control is 0. The bias of the nonparametric bootstrap was smaller than that of the
parametric MCS, as shown in Table 5; however, both are not 0. This indicates that both the bootstrap
method and MCS method do not generate a sample space closely resembling the population, although
the bootstrapped datasets are much closer to the population compared to the random variate datasets.

The standard error of the nonparametric bootstrap method was the smallest for the nonparametric
bootstrap method, followed by the control and the largest for the parametric MCS method. The CI
width and U of the nonparametric bootstrap method give a much narrower CI width and a smaller
U when compared to those of the parametric MCS method. The control is situated in between the
two. The CI width and U of the MCS method were approximately 10.27 and 10.28 times of those
of the bootstrap method, respectively. The CI width and U of the control were approximately 5.97
and 5.94 times of those of the bootstrap method, respectively. Significantly large CI and U for the
parametric MCS method and the control compared to the nonparametric bootstrap method indicate
that the nonparametric bootstrap method is much more reliable than the parametric MCS method and
the control (no simulation) in estimating the uncertainty of Z.

When using a normal distribution for a parameter with large uncertainty, there is a risk of having
extremely large values, that is, values orders of magnitude larger than the mean value. Extreme
values are an often occurring quality for the distribution of activity data and emission factors [12].
Krezo et al. [36] investigated the effect of bootstrapping resample sizes on the statistics such as the
mean, standard deviation, bias, skewness, and confidence levels of the GHG emission intensity due to
rail maintenance. The analysis showed that there is a very small bias when compared with the field
data. The standard deviation and standard error were less than those of the field study. This supports
the findings in this study that the bootstrapping method gives the smallest CI compared to the MCS
method and the field data (no simulation) case.

The reliability of a parametric statistical method depends on the validity of an underlying
probability distribution; however, the nonparametric bootstrap method does not [27]. It is generally
more reliable (often much more so) than the parametric MCS method when the distribution that the
parametric method relies upon for its validity does not exist, and it is often almost as reliable as a
parametric approach when the distribution that the parametric method relies upon for its validity does
exist [27].

Although estimated distribution was considered the most plausible from the goodness-of-fit tests
and CDF plots, this does not mean that the estimated distribution fits the original dataset accurately.
After all, estimation was approximate at best. Since the distribution that the parametric MCS method
relies upon for its validity does not exist, the parametric MCS method did not give reliable uncertainty
estimates compared to the nonparametric bootstrap method.

Since the nonparametric bootstrap method does not require estimation of the probability
distribution of the dataset, it has an innate advantage over the parametric MCS method in the
uncertainty analysis [19,29]. In addition, bootstrapping generates many bootstrapped datasets having
the smallest standard error of the three methods and smaller bias compared to the parametric MCS
method. As such, the nonparametric bootstrap method gives the lowest U (smallest CI width)
among the three methods. This indicates that a collection of the bootstrapped datasets resembles the
population of the original dataset such that a more accurate estimation of the statistics of Z can be
possible. Therefore, it is reasonable to conclude that the estimation of the probability distribution
of the original dataset could be the cause of the uncertainty of GHG emissions for the parametric
MCS method.

There are a considerable number of studies that produced similar conclusions to those of this
study, although they are not identical. Park et al. [37] collected data of the key variables repeatedly
to reduce uncertainty of the model output and reduce the coefficient of variation (CV) value from
10.76% to 5.64%. Szczesny et al. [38] estimated uncertainty of the model output by applying various
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probability distributions including normal, uniform, and triangular etc. to the input data. From this
study they found that discrepancy of the model output can be as high as 40%, and emphasized the
importance of choosing accurate probability distribution of the input variable. Lee et al. [29] and
Lee et al. [19] compared uncertainties of the model output by applying simulation methods including
Monte Carlo simulation (MCS) and bootstrap, and found that the bootstrap method yielded much
lower uncertainty compared to that of the MCS method.

