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Abstract: Transmission system operator (TSOs) need to project the system state at the seasonal scale
to evaluate the risk of supply-demand imbalance for the season to come. Seasonal planning of the
electricity system is currently mainly adressed using climatological approach to handle variability of
consumption and production. Our study addresses the need for quantitative measures of the risk
of supply-demand imbalance, exploring the use of sub-seasonal to seasonal forecasts which have
hitherto not been exploited for this purpose. In this study, the risk of supply-demand imbalance is
defined using exclusively the wind energy production and the consumption peak at 7 pm. To forecast
the risks of supply-demand imbalance at monthly to seasonal time horizons, a statistical model is
developed to reconstruct the joint probability of consumption and production. It is based on a the
conditional probability of production and consumption with respect to indexes obtained from a
linear regression of principal components of large-scale atmospheric predictors. By integrating the
joint probability of consumption and production over different areas, we define two kind of risk
measures: one quantifies the probablity of deviating from the climatological means, while the other,
which is the value at risk at 95% confidence level (VaR95) of the difference between consumption and
production, quantifies extreme risks of imbalance. In the first case, the reconstructed risk accurately
reproduces the actual risk with over 0.80 correlation in time, and a hit rate around 70–80%. In the
second case, we find a mean absolute error (MAE) between the reconstructed and real extreme risk of
2.5 to 2.8 GW, a coefficient of variation of the root mean square error (CV-RMSE) of 3.8% to 4.2% of
the mean actual VaR95 and a correlation of 0.69 and 0.66 for winter and fall, respectively. By applying
our model to ensemble forecasts performed with a numerical weather prediction model, we show
that forecasted risk measures up to 1 month horizon can outperform the climatology often used as
the reference forecast (time correlation with actual risk ranging between 0.54 and 0.82). At seasonal
time horizon (3 months), our forecasts seem to tend to the climatology.

Keywords: seasonal planning; seasonal forecast; risk measures; supply-demand imbalance; joint
probability distribution function

1. Introduction

Transmission System Operator (TSOs) have to ensure at all times the balance between supply
and demand of electricity. Supply and demand balance is handled by complex relations between
many actors of the energy market and electricity grid system, e.g., producers of electricity, traders,
distributors, industrial consumers, etc. The management of the balance requires in advance planning
of the electricity system which results in some flexibility allowing to face and react rapidly to potential
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imbalance between supply and demand. Ensuring this balance is a challenge issued at many timescales
going from the second to several months.

In this paper, we address the issue of seasonal planning of the electricity system in France, in fall
and winter seasons. Cold seasons display the highest risk in France because cold temperatures cause
sharp increase of the consumption. The risk is also the highest at 7 pm during the daily peak of
consumption, on which this study focuses. In France, the electricity production is dominated by
nuclear power plants (>70% of the total production). Still, with the increasing share of variable
renewable energy sources (mainly wind and solar energy sources), TSOs need to manage increasing
variable production. In this study, we focus on wind energy production only mainly because wind
energy contributes to cover the evening consumption peak contrary to solar energy production which
is too small at the peak hours. It is also motivated by the strong penetration of wind energy sources
in the French (and European) electricity grid system. However, the reader needs to keep in mind
that, in reality, the seasonal risk is also impacted by the nuclear power plant availability and the level
of the hydroreservoirs, as well as the exchanges of electricity through the European grid. Moreover,
solar energy may also contribute to supply-demand balance at other time of the day. These issues are
nevertheless out of the scope of this study.

In 2017, France ended with a total installed wind capacity of 13.5 GW. On 30 December 2017,
the network integrated 11 GW from wind power plants. Other records were set in the summer 2017
with half-hourly consumption coverage rates approaching 25% [1]. Some scenarios of energy mix
by 2030 predict 30% to 40% of consumption met by wind energy production in Europe [2,3], so that
risk hazard due to intermittency is expected to increase. For instance, a cold winter characterized by
weaker winds than normal may in some cases lead to a lack of energy if not enough other production
means have been made available upstream to meet the energy demands. Accurate seasonal forecasting
of wind production would allow TSOs to take into account the interannual wind variability in the
seasonal risk assessment of supply and demand balance. Currently, the seasonal risk is addressed
by comparing climatological scenarios of consumption with available production capacity given by
producers. Renewable intermittent production is also usually assessed using climatological scenarios [4,
5]. For instance, in [4] winter outlook report 2016, a study based on 14 climatic years shows risks of
national electric production deficit, not always compensated by import from EU countries, in situations
of high demand due to low temperatures (see Figure 17 in [4]). Though the demand met by wind energy
production is still quite low in France (around 4.5%) and in Europe (around 12%), the variability of the
wind energy production already impacts the seasonal risk of imbalance between supply and demand.

