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Abstract: This paper presents a new approach method for online rotor and stator resistance estimation
of induction motors using artificial neural networks for the sensorless drive. In this method, the rotor
resistance is estimated by a feed-forward neural network with the learning rate as a function. The stator
resistance is also estimated using the two-layered neural network with learning rate as a function.
The speed of the induction motor is also estimated by the neural network. Therefore, the accurate
estimation of the rotor and stator resistance improved the quality of the sensorless induction motor
drive. The results of simulation and experiment show that the estimated speed tracks the real speed
of the induction motor; simultaneously, the error between the estimated rotor and stator resistance
using neural network and the normal rotor and stator resistance is very small.

Keywords: rotor resistance estimation; stator resistance estimation; sensorless control; artificial neural
network (ANN); indirect field-oriented control (IFOC)

1. Introduction

The problem of the sensorless indirect rotor flux control of induction motor (IM) is an important
aspect in the study of induction motor drive systems [1]. In the sensorless control of a vector
controlled three-phase induction motor drive, the rotor flux angle depends on the rotor resistance [2–5].
On the other hand, the rotor flux estimation is sensitive to the changes in the rotor and the stator
resistance, especially in the case of the low rotational speed; the speed estimation of an induction
motor again depends on the estimated rotor flux [6]. Therefore, the accuracy of the estimated rotor and
stator resistance will improve the accuracy of the estimated speed and the estimated rotor flux, thereby
improving the quality of the sensorless drive control [7]. In the operation of induction motor drives,
the rotor resistance can vary up to 100% due to changes in temperature and rotor speed, so obtaining
this information through a thermal model or temperature sensors is very difficult, especially for
induction motors [8].

The rotor resistance estimation algorithms have been widely studied in the literature.
The well-known approaches in recent studies are based on the following:

• Model Reference Adaptive System (MRAS) [9–11],
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• Extended Kalman Filters [12–14];
• Sliding Mode Control [15,16];
• Fuzzy Logic Technique [17,18].

However, recently, different combinations and modifications have also been proposed. Interesting
examples include the following:

• One article [19] concerns a sensorless control approach for a five-phase induction motor drive.
The sensorless scheme uses the sliding mode theory, which applies a sliding mode observer
to estimate rotor resistance. The operation methodology of the proposed control technique is
formulated using the mathematical model of the machine and the two-time-scale approach.

• The author of [20] proposes the combination of parameter estimation-based observers with the
dynamic regression extension and mixing parameter adaptation. The first framework is used
to recast the flux observation task as a parameter estimation problem, for which the dynamic
regressor extension and mixing method (DREM) technique is applied.

• One article [21] proposes using carrier signal injection with minimized torque ripple for rotor
resistance estimation. The proposed approach is based on the injection of a relatively low-frequency
carrier signal into the reference of the rotor flux linkage magnitude as well as extraction of the
induction machine’s response to the carrier signal, which is then used in a model reference
adaptive system.

• The author of [22] proposes the verification of rotor resistance identification in the field-oriented
control-based drive system using the slip ring machine-based test bench. The paper proposes
the torque calculations using the current stator and flux to propose the model reference adaptive
system for online estimation of rotor resistance (without injection of the signal).

• Other articles [23,24] propose an online estimated rotor resistance method using a neural network.
However, the proposed method is still limited by the learning rate that is pre-selected and does
not change during the rotor resistance estimation process. Therefore, if the learning rate is selected
inappropriately, it will lead to a slow network training process and large network output errors.
The choice of appropriate learning rate is mainly based on the experience of the researchers.

The literature also proposes several approaches to stator resistance estimation. The well-known
approaches in recent studies are based on the following:

• MRAS [25–27];
• Luenberger Observer [28–31];
• Fuzzy Logic Technique [32–34];

However, recently, different combinations and modifications have also been proposed. Interesting
examples include the following:

• One article [35] proposes a novel Power Quality Model Reference Adaptive System (PQ-MRAS)
concept for stator resistance. It uses the active and reactive power of the machine, which is
calculated using measurable signals, (e.g., stator voltage and current). The paper includes a
detailed description of the proposed estimator.