Lee et al. [29] and Chen and Corson [39] defined activity data as well as emission factor as random
variables as in this study and observed that uncertainty of the model output tends to decrease by 12 to
15% in the MCS method and by 13 to 20% in the bootstrap method.

From the above discussions, it is clear that uncertainty analysis of GHG emissions should be
based on the nonparametric bootstrap method rather than the parametric MCS method. This applies,
however, only when the estimated PDF of the original dataset is incorrect; nonetheless, quite often this
is the case.

4. Conclusions

In recent years, the need for the uncertainty analysis of greenhouse gas (GHG) emissions has
increased. It is a general practice to quantify uncertainty using a deterministic method such as the error
propagation method, where statistics including standard error of the mean and variance, among others,
were used. However, there are stochastic simulation methods available in the statistical inference field.
In general, the stochastic simulation method gives more accurate results than the deterministic method.
Besides, the GHG emission model relies on the IPCC tier GHG emission factor recommended by the
IPCC. The tier I emission factor is a default value, lacks specificity and is intended to be applied to the
broader area, and, as such, it has inherently high uncertainty. Thus, GHG emissions calculated from
the model is envisaged to have high uncertainty.

This study aims at exploring the possibility of minimizing the uncertainty of GHG emissions
computed from the model by applying two stochastic simulation methods: Monte Carlo simulation
and the bootstrap method. The cause of the difference between the two methods in the GHG emission
uncertainty was investigated and identified such that we can recommend one method over the other
for the uncertainty analysis. Statistics used for expressing the uncertainty in the stochastic method,
unlike the statistics used in the error propagation methods, were confidence interval and relative
uncertainty (U). Furthermore, we tested the effect of constant and random GHG emission factors on the
uncertainty of the GHG emission results. Finally, the number of data for the input variable in the GHG
emission model was determined based on the asymptotic value of the GHG emission model results.

Many ongoing activities around the world attempt to quantify GHG emissions; however, most of
the GHG emission results lack uncertainty information. This is mainly because the uncertainty analysis
method was difficult to use, and no credible uncertainty analysis method was available. This study
identified an easy-to-use and accurate uncertainty analysis method, that is, the bootstrap method,
as well as a general procedure to apply it to the uncertainty analysis of GHG emissions. This will
expedite the application of the uncertainty analysis to the quantification of GHG emissions worldwide.

The major conclusions of this study are:

1. There is a certain number of observations of a dataset required before an asymptotic value of the
model output can be reached. In this study, the number of observations was 36 for Scenario S3
and 60 for scenarios S1 and S2.

2. Bootstrapping reduces the variance and standard error of Z. This is because bootstrapping
generates a bootstrapped dataset resembling the population of the original dataset. The variance
of Z was the smallest in Scenario S3 (bootstrapping both A and X), followed by in Scenario S2
(bootstrapping X only), and the largest was observed in Scenario S1 (no bootstrapping).

3. Uncertainty analysis of GHG emissions should be based on the nonparametric bootstrap method,
not the parametric MCS method, when the estimated PDF of the original dataset is incorrect.
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4. A mathematical model for estimating GHG emissions of a system should consider treating the
GHG emission factor as a random variable.
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Appendix A

Table A1. The feed and utility input variables and their values of dairy cow.

Month Feed for Dry Cows 1 Feed for Lactating Cows 1 Straw 1 Soybean Meal 1 Electricity 2 Diesel 3