At the seasonal scale, the predictability of the weather is still an open question, especially at
midlatitude. Some studies nevertheless highlight skillful forecasts of Numerical Weather Prediction
models (NWP). Particularly, skill of ensemble forecast systems in predicting the North Atlantic
Oscillation (NAO), which is a typical atmospheric pattern controlling the weather variability over
Europe, has been demonstrated by [6]. They show that depending on the forecast ensemble size
the correlation between observed and forecasted NAO seasonal index can be as much as 0.6 and
theoretically may reach almost 0.8. Reference [7] also shows that wind speed and solar irradiance are
related with the NAO, as well as the arctic oscillation (AO) for instance, pointing out the potential
predictability of wind speed and solar irradiance through such patterns. Reference [8] highlights such
relation between NAO and the surface wind speed over a smaller domain covering Europe.

In the energy sector, studies on seasonal forecasts mainly focus on the assessment of NWP
seasonal forecast ensemble to predict climate related variables such as temperature, wind speed and
solar irradiance. For instance, the study of [9] gives a method for calibration of surface wind speed
globally and analyse the gain of such method compared to simple bias correction in several areas.
Reference [10] assesses the surface wind speed output from the seasonal forecast ensemble of European
center and show predictability up to some weeks in the North Sea region. In the study of [11], the fact
that surface wind speed is related to large-scale patterns such as NAO is used to predict surface wind
speed up to 3 months. Reference [12] demonstrates skills of several seasonal forecasting models to
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predict the seasonal mean wind speed in Europe. Reference [13] goes further by computing the capacity
factor before assessing the seasonal forecasts skill. They show that using their method, the forecast
skill of the computed capacity factor is better than the those of the surface wind speed itself. Several
studies investigate the co-variability of energy related variables. Among them, the study of [14]
analyse the joint probability of surface wind speed and solar irradiance in the UK. They demonstrate
that both are anti-correlated and investigate profitable potential balance for the electrical network.
In the study of [15], wind and solar energy is projected in the future to investigate their impact on
net demand at the seasonal scale. According to their hypothesis, the variability of net demand is
expected to increase in the future due to the penetration of renewable. Both of the studies are based on
climatological analysis. The problem of seasonal planning of electricity network is generally adressed
as an optimization problem under constraint, with different objective such as reducing operational
costs (e.g., [16]) or maximizing the use of renewable (e.g., [17]). These studies are based on scenarios
and/or on climatological data to adress meteorological variability. Finally, two recent studies point out
the fact that seasonal forecasts within the energy industry is underused, especially in terms of decision
making tools for the end user [18,19]. They both mention seasonal planning issue, such as network
security but also financial and operational costs issues.

In 2009–2010, the UK experienced a very severe winter characterised by uncommon cold
temperature and long period of low capacity factor of wind power generation. It is a good example
of the meteorological situations that could lead to a supply-demand imbalance. Several studies
give interesting insights on the typical meteorological large scale situations leading to such extreme
events [20–23]. For instance, in January 2010, Greenland and Scandinavian blocking pattern brought
cold temperature and low wind, and associated risk of energy shortage [21–23]. Eventually, TSOs did
not report any imbalance problem, as the event coincided with winter holidays and a period of
economic recession [22].

The purpose of this study is to build on NWP skills at seasonal scale to predict and quantify the risk
of supply-demand imbalance for prospective planning purpose. To this end, we relate the large-scale
circulation of the atmosphere to wind energy production and electricity consumption, because the
valuable information in NWP seasonal forecasts lies in the general circulation of the atmosphere that
is contained in variables which are not tied to the surface, such as the 500 hPa geopotential height
(as demonstrated by [6]). On this basis, we propose a model which jointly reconstruct the wind
energy production and the temperature driven consumption to quantify the risk of imbalance and to
compare it to commonly used climatological approach. The method proposed is similar to [11], but is
generalized in two dimensions, and is extended to production and consumption.