• The author of [36] proposes online identification of stator resistance based on the model reference
adaptive system. In the article, the backpropagation is used to define the error between the
measured and estimated value of stator current to adjust the weights of the neural network.

• The author of [37] presents the IM model that is transformable into the adaptive observer
form. In this method, stator resistance estimation leads to the overparameterization problem.
The proposed solution uses the first-order approximation of the error dynamics to the
adaptive observer.

• The online stator resistance estimation methods using a neural network were studied and
performed in [38]. However, in the proposed method, the learning rate must be selected and not
changed during the estimation process. Consequently, this reduces its accuracy.
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In this article, the authors propose a novel method to estimate rotor resistance and stator resistance
using artificial neural networks with the learning rate as a function. This is an extension of previous
research seeking to improve the control quality of the sensorless induction motor drive. This paper is
arranged as follows. Section 2 presents the method to estimate rotor resistance using a two-layered
neural network with the learning rate as a function. In Section 3, the rotor and stator resistance
estimation method by using a two-layered neural network in which the learning rate is also a function
is proposed. The experimental results in Section 4 have been proven with the proposed algorithm.
The rotor and the stator resistance are accurately estimated, leading to the estimated speed of the motor
being very close to the real speed, thus having the potential to improve the quality of the induction
motor sensorless drive system. Finally, conclusions are given in Section 5.

2. Rotor Resistance Estimation Using Artificial Neural Networks

The rotor resistance estimator structure of the induction motor is based on MRAS [1,3], presented
in Figure 1.
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Figure 1. Rotor resistance estimator based on MRAS including a neural network trained by the 
error-back propagation algorithm. 

Figure 1. Rotor resistance estimator based on MRAS including a neural network trained by the
error-back propagation algorithm.

The outputs of the reference model (voltage model) are components of rotor leakage flux in the
static frame: 

ψvm
rα =

Lr

Lm

[∫
(Vsα −Rsisα)dt− σLsisα

]
ψvm

rβ =
Lr

Lm

[∫
(Vsβ −Rsisβ)dt− σLsisβ

] (1)

where σ = (1 − L2
m/Ls Lr)—leakage coefficient.

Stator leakage flux has the following equations: ψsα =
∫
(Vsα −Rsisα)dt

ψsβ =
∫
(Vsβ −Rsisβ)dt

(2)
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Because the direct current (DC) voltage applied to the inverter is undulating, the integral stage in
Equation (2) causes the stator leakage flux error. Therefore, it is necessary to adjust the stator leakage
flux estimation using a multi-level low-pass filter [18]. From Equations (1) and (2), and through some
transformations, we obtain equations used to estimate rotor flux according to the voltage model as follows:

ψvm
rα (k) =

Lr

Lm
ψsα(k− 1) −

LsLr − L2
m

Lm
isα(k− 1)

ψvm
rβ (k) =

Lr

Lm
ψsβ(k− 1) −

LsLr − L2
m

Lm
isβ(k− 1)

(3)

On the other hand, the equations of the adaptive model (current model) are as follows: ψim
rα(k) = W1ψim

rα(k− 1) −W2ψim
rβ (k− 1) + W3isα(k− 1)

ψim
rβ (k) = W1ψim

rβ (k− 1) + W2ψim
rα(k− 1) + W3isβ(k− 1)

(4)

where W1 = 1−
Ts

Tr
, W2 = ωrTs, W3 =

Ts

Tr
Lm.

Ts is the sampling time and Tr = Lr/Rr is the rotor time constant. W2 does not depend on the rotor
time constant. It can be seen that the weights W1 and W3 depend on the rotor time constant. If the
Lr rotor self-inductance is not changed, the weights W1 and W3 will be updated based on the rotor
resistance to obtain high efficiency.

The two-layered neural network used to estimate rotor flux by the current model is illustrated in
Figure 2.
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Figure 2. Two-layered neural network used to estimate rotor flux by the current model.