Mon. X1 X2 X3 X4 X5 X6

1 114 299 54 13 161 5
2 260 411 13 17 113 5
3 278 320 34 18 121 3
4 236 676 23 46 160 22
5 248 741 38 14 225 5
6 183 384 33 16 216 5
7 358 443 35 13 109 6
8 172 786 27 19 125 10
9 83 294 33 14 134 5
10 73 221 18 16 27 4
11 8 241 16 19 35 5
12 57 239 5 4 138 13
13 114 343 26 17 103 4
14 260 365 25 14 109 3
15 278 367 33 19 112 3
16 236 422 31 12 128 5
17 248 380 32 19 120 4
18 183 405 30 20 133 4
19 358 405 29 18 131 5
20 172 389 31 22 119 4
21 83 387 30 15 111 4
22 73 390 29 12 112 5
23 8 418 34 21 126 5
24 57 407 29 23 121 5
25 114 377 24 20 121 3
26 260 348 22 16 99 4
27 278 371 28 21 116 4
28 236 389 29 18 119 5
29 248 383 29 17 118 4
30 183 396 30 19 123 4
31 358 400 34 21 123 4
32 172 403 33 23 126 6
33 83 406 34 28 126 4
34 73 425 34 16 129 4
35 8 415 36 17 133 4
36 57 401 29 14 116 4
37 114 390 26 19 115 4
38 260 358 22 19 106 5
39 278 417 18 23 145 5
40 236 432 33 21 141 5
41 248 455 32 15 144 4
42 183 436 32 18 136 6
43 358 349 26 17 108 4
44 172 401 27 18 122 5
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Table A1. Cont.

Month Feed for Dry Cows 1 Feed for Lactating Cows 1 Straw 1 Soybean Meal 1 Electricity 2 Diesel 3

Mon. X1 X2 X3 X4 X5 X6

45 83 376 29 18 115 4
46 73 410 29 22 122 5
47 8 361 29 10 112 5
48 57 378 29 24 121 5
49 114 408 31 17 122 5
50 260 355 31 9 112 4
51 278 366 26 15 107 4
52 236 405 34 13 123 5
53 248 340 32 23 109 3
54 183 384 31 18 116 2
55 358 454 34 21 136 3
56 172 406 32 21 119 5
57 83 416 33 15 123 4
58 73 423 29 20 119 4
59 8 380 27 19 118 4
60 57 383 29 17 123 4
61 114 355 30 14 107 4
62 260 351 25 16 109 1
63 278 381 28 22 117 7
64 236 381 31 15 123 6
65 248 444 34 25 138 5
66 183 403 27 19 122 4
67 358 406 33 16 120 3
68 172 454 38 20 142 5
69 83 448 37 26 126 4
70 73 380 23 22 115 3
71 8 386 35 22 114 4
72 57 375 22 14 113 4

EF 1 0.38 0.64 0.95 0.71 0.50 3.3

Notes: 1 kg CO2-eq/kg; 2 kWh electricity/head-month; 3 kg diesel/head-month.
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38. Szczesny, S.; Golijanek-Jędrzejczyk, A.; Świsulski, D. Impact of probability distribution on the uncertainty of
resistance measurement. EDP Sci. 2019, 28, 1038. [CrossRef]

39. Chen, X.; Corson, M.S. Influence of emission-factor uncertainty and farm-characteristic variability in LCA
estimates of environmental impacts of French dairy farms. J. Clean. Prod. 2014, 81, 150–157. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
http://dx.doi.org/10.4203/ccp.110.300
http://dx.doi.org/10.3390/su11092712
http://dx.doi.org/10.1051/itmconf/20192801038
http://dx.doi.org/10.1016/j.jclepro.2014.06.046
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Mathematical Model 
	Uncertainty Analysis by the Parametric MCS Method 
	Unertainty Analysis by the Nonparametric Bootstrap Method 

	Results and Discussion 
	The Effect of the Size of the Dataset (n) on the Uncertainty of the Model Output 
	The Effect of Treating the Emission Factor (Coefficient Vector) as a Random Variable on the Uncertainty of the Model Output 
	The Effect of Probability Destribution on the Uncertainty of the Model 
	Comparison of the Confidence Interval Computation Method 
	The Effect of Different Uncertainty Analysis Methods on the Uncertainty of the Model Output 

	Conclusions 
	
	References