In Section 2, we define the risk measures. We present the model predicting the joint probability
density function (PDF) of consumption and production and describe the dataset used for calibration,
validation and forecast. In Section 3, we assess the performance of the model and analyze the large scale
weather patterns causing risk of supply-demand imbalance at seasonal scale. In Section 4, we perform
seasonal risk prediction for winters 2012 to 2015 at monthly to 3-monthly time horizons. In Section 5,
the results are summarized in a conclusion.

2. Methodology

2.1. Risk Measures

Consider the daily wind energy production Pr and the daily maximum electricity consumption
Co in France. Figure 1a displays the schematic of the joint distribution P(Co, Pr) for a given season
overlaid with the climatological production and consumption averages P̄r and C̄o, respectively.
The climatological averages define four quadrants shown with the vertical and horizontal lines.
Two quadrants correspond to higher risk of supply-demand imbalance with respect to the
climatological average:
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• the upper-left quadrant, where Co > C̄o and Pr < P̄r, corresponds to a risk of high consumption
and low production. It is referred in the following as Rc+p−.

• the lower-right quandrant, where Co < C̄o and Pr > P̄r, orresponds to a risk of low consumption
and high production. It is referred in the following as Rc−p+.

Figure 1. (a) Schematic of the joint distribution P(Co, Pr) for a given season overlaid with the
climatological production and consumption averages P̄r and C̄o displayed with the vertical and
horizontal lines. The quantities C+, C−, P+ and P− correspond to Co > C̄o, Co < C̄o, Pr > P̄r and
Pr < P̄r, respectively. The quantities Rc+p− = P(Pr < P̄r, Co > C̄o) and Rc−p+ = P(Pr > P̄r, Co <

C̄o) correspond to risk of low production and high consumption and to risk of low consumption and
high production, respectively. (b) Schematic of the joint distribution P(Co, Pr) for a given season
overlaid with the line of constant Dcp = Co − Pr which separate the probability into a part where
P(Co, Pr) = 0.05 and another where P(Co, Pr) = 0.95. The corresponding quantity Dcp = R95 is the
Value at Risk 95 (VaR95) of Dcp

Integrating the joint PDF over each of these quadrants allows to measure a risk of supply-demand
imbalance which can be expressed as:

Rc+p− = P(Pr < P̄r, Co > C̄o) (1)

and
Rc−p+ = P(Pr > P̄r, Co < C̄o) (2)

Figure 1b displays the schematic of the joint distribution P(Co, Pr) overlaid with a line of constant
Dcp = Co− Pr separating the distribution into two areas of probability. The line giving a probability
of 5% above is exactly the 95th Value at Risk (VaR95) of the quantity Dcp. The VaR95 is another type
of risk measure which has the advantage of quantifying the extreme risk of imbalance and of being
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expressed in the unit of the quantity considered (in GW in our case). This corresponds to the stock of
power needed to manage situations which appear 95% of the time.

For each season, one can define 3 distinct joint PDFs of Pr and Co:

• a seasonal climatology estimated over a long period of observed consumption and production
(typically 30 years or more)

• a ‘real’ seasonal joint distribution estimated on the sample of observed or inferred consumption
and production for the specific season

• a reconstructed (or forecasted) seasonal joint distribution using the model detailed in Section 2.2

Each risk can be defined regarding each PDF. Using the climatological joint PDF gives a measure
of the base risk which is already well handled by TSOs. Integrating over real and reconstructed PDFs
gives the real and reconstructed risk measures for a given year and season, respectively. Comparing
the climatological risk with the real and reconstructed ones allows to quantify the probability of
higher or lower risk than normal. Comparing real and reconstructed risks normalized by the base
risk (climatology) (hereafter referred as “normalized real and reconstructed risk”) allows to assess
the model performance. The significance of the risk measures is assessed using 2 dimensional
Kolmogorov-Smirnov test [24], as described in the Appendix B.

2.2. Modelling the Joint PDF of Consumption and Production

The method proposed to reconstruct the joint PDF of consumption and production is inspired
by [11]. In this previous study, the authors model the surface wind speed by estimating the conditional
PDF of the wind speed and several large-scale atmospheric predictors. The method proposed goes
further by computing the two dimensional joint PDF of the consumption and production with the
same kind of predictors.

The challenge is to model the joint PDF of the wind energy production Pr and the temperature
driven maