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Abstract: In light of the difficulty of the inspection and maintenance of a transmission line condition
monitoring system in remote mountainous areas, this paper proposes a long-term online monitoring
scheme based on a low power wide area network (LPWAN). Considering different failure rates,
three monitoring periods of transmission lines in mountainous areas are proposed. An online
monitoring framework of transmission lines in mountainous areas was designed based on long
range radio (LoRa) and a cellular mobile network, and a dynamic group network model of LoRa
was established. The multi-objective particle swarm optimization algorithm can be used to optimize
the energy and delay of the system, and then the suitable working mode for the three monitoring
periods can be obtained. The simulation results showed that the minimum packet loss rate of the
system could be less than 1%, the energy consumption of the system was 80% lower than the existing
monitoring system, and the service life of the system can reach 15.13 years under the normal failure
rate. Compared with the existing schemes, the proposed work shows the advantages of high reliability
transmission, low cost and long-term monitoring, which is especially for transmission line monitoring
in mountainous areas.

Keywords: transmission line monitoring; LPWAN; dynamic grouping; long term online monitoring;
multi-objective optimization

1. Introduction

The reliability of power grid transmission largely depends on the reliability of the transmission
line working state [1]. Compared with the populated urban areas, transmission lines in remote
mountainous areas are difficult to monitor and maintain due to their special geographical location.
Traditional methods of transmission line monitoring generally adopt manual inspection, which is
time-consuming and laborious. In [2–5], robots and unmanned aerial vehicles (UAVs) were proposed
for automatic line inspection, showing the advantages of low cost and high efficiency compared with
manual inspection. However, these methods are still not real time and are difficult to operate in
mountainous area.

The online monitoring systems of transmission line can be usually divided into wired systems and
wireless systems. Although the cable communication technology exhibits the merits of large capacity
and fast speed [6,7], its application in mountainous areas is limited by the expensive installation and
maintenance cost. For a wireless monitoring system based on a mobile cellular network [8,9], it can
achieve a high wireless transmission speed, large communication bandwidth and wide communication
coverage. However, the cost of a mobile cellular network is expensive and its communication coverage
is hard to reach in some remote mountainous areas. Due to the merits of simple deployment, low
cost, no on-site maintenance, etc., wireless sensor networks (WSNs) are rapidly applied in various
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monitoring fields since its emergence [10]. There are already many reports on transmission line
monitoring systems based on WSN such as wire galloping [11,12], icing warning [13–16], and tower
tilt [17–20]. However, the communication distance of WSN is relatively short and its work life is
limited, which is not suitable for long-term monitoring of transmission lines in mountainous areas.

Low power wide area network (LPWAN) is a new emerging internet of things (IoT) communication
technology, which complements between mobile cellular technology and WSN. Compared to the WSN,
LPWAN technology shows a longer work life (up to 10 years) and larger communication distance
(up to 10 km) [21], hence it is regarded as the mainstream communication technology in the era
of 5G IoT [22,23]. Narrow band Internet of Things (NB-IoT) and long range radio (LoRa) are two
typical technologies of LPWAN. NB-IoT is built on the cellular network and works in the authorized
spectrum [24–27], LoRa works in unauthorized spectrum and can self-organize a communication
network like WSN [28,29]. In [30], a monitoring system based on LoRa was proposed and achieved a
maximum transmission distance of 8.33 km. Although NB-IoT can provide higher quality of service
(QoS), LoRa is more suitable for application in mountainous areas due to the communication blind area
of the cellular mobile network. Zhang X [31] proposed an information monitoring method combining
NB-IoT and LoRa, which not only improved the transmission distance, but reduced the operation cost
of the monitoring system. However, the low communication speed of LoRa makes it hard to satisfy
the demand of the transmission line monitoring system. The hybrid monitoring networks in [32,33]
provided us with an excellent choice in achieving the balance between the network performances and
network cost.

Compared with ordinary schemes, the monitoring schemes in mountainous areas exhibit great
differences in monitoring scheme selection, measurement accuracy, daily monitoring operation
maintenance, and implementation [34]. Single working mode is difficult in terms of satisfying the
requirements of the online monitoring of transmission lines in mountainous areas [35]. This paper
proposes a long-term online monitoring scheme based on LPWAN. Considering the different failure
rates, three monitoring periods of transmission lines in mountainous areas were proposed. According
to the requirements of energy consumption and time delay, an online monitoring framework of
transmission lines in mountainous areas was designed based on the hybrid network integrating
LoRa and cellular mobile network, and a dynamic group network model of LoRa was also
established. The multi-objective particle swarm optimization algorithm was used to optimize the
energy consumption and time delay of the system, and then the suitable working mode for the three
monitoring periods can be obtained.

The structure of the paper is as follows. Section 2 introduces the scheme design of the online
monitoring system for mountain transmission lines and the network architecture based on LPWAN in
detail. In Section 3, the proposed dynamic network grouping method was obtained by establishing
various models. The experimental results are discussed in Section 4 and three working modes suitable
for mountainous transmission lines were obtained. Our conclusions are presented in Section 5.

2. Transmission Line Monitoring Network Architecture in Mountainous Areas

According to the analysis of the fault rate of transmission lines in mountainous areas [35],
we defined three monitoring states: low-risk state, high-risk state, and fault maintenance state.
The failure rate of the transmission line showed low or high under low-risk condition or high-risk
state, respectively. Under the fault maintenance state, the transmission line fault has occurred and is
waiting for location maintenance. Obviously, the communication quality requirements of the three
monitoring states are different, and a monitoring system with a single working mode cannot solve the
data transmission problem of the system.

As shown in Figure 1, this paper first proposed an online monitoring system of a transmission
line in a mountainous area. Then, we established the delay model, energy model, and path loss model
of the monitoring system. The optimal solution to balance the delay and the energy can be obtained
through an optimization algorithm. Combining the LoRa transmission model established by the
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path loss model with the optimal solution of the optimization algorithm, the LoRa dynamic packet
model can be obtained. Finally, three working modes can be achieved according to the LoRa dynamic
grouping model, which includes the monitoring mode, early warning mode, and maintenance mode.

Figure 1. Design of the system monitoring scheme in a mountainous area.

Figure 2 shows the proposed three-layer monitoring network structure of a transmission line in a
mountainous area. Considering the network cost, LoRa was adopted in the first layer to collect massive
sensor data and then transmit it to the sink node. In order to satisfy the delay time requirement,
a cellular mobile network was employed in the second layer to transmit the data of the sink node to
the monitoring center. The third layer was composed of the monitoring center, which can collect data
transmitted through wired and cellular mobile networks.

Figure 2. Monitoring network structure of the transmission line in a mountainous area.

In order to make the proposed monitoring network structure suitable for a mountainous
environment, this paper proposed a LoRa dynamic networking model based on the multi-objective
optimization algorithm and path loss model, which can change the networking mode under the
different conditions of delay and energy consumption. In the network grouping mode of low-risk state,
the energy consumption constraint of each terminal node is given priority while the delay consumption
constraint is given priority in the fault maintenance state. In the high-risk state, the terminal node and
the sink node consider the delay and energy consumption constraints at the same time.

3. Model and Method

3.1. Path Loss Model Design

The transmission line environment in a mountainous area has the characteristics of a deep
valley, curved line, and rich surrounding vegetation. Therefore, the interference of radio signals in a
mountainous area is stronger than that in a plain area, and the path loss is higher [36]. The transmission
of a LoRa signal in a mountainous environment is easily affected by electromagnetic interference [37],
mountain shelter, vegetation reflection and absorption, and other factors. It can be seen from [38] that
in the mountain monitoring environment, mountain occlusion had the greatest interference on the
LoRa signal. Therefore, the path loss model was established according to the influence of mountain
shelter on the LoRa signal.
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The signal strength of the LoRa transceiver module at a certain point is the difference between the
field strength excited by the base station at the antenna and the field strength loss when the signal
propagates to the point:

ER = ET − Lps (1)

where ET is the field strength excited by the LoRa transceiver module at the antenna and Lps is the
median path loss caused by signal propagation. When the signal has no direct propagation path, the
diffraction effect will occur, as shown in Figure 3. The distance of the diffraction path is calculated
as follows:

dD =

√
d2

1 + (hm − hT)
2 +

√
d2

2 + (hm − hR)
2 (2)

where dD is the diffraction distance; d1 is the distance between the LoRa transceiver module antenna
and the mountain; d2 is the distance between the receiving antenna and the mountain; hm is the altitude
of the mountain; hT is the altitude of the LoRa transceiver module antenna; and hr is the altitude of the
receiver antenna. In order to display the diffraction principle of a wireless signal in a mountainous
area more intuitively, the schematic diagram, as shown in Figure 3, was constructed by simulating the
topography of the southwest mountainous area.

Figure 3. Principle of wireless signal diffraction.

Figure 3 shows the LoRa signal transmission diffraction model established according to the
western mountain environment. The LoRa signal passes through the diffraction path 1O from point a to
point b, and its diffraction law and signal field strength can be analyzed by the Egli model. The Egli
propagation model is a simplified wireless propagation model on irregular terrain, which is a statistical
model based on a large number of test data, which can reflect the attenuation law and signal trend in
an irregular environment. Compared with other terrains, the Egli model can be used to evaluate hilly
and mountainous areas as the field strength of the shape is more accurate. The empirical equation of
the Egli wireless signal transmission loss is as follows:

Lps = 88 + 20lg f + 40lgd− 20lg(hthr) −Kh (3)

where f is the radio frequency; ht is the height of transmitting antenna of LoRa transceiver module;
hr is the height of receiving antenna; d is the distance between receiving and transmitting antennas;
and Kh is terrain correction factor. When the average relief height Kh of the terrain around the test
point was equal to 15 m, Kh was taken as 0; when the terrain relief height H around the test point
was greater than or less than 15 m, the terrain correction factor should be added. For the 150 MHz
frequency band, the terrain correction factor Kh can be obtained by the following equation:

Kh = −0.143H + 2.143 (4)

where H is the average relief height of the terrain around the test point.
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3.2. Network Model Design

In this section, the mathematical modeling of the transmission line architecture design is carried
out, and a priority multi-objective optimization model of LoRa dynamic grouping is proposed.
The optimal installation location and usage quantity of the cellular wireless transmission module under
the specified delay conditions were found through the algorithm, and different networking modes can
be realized under the constraint of different system energy consumption and delay transformation.

In this paper, the network architecture diagram can be modeled as a data directed graph.
The transmission tower near the substation can realize end-to-end data transmission directly through
the LoRa transmission module. Therefore, the directional graph mainly considers the transmission
tower that needs to transmit data through the cellular wireless transmission module. As shown in
Figure 4, suppose that a transmission line contains N transmission line towers, where i represents the
end-to-end data transmission link between transmission poles and towers, and j represents the data
transmission link of towers through cellular wireless communication. Therefore, any data transmission
link can be expressed as a vector (i,j), and P is the set of all wireless transmission communication links,
that is, all communication link vectors (i,j) are included in P, ∀(i, j) ∈ P. The purpose of this model is
to find a feasible communication link for each communication path used, minimize the delay caused
by multiple links, and consider the energy constraint of each link.

Figure 4. Network data transmission digraph.

First, it is necessary to limit the delay generated in any communication link to be less than or
equal to the maximum communication delay required, as shown in Equation (5):∑

(i, j)∈P

Di, j,kMi, j,k ≤ Dmax ∀k ∈ N (5)

where Di,j,k denote that the communication node k uses the data link (i,j) as the generated delay; Mi,j,k
are binary variables; if node k uses the data link (i,j) as the communication link, Mi,j,k = 1; otherwise, it
is 0; and Dmax represents the maximum transmission delay required by the system administrator.

N∑
i=1

(Gi − Li) ≤ 0 (6)

Equation (6) ensures that there are towers using cellular wireless transmission modules regardless
of transmission mode. Where Gi and Li are binary variables, if the i tower uses thee cellular wireless
transmission module, then Gi = 1, otherwise it is 0; if tower i uses the LoRa transmission module, then
Li = 1, otherwise it is 0.

Mi, j,k −Oi, j ≤ 0 ∀(i, j) ∈ P, ∀k ∈ N (7)
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Equation (7) ensures that each communication link is reused and the link cost is calculated at most
once, where Oi,j are binary variables. If the data transmission link (i,j) is used, Oi,j = 1, otherwise it is 0.

Mi, j,k , Li , Gi , Oi, j ∈ {0 , 1} ∀(i, j) ∈ P,∀k ∈ N (8)

Equation (8) determines that the decision variables Mi,j,k, Gi, Li, and Oi,j are binary variables.
The delay function of the network is composed of Equations (5)–(8). The binary variables in the

equation are decision variables. Oi,j indicates that the link is used by at least one node. If node k
chooses link (i,j) as its transmission path, Mi,j,k = 1, and when there is a delay constraint, the frequency
of the cellular wireless transmission access path j of transmission tower i is significantly higher than
that of other transmission towers, then the cellular wireless transmission module must be installed on
the tower. Therefore, the network delay function is shown in Equation (9):

D(Mi, j,k , Li , Gi , Oi, j) ∀(i, j) ∈ P, ∀k ∈ N (9)

E(Gi, Li) =
N∑

i=1

(dGi + bLi) +
∑

(i, j)∈P

Ci, jOi, j + Lps (10)

where E(Gi, Li) is the network energy consumption function; d and b represent the energy consumption
of a single cellular wireless transmission module and LoRa transmission module, respectively; and
Ci,j represents the communication energy consumption generated on the data link (i,j). The energy
consumption function mainly includes transmission module energy consumption and wireless
communication energy consumption, and the path loss function Lps must be included in the energy
consumption of wireless communication. As shown in Equation (10), system energy consumption
is the sum of all communication energy consumption used for data transmission during the whole
operation period and the energy consumption and path loss of installing the LoRa transmission module
or cellular wireless transmission module on the selected tower.

According to the above equation, the LoRa dynamic networking model of transmission lines in
mountainous areas is shown in Equation (11):

F[D(i, j, k), E(i, j)] ∀(i, j) ∈ P,∀k ∈ N (11)

3.3. Delay Model and Energy Consumption Model Design

According to [39], if the spread spectrum factor (SF), coding rate (CR), and signal bandwidth (BW)
are known, the calculation formula issued by the Semtech company can calculate the air transmission
time of a single LoRa node packet. By understanding the key parameters that users can control and
according to the definition of the symbol rate, the LoRa symbol rate Rs and symbol period Ts can be
calculated by the following formula:

Rs =
BW
2SF (12)

Ts = 1/Rs (13)

The LoRa data transmission time is equal to the sum of preamble time and packet transmission
time. The length of the preamble can be calculated by the following formula:

Tp = (np + 4.25)Ts (14)

where np represents the set preamble length, and its value is determined by two registers in the
transmission chip.

The payload transfer time can be calculated by the following formula:

Tl = ε ∗ Ts (15)
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where ε is the number of payload symbols, which can be calculated by the following formula:

ε = 8 + max
(
ceil

(
8PL− 4SF + 28 + 16− 20H

4(SF− 2DE)

)
(CR + 4), 0

)
. (16)

where PL is the number of bytes of payload; when the header is used, H = 0, otherwise H = 1; DE is
determined by the chip register; and CR is the coding rate, and the value range is 1–4.

Finally, the data transmission time of LoRa is equal to the preamble transmission time plus the
payload transmission time. The formula is as follows:

TALL = Tp + Tl (17)

The energy generation process of LoRa data transmission is shown in Figure 5. In this
paper, the energy consumption model was established based on the calculation method of
communication equipment.

Figure 5. Long range radio (LoRa) communication energy consumption.

If ETX is the transmission energy consumption, ERX is the receiving energy consumption, n is the
data size, and d is the data transmission distance, then:

ETX(n, d) = ETX−elec(n) + ETX−amp(n, d)
= ETelec × n + εamp × n× dk (18)

ERX(n) = ERX−elec(n) = ERelec × n (19)

ELoRa = ETX(n, d) + ERX(n) (20)

Eall = ELoRa + ECC(n) (21)

Among them, ETelec and ERelec, respectively, represent the energy consumption of LoRa
communication equipment for sending and receiving data; εamp is the energy consumption of power
amplifier transmitting data per unit distance; k is the propagation attenuation index of transmission
environment with the value range of 2 ≤ k ≤ 5; k should be taken as 4 in a mountain environment;
and Ecc(n) refers to the energy consumption of cellular wireless data transmission module when
transmitting n byte data.

3.4. Multi Objective Particle Swarm Optimization Algorithm

Through the modeling of delay and energy consumption, it can be seen that the delay model is
mainly related to the parameters of LoRa transmission equipment and the amount of data transmitted.
The energy consumption model is mainly related to the receiving and sending power of the LoRa
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module, the wireless transmission power of the cellular, the amount of data transmitted, and the
transmission distance. Low delay and low energy consumption are contradictory goals. In order
to meet the design requirements of the transmission line online monitoring system, particle swarm
optimization (PSO) [40] can be used to optimize the delay Tall and energy consumption Eall.

The model of the multi-objective optimization algorithm with d-dimension decision variables and
m-objective is defined as follows:

min y = f (x) =
∣∣∣ f1(X), f2(X) · · · , fm(X)

∣∣∣
s.t. x = (x1, x2 · · · , xD) ∈ X

y = (y1, y2 · · · , yM) ∈ Y
(22)

where x is the decision vector; X is the decision space; y is the target vector; and Y is the target space.
In the PSO algorithm, each particle is a solution in the solution space. It adjusts its flight according

to its own flight experience and the flight experience of its peers. The best position each particle has
experienced in the flight process is the optimal solution found by the particle itself. The best position
that the whole group has experienced is the optimal solution found by the whole group at present.

Let Ha = (ha1, ha2, · · · , haD) be the dimensional position of particle a(a = 1,2,...,s), Va =

(va1,va2, · · · , vab, · · · vaD) be the flight speed of particle a, Pa = (pa1, pa2, · · · , pab, · · · , paD) be the individual
optimal solution of particle a, and Pg =

(
pg1, pg2, · · · , pgb, · · · , pgD

)
be the global optimal solution of the

whole population.
In each iteration, the velocity and position of each particle are updated with Equations (23)

and (24):
vab(k + 1) = θvab(k) + c1r1(pab − hab(k))

+c2r2(pgb − hab(k))
(23)

hab(k + 1) = hab(k) + vab(k + 1) (24)

where a = 1, 2,..., s, s is the number of particles in the population, b = 1, 2,..., D, hab ∈ [Lb, Ub], Lb and
Ub represent the lower bound and last term of the search space, i ∈ [vmin, D, vmax, D], vmin and vmax

respectively represent the minimum and maximum speed of particle flight; c1 and c2 are learning
factors; r1 and r2 are random numbers between 0 and 1; and θ is inertia weight.

4. Experiment and Simulation Analysis

In this paper, the parameters of the sensors used are shown in Table 1. In general, the
communication energy consumption was far greater than other energy consumption, so the calculation,
data fusion, information maintenance, and packet transceiver were not considered in the simulation.
The transmission rate of the LoRa module used in the experiment was 5 kb~30 kb, and the transmission
distance was 1 km–5 km. The transmission distance is inversely proportional to the transmission rate.
The transmission rate of the cellular wireless transmission module was 125 m/s. In this paper, a 500 kV
double circuit line on the same tower in southwest mountain area was taken as an example. The delay
caused by the state transition delay, access delay, and handover of the cellular link was taken as 50 ms.
The transmission tower was located at the top of a narrow slope with an absolute altitude of 2600 m
and a relative height difference of about 400 m. Assuming that there are 100 transmission towers with
a fixed distance of one kilometer between transmission towers, each transmission tower is equipped
with a sensor group. According to the data in Table 1, the sensor group generates 2.73 kb of data each
time [41].
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Table 1. Monitoring node sensor data.

Detection Target Detection Mode Data Generated by Single
Acquisition (bit)

Ambient temperature Temperature sensor 170
Ambient humidity Humidity sensor 170

Inclination angle of transmission tower Angle sensor 830
Climatic wind speed Wind speed sensor 170

Vibration acceleration of transmission line Acceleration sensor 570
Vibration amplitude of transmission line Amplitude sensor 400

Conductor temperature Temperature sensor 170
Insulator leakage current Electromagnetic sensor 100

String tension Friction sensor 150

4.1. Model Validation and Calibration

In the experimental simulation, according to the Egli path loss mathematical model established in
the previous chapter, the simulation parameters were applied to the model to evaluate the path loss of
mountain transmission lines in the application of LoRa transmission module networking. The LoRa
operating frequency was set at 474 MHz, the height of transceiver antenna was 40 m, the transmission
power was 27 dBm, the gain of the transmitting antenna and receiving antenna were 5 and 2 dB,
respectively, and the feeder loss was 0.5 dB. The relationship between the path loss obtained by the
program and the distance between the transmitter and receiver of LoRa is shown in Figure 6.

Figure 6. Comparison of the theoretical field strength and actual field strength of the Egli model.

Figure 6 shows the relationship between the strength of the LoRa signal and the transmission
distance in the Egli model. It can be seen from the figure that the actual and theoretical LoRa signal field
strength monotonically decreases with the increase in transmission distance, which is consistent with
the trend that the field strength decreases with the increase in distance in the Egli model. By comparing
the theoretical field strength with the actual field strength, it was found that the actual measured value
was significantly lower than the theoretical calculation value, and the decline amplitude of the actual
field strength curve was also lower than the theoretical field strength curve, indicating that there were
still other factors affecting the LoRa signal transmission. It can be concluded that the Egli model can
reflect the distribution trend of the LoRa signal intensity in mountainous areas, but there is a large error,
so the model has to be modified. Through the curve fitting toolbox of MATLAB(2016a, MathWorks,
Boston) Simulink, the error fitting formula is as follows:

f ′(d) = −16.87lgd + 4.225 (25)
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By introducing Equation (25) into Equations (1) and (3), the relationship between the field strength
and the transmission distance of the LoRa signal in the case of mountain shelter can be obtained:

ER′ = −65.23− 20lg f − 23.13lgd + 20lg(hthr) + Kh (26)

The establishment of a delay model and energy consumption model was the key of this paper. In
the delay model, the system delay is determined by the terminal node with the highest transmission
delay, so in the experimental simulation, we used the maximum delay DM to represent the system
delay model; similarly, the system life was determined by the terminal node with the highest energy
consumption, so the energy consumption of this terminal node was called the bottleneck energy EB of
the system. In this paper, the RHF78-052 LoRa experimental platform was used to test the relationship
between the maximum delay and bottleneck energy of the system based on different LoRa wireless
transmission groups. In the simulation experiment, the LoRa module works in the same SF and BW
and transmits the same byte data at the same time.

The number of LoRa wireless transmission groups is the key for the design of a monitoring
network. Therefore, this paper used the number of LoRa wireless transmission groups to analyze the
relationship between the maximum delay and bottleneck energy of the system. As shown in Figure 7,
when the number of packets was 0, there was no cellular mobile transmission mode in the network,
and the whole network used LoRa to transmit data directly. Transmission towers No. 50 and No. 51,
which are the farthest away from the substation supervisory control and data acquisition (SCADA)
transmission system, have the longest transmission distance, so their delay was the maximum system
delay. The No. 1 transmission tower nearest to the substation SCADA transmission system needs to
transmit the most data, so the energy consumed is the bottleneck energy of the system. When the
number of LoRa wireless transmission groups is greater than 1, a cellular transmission mode is added
in the network, so the system delay is significantly reduced, but the bottleneck energy of the system is
greatly increased. As the number of LoRa wireless packets continues to increase, the decline trend of
the maximum delay and bottleneck energy gradually decreases, and it may reach a stable value in
the future. According to the above analysis, when the system only uses the LoRa transmission mode,
it can achieve the minimum system energy consumption; when using cellular mobile transmission and
LoRa transmission, it can achieve the minimum system delay.

Figure 7. Relationship between the maximum delay and bottleneck energy consumption.

4.2. Working Mode Selection

In the multi-objective particle swarm optimization, the delay model and energy consumption
model are optimized as individuals, and the maximum delay and bottleneck energy are still used
as the embodiment of the delay model and energy consumption model. The simulation platform
can be established by MATLAB 2016a software to calculate the optimal solution set. The parameter



Energies 2020, 13, 4898 11 of 16

setting of the MATLAB algorithm is shown in Table 2, in which zero-ductility transition (ZDT) and
Deb, Thiele, Laumanns and Zitzler(DTLZ) are standard test functions. After the system delay and
energy consumption are brought in, the following solution set diagram is obtained:

Table 2. Experimental parameter settings.

Algorithm
Population Size Maximum Number of Iterations

ZDT DTLZ ZDT DTLZ

Multi objective particle swarm
optimization algorithm 100 100 100 100

As shown in Figure 8, there was a contradiction between the delay model and the energy
consumption model. It can also be seen that the maximum delay was inversely proportional to the
bottleneck energy. However, there was no single objective optimization in the multi-objective particle
swarm optimization. It is necessary to weigh the delay and energy consumption and find the optimal
solution set in line with the objective function. Through the optimization of the delay model and
energy consumption model, the red circle is the required optimal solution set.

Figure 8. Solution set of multi-objective particle swarm optimization.

It can be seen from Figure 8 that the system delay is inversely proportional to the system energy
consumption. In order to find the parameters suitable for the proposed three working modes in
the optimal solution set of system delay and energy consumption, it is necessary to evaluate the
communication revenue of the system. Therefore, this paper used the indirect constraint optimization
method to construct the objective function by introducing the weight ω. The revenue function can be
expressed as:

Q(xk) =

√
ωD(xk)

2 + (1−ω)E(xk)
2 k ∈ N (27)

In order to analyze the influence of weight ω in monitoring mode, early warning mode, and
maintenance mode on the optimal solution set of the multi-objective particle swarm optimization
algorithm, this paper used sx1272calculator UI simulation software to change the network parameters,
maximum delay, and bottleneck energy under different ω. The results are shown in Table 3.
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Table 3. Sensor parameters of the network parameter monitoring node under different weights ω.

Weight ω SF BW (kHz) Transmission Distance (km) D(xk)(s) E(xk)(mJ) Q(xk)

0.1 12 125 1 9.21 11 10.83
0.2 11 125 1.5 5.11 15 13.61
0.3 10 125 2 2.84 26 24.81
0.4 8 125 2.6 0.92 33 25.57
0.5 7 125 3 0.55 47 33.24
0.6 8 250 3.5 0.46 51 32.26
0.7 6 125 4 0.34 60 32.86
0.8 7 250 4.6 0.27 70 31.31
0.9 6 250 5 0.17 76 24.03

According to the requirements of smart grid communication performance in [42], the data
transmission period under monitoring mode can be set to 5 min. From the experimental results in
Table 2, we can obtain the lowest system energy consumption that the system can achieve when the
communication quality is met when ω = 0.2. Therefore, it is defined that the system works in the
monitoring mode when ω = 0.2. Similarly, the system revenue function Q(xk) reaches the maximum
value when ω = 0.5, so it is defined that the system works in the early warning mode when ω = 0.5.
The system delay reaches the minimum value at ω = 0.9, so it is defined that the system works in
maintenance mode when ω = 0.9.

After the definition of working mode is completed, the system delay and energy consumption of
each working mode are brought into Equation (11) to get the system networking mode under different
working modes. In this paper, the OMNeT++(5.0, Simulcraft, NYC) network simulation tool was used
to simulate the transmission network of transmission lines. The results are shown in Figure 9.

Figure 9. System networking mode under different working modes.

It can be seen from Figure 9 that when ω = 0.2, the system gives priority to energy consumption
constraints. In order to achieve the minimum energy consumption, each terminal node must choose
the shortest communication path. Therefore, the networking mode of the monitoring mode is LoRa
point by point transmission. When ω = 0.9, the system gives priority to the delay constraint. In order
to minimize the delay, the sink node adds the cellular mobile transmission function, and each terminal
node carries out point-to-point transmission with the maximum transmission distance. Therefore, the
networking mode of the system in the maintenance mode is a hybrid transmission mode of the cellular
mobile network and LoRa point-to-point transmission. When ω = 0.5, the system considers both delay
and energy consumption constraints. In order to achieve the highest system revenue, each terminal
node sends data to the sink node with the cellular mobile transmission function by the LoRa multi hop
transmission mode. Therefore, the network mode of the system in early warning mode is a hybrid
transmission mode of mobile cellular network and LoRa multi hop transmission.

In wireless communication, packet loss rate represents the ratio between the number of packets
lost and the number of packets sent. Packet loss rate is related to packet length, data transmission
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frequency, and communication distance. It is an important indicator to detect the data transmission
performance of wireless networks. When 1000 packets are sent at the same time, the test results are
shown in Table 4.

Table 4. Communication test results of three working modes of the system.

Working Mode Transmission
Distance/km

Received
Packet Loss Rate Communication

Quality Requirements

Monitoring mode
1.5 940 <6%

Low1.5 957 <5%
1.5 959 <5%

Early warning
mode

3 982 <3%
Normal3 985 <3%

3 980 <3%

Maintenance mode
5 998 <1%

High5 997 <1%
5 995 <1%

The experimental results show that the packet loss rate of monitoring mode was the highest,
reaching 6%, while that of the maintenance mode was the lowest, only 1%. The monitoring system
proposed in this paper can change the working mode according to the monitoring status. Although
the packet loss rate of the monitoring mode is high, the communication quality is low, and the data can
be successfully transmitted within the specified delay; the communication quality of the maintenance
mode is high, but the system achieves the lowest packet loss rate, which can meet the communication
requirements of the system.

4.3. System Life Calculation

In order to verify that the proposed system has lower energy consumption, we used the LoRawan
terminal life calculation tool to calculate the service life of the LoRa terminal in monitoring mode, early
warning mode, and maintenance mode, respectively. The experimental results are shown in Table 5.

Table 5. Service life of three working modes.

Reporting Interval/s Packet Size/bit Battery Life/year

Monitoring mode 300 8 18.611
Early warning mode 5 24 0.090
Maintenance mode 1.2 36 0.016

According to the above test results, the monitoring mode can effectively reduce the energy
consumption of the system. The energy consumption of the early warning mode and the maintenance
mode is relatively high, especially in maintenance mode, which consumes 9000 mA battery energy
after 142 h of operation. The transmission line online monitoring system proposed in this paper has
multiple working modes, and the actual working life of the system can be calculated according to
the distribution of the fault rate. Taking the fault trip rate of the transmission line in the southwest
mountainous area of the State Grid of China from 2011 to 2013 as an example, the fault rate and line
length are shown in Table 6.
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Table 6. 2011–2013 transmission line in the southwest mountainous trip rate of the State Grid
Corporation of China.

Line Length/100 km Trip Rate/Time * 100 km * year

2013 74.83 0.175
2012 71.72 0.177
2011 67.29 0.213

The online monitoring system of the transmission line proposed in this paper can greatly prolong
the service life of the system under the monitoring mode. Taking the failure rate of transmission lines
in mountainous areas provided in Table 6 as an example, it can be seen that the monitoring system
works 82% of the time in a year of daily monitoring mode, which can reduce the energy consumption
by 80% compared with the online monitoring system with a single working mode. The simulation
results showed that the monitoring system proposed in this paper can have a working life of up to
15.13 years.

5. Conclusions

This paper proposed a monitoring system of a transmission line in a mountainous area based
on LPWAN. Considering thee different failure rates, three monitoring states of transmission lines in
mountainous areas were proposed. According to the requirements of energy and delay constraints,
an online monitoring framework of transmission lines in mountainous areas was designed based
on the LoRa and cellular mobile network, and a dynamic group network model of LoRa was
established. The multi-objective particle swarm optimization algorithm was used to optimize the
energy consumption and time delay of the system, and then the suitable working mode for the three
monitoring periods can be obtained.

The simulation results showed that the minimum packet loss rate of the system could be less
than 1%, the energy consumption of the system was 80% lower than the existing monitoring system,
and the service life of the system could reach 15.13 years under the normal failure rate. Through the
conversion of the working mode, the system could achieve the communication quality required of the
online monitoring of transmission lines and greatly reduce the energy consumption of the system at
the same time. Compared with the existing schemes, the proposed work shows the advantages of
high reliability transmission, low cost, and long-term monitoring, which is particularly important for
transmission line monitoring in mountainous areas.
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