The square function of rotor flux error calculated from the two models according to Equations (3) and (4)
is written as follows:

E1 =
1
2
ε2(k) =

1
2

{
ψvm

r (k) −ψim
r (k)

}2
(5)

The weights of the networks W1, W3 are obtained from the network training that minimizes the
square function E1 [1,9]. W1, W3 are determined as follows:

W1(k) = W1(k− 1) + η1∆W1(k) (6)

W3(k) = W3(k− 1) + η3∆W3(k) (7)
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where

∆W1(k) = −∂E1/∂W1 =
[
ψvm

r (k) −ψim
r (k)

]T
ψim

r (k− 1) (8)

∆W3(k) = −∂E1/∂W3 =
[
ψvm

r (k) −ψim
r (k)

]T
is(k− 1) (9)

where the learning rates η1 and η3 are pre-selected constants.
The problem is to replace the constant learning rate with a function so that after each update

of the weight adjustment, the error E1 value will be reduced with ςi(k) = ∆Wi(k)∆Wi(k − 1), where
the function ςi(k) is the error product of the weight adjustment Wi at times k and (k− 1). From this,
we build the learning rate function based on the function ςi(k) so that the learning rate changes in
the direction of reduction of the error E1 of the neural network. This means that if ςi(k) is positive,
the neural network has a slow convergence speed and must increase the learning rate; if ςi(k) is
negative, the learning rate must be reduced. Consider the following function:

f (ςi) = sign(ςi)
α0

1 + e−ςisign(ςi)
(10)

The derivative of f (ςi) is
∂ f (ςi)

∂ςi
=

α0e−ςisign(ςi)

(1 + e−ςisign(ςi))
2 > 0, where α0 is positively identified.

Here, f (0) = 0, so ςi(k) f (ςi(k)) > 0 for every ςi(k) , 0. So, the function is f (ςi) congruent and

homologous to the error ςi. Therefore, the learning rate function can be updated according to the
following rules:

ηi(k) = ηi(k− 1)(1 + f (ςi(k− 1))) (11)

where ηi(k− 1) is the learning rate at (k − 1), ηi(k) is the learning rate at k.
The learning rate determined at (11) is different from the learning rate mentioned elsewhere [1,9].
The weights of the networks W1, W3 are adjusted by training based on Equation (6) or (7). The rotor

resistance is therefore estimated according to Equation (12) or (13) as follows:

Rr−es =
Lr(1−W 1)

Ts
(12)

Rr−es =
LrW3

LmTs
(13)

Rotor flux estimation from Equation (1) is sensitive to changes in the stator resistance, especially
in the low-speed region. Therefore, to minimize the error in the rotor resistance estimation due to
the stator resistance variation, an online stator resistance estimator will be analyzed and discussed in
Section 3.

3. Stator Resistance Estimation Using Artificial Neural Networks

According to [9], we have the following equation, describing components of stator currents in the
static frame:  i∗sα(k) = W4i∗sα(k− 1) + W5ψim

rα(k− 1) + W6ψim
rβ (k− 1) + W7Vsα(k− 1)

i∗sβ(k) = W4i∗sβ(k− 1) + W5ψim
rβ (k− 1) −W6ψim

rα(k− 1) + W7Vsβ(k− 1)
(14)

where W4 =

[
1−

Ts

σLs

Lm
2

LrTr
−

Ts

σLs
Rs

]
, W5 =

Ts

σLs

Lm

LrTr
, W6 =

Ts

σLs

Lm

Lr
ωr, W7 =

Ts

σLs
.

The weights W5, W6, W7 are calculated from the motor parameters, motor speed and the sampling
time Ts. The weighted W4 depends on the stator resistance. The weight W4 is the adjustment weight.
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Equation (14) can be represented by two layered artificial neural networks as shown in
Figures 3 and 4.
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The error square function of the stator current measured against the estimated stator current
according to Equation (14) is written as follows:

E2 =
1
2
ε2

2(k) =
1
2

{
is(k) − i∗s(k)

}2
(15)

The weight of the network W4 is derived from the training of the neural network so that the error
square function E2 is minimal [9]. W4 is determined as follows:

W4(k) = W4(k− 1) + η4∆W4(k) (16)

where

∆W4(k) = −
∂E2

∂W4
=

[
is(k) − i∗s(k)

]T
i∗s(k− 1) (17)

Similarly to the method of constructing the learning rate function to estimate rotor resistance in
Section 2, the learning rate is updated as follows:

η4(k) = η4(k− 1)(1 + f (ς4)) (18)



Energies 2020, 13, 4946 7 of 16

where
ς4(k) = ∆W4(k)∆W4(k− 1) (19)

The learning rate determined in Equation (18) is different from the learning rate mentioned in [6,9].
Afterward, the stator resistance can be estimated as follows:

Rs−es =
{
1−W4 − (Ts/σLs)(L2

mRr−es/L2
r )

}
(σLs/Ts) (20)

The speed estimation used in sensorless drive in this paper is shown after [19], according to
Expression (21) below:

ωr_es(k) = ωr_es(k− 1) +
ηw

Ts


[
ψvm

rβ (k) −ψ
im
rβ (k)

]
ψim

rα(k− 1)

−

[
ψvm

rα (k) −ψim
rα(k)

]
ψim

rβ (k− 1)

 (21)

where ηw is the learning rate for estimating rotor speed.

4. Results

4.1. Analysis

At the low-speed region, the rotor flux estimation from Equations (3) and (4) is very sensitive to
stator and rotor resistance [9]. Therefore, online rotor and stator resistance estimation in Sections 2 and 3
will improve the quality of the sensorless drive control, especially for low speeds. A diagram of the
IFOC (indirect field-oriented control) sensorless drive with online rotor and stator resistance estimation
is shown in Figure 5.
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Figure 5. Diagram of indirect field-oriented control (IFOC) sensorless drive with online rotor and stator
resistance estimation.

4.2. Results of the Simulation

To simulate a sensorless drive system with rotor and stator resistance estimation, the authors used
MATLAB/Simulink software (2019a, MathWorks, Natick, MA, USA).
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During the simulation, the rotor and stator resistances differ by 50% from the original values [1,4,9],
thus leading to a discrepancy between the actual rotor and stator resistance values and real values.
The rotor resistance of the induction motor varies from 1.84 to 2.76 Ω, the stator resistance of the motor
varies from 1.99 to 2.99 Ω (simulation process duration 0–9 s); load TL = 2.0 Nm is applied at time
t = 1.5 s. The induction motor parameters are given in Table 1.

Table 1. Induction motor parameters—Siemens (1LA 7096-2AA60-Z).

No Parameters Values

1 Rated power 2.2 kW
2 Rated voltage 400 V
3 Rated frequency 50 Hz
4 Stator resistance 1.99 Ohm
5 Rotor resistance 1.84 Ohm
6 Magnetizing inductance 0.37 H
7 Poles 2
8 Rated speed 2880 Rpm
9 Rotor moment of inertia 0.002159 kgm2

4.2.1. Speed of Induction Motor without Rotor and Stator Resistance Estimation

Assuming that the rotor resistance increases from 1.84 to 2.76 Ω, from 0–2 s, it remains 1.84 Ω;
in 2–7 s, it increases from 1.84–2.76 Ω; at 7–9 s, the rotor resistance is 2.76 Ω. The stator resistance
varies from 1.99 to 2.99 Ω for 0–2 s, it remains 1.99 Ω, at 2–7 s and it increases from 1.99–2.99 Ω for
7–9 s then stays at 2.99 Ω, but the rotor and stator resistances set for the controller retain their rated
resistance values. Figure 6a indicates reference speed and estimated speed throughout the simulation
time. In Figure 6b, the stator and rotor resistance values differ by 50% from the initial cold resistance
values; the average estimated speed is still 20 rad/s but the pulsation of the speed is nearly 0.3 rad/s.
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4.2.2. Speed of Induction Motor with Online Rotor and Stator Resistance Estimation

The simulation results in Figure 7a,b show that, with the resistance estimation algorithms proposed
in Sections 2 and 3, the rotor and stator resistance were accurately estimated with very small error
compared to real resistance values. On the other hand, the accurate estimation of rotor and stator
resistances improved the estimation of the real speed of the rotor (Figure 8), thereby improving the
quality of the sensorless drive system.
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4.3. Results of the Experiment

To re-examine the proposed stator and rotor resistance estimation algorithms, an experimental
setup has been developed (Figures 9 and 10). The experiment was performed on DS 1104 connected to
the personal computer. Application of the controller is known in the literature for control of electronic
converters, as in [39,40]. In this study, we use a three-phase induction motor 2.2 kW/400 V—detailed
data are shown in Table 1. The motor is controlled by an inverter and is rigidly connected to a 1.5 kW
dc motor—detailed data are shown in Table 2. The DC motor is controlled by a 4Q rectifier (Mentor II)
in torque control mode (Torque Control) so that the load torque can be applied to the three-phase
induction motor.

The current and flux controllers were implemented with a sampling time of 0.2 ms. The speed
estimator using the sampling time is 2 ms, the rotor resistance estimation using the sampling time
is 44 ms, the stator resistance estimation using the sampling time is 88 ms. An encoder with
5000 pulses/cycle was used to determine position and speed. The load torque is 2 Nm.

Table 2. DC motor parameters—Fuan LiYuan Electric, Ltd. (ZD97B-2).

No Parameters Values

1 Rated power 1.5 kW
2 Rated frequency 50 Hz
3 Rated armature voltage 200 V
4 Rated field voltage 200 V
5 Rated field current 1.5 A
6 Rated speed 1500 Rpm



Energies 2020, 13, 4946 10 of 16
Energies 2020, 13, x FOR PEER REVIEW 10 of 16 

 

PC

DS 1104

InverterRectifier

+

_

IM

Mesurem
ent

DC

Mentor II

Vdc

Grid

ωr

Grid

 
Figure 9. Experimental setup diagram. 

 

Figure 10. Experimental table using DS 1104. 

The current and flux controllers were implemented with a sampling time of 0.2 ms. The speed 
estimator using the sampling time is 2 ms, the rotor resistance estimation using the sampling time is 
44 ms, the stator resistance estimation using the sampling time is 88 ms. An encoder with 5000 
pulses/cycle was used to determine position and speed. The load torque is 2 Nm. 

In the low-speed region, the sensorless drive is more affected by the rotor and stator resistance 
estimation error than in the high-speed zone [9], so in this experiment, a low speed 20 rad/s is set as 
the reference speed value for the controller. After a number of tests, the learning rate to estimate 
rotor and stator resistance was chosen as follows: ηr = 0.015; ηs = 0.022. The motor runs for some time 
(around 60 min or more) with a load TL = 2 Nm (approximately 30% of the rated load). The obtained 
results are presented as follows: 
  

Figure 9. Experimental setup diagram.

Energies 2020, 13, x FOR PEER REVIEW 10 of 16 

 

PC

DS 1104

InverterRectifier

+

_

IM

Mesurem
ent

DC

Mentor II

Vdc

Grid

ωr

Grid

 
Figure 9. Experimental setup diagram. 

 

Figure 10. Experimental table using DS 1104. 

The current and flux controllers were implemented with a sampling time of 0.2 ms. The speed 
estimator using the sampling time is 2 ms, the rotor resistance estimation using the sampling time is 
44 ms, the stator resistance estimation using the sampling time is 88 ms. An encoder with 5000 
pulses/cycle was used to determine position and speed. The load torque is 2 Nm. 

In the low-speed region, the sensorless drive is more affected by the rotor and stator resistance 
estimation error than in the high-speed zone [9], so in this experiment, a low speed 20 rad/s is set as 
the reference speed value for the controller. After a number of tests, the learning rate to estimate 
rotor and stator resistance was chosen as follows: ηr = 0.015; ηs = 0.022. The motor runs for some time 
(around 60 min or more) with a load TL = 2 Nm (approximately 30% of the rated load). The obtained 
results are presented as follows: 
  

Figure 10. Experimental table using DS 1104.

In the low-speed region, the sensorless drive is more affected by the rotor and stator resistance
estimation error than in the high-speed zone [9], so in this experiment, a low speed 20 rad/s is set as the
reference speed value for the controller. After a number of tests, the learning rate to estimate rotor and
stator resistance was chosen as follows: ηr = 0.015; ηs = 0.022. The motor runs for some time (around
60 min or more) with a load TL = 2 Nm (approximately 30% of the rated load). The obtained results are
presented as follows:

• In Section 4.3.1, the comparison between estimation level with and without constant learning rate;
• In Section 4.3.2, the comparison between the speed of induction motor with and without online

rotor and stator resistance estimators;
• In Section 4.3.3, the short discussion of obtained results is presented.

4.3.1. Results of Rotor and Stator Resistance Estimation

Figure 11a shows that the estimated rotor resistance with constant learning rate has
an average value ≈ 2.10 Ω. Figure 11b is an enlarged image of the rotor resistance estimation with constant
learning rate, the estimated rotor resistance with constant learning rate, the pulsation of estimated
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resistance ≈ 20%. The estimated rotor resistance using the learning rate by function (11) is almost
non-pulsating, as indicated in Figure 11c. Figure 12a shows that the estimated stator resistance has an
average value ≈ 2 Ω. In Figure 12b, the estimated stator resistance using the learning rate according to
(18) is more accurate than using the constant learning rate (the pulsation of estimated stator resistance
is ≈25% when the learning rate is constant, while with the proposed method, the pulsation of estimated
stator resistance is ≈3%).
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4.3.2. Impact of Online Rotor and Stator Resistance Estimation

Case study 1: Without the online rotor and stator resistance estimation.
Figure 13a–d show that the measured speed is pulsating compared to the reference speed:

the pulsation of measured speed is ≈5%; the estimated speed fluctuates around the reference speed;
the pulsation of estimated speed is ≈6.25%.

Case study 2: With the online rotor and stator resistance estimation.
Figure 14a–d show that the measured speed is almost the same as the reference speed, and the

pulsation is only ≈2%; the estimated speed also follows the reference speed, with the same pulsation
of ≈2%.
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4.3.3. Discussion

The results presented in the previous section indicate that

• Estimated rotor resistance obtained from the proposed methodology ensures that the pulsation is
20% lower than with constant learning rate. Additionally, the level of pulsation of the proposed
method is less than 1%, which is better than results obtained in, e.g., [16] (up to 5%);
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• Estimated stator resistance obtained from the proposed methodology ensures that the pulsation is
22% lower than with constant learning rate. Additionally, the level of pulsation of the proposed
method is less than 3%, which is better than results obtained in, e.g., [35] (not exceeding 10%);

• Application of the proposed online rotor and stator resistance estimation ensured a decrease in
the value of pulsation of over 4% than with constant learning rate.

The indicated results concern the quasi-steady operating state of the drive. Analysis of other
operating states is an element for future research.

5. Conclusions

This paper proposes a method for estimating the rotor and stator resistance of an induction motor
using artificial neural networks with the variable learning rate determined by a function. The results
show that online rotor and stator resistance estimation using the proposed method is more accurate
when estimating at a constant learning rate and also demonstrate that the online estimation of rotor
and stator resistance has contributed to improving the control quality of the sensorless induction motor
drive. Future direction of the research will be properties evaluation of the proposed method for various
operating states.
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List of Symbols

ψvm
rα

α-axis rotor flux linkages estimated by voltage model
in the stator reference frame

ψvm
rβ

β-axis rotor flux linkages estimated by voltage model
in the stator reference frame

ψsα α-axis stator flux linkages in the stator reference frame
ψsβ β-axis stator flux linkages in the stator reference frame

ψim
rα

α-axis rotor flux linkages estimated by current model
in the stator reference frame

ψim
rβ

β-axis rotor flux linkages estimated by current model
in the stator reference frame

Vsα α-axis stator voltage in the stator reference frame
Vsβ β-axis stator voltage in the stator reference frame
isα α-axis stator current in the stator reference frame
isβ β-axis stator current in the stator reference frame
Lm magnetizing inductance
Lr rotor self-inductance
Ls stator self-inductance
Rs stator resistance
Rr rotor resistance
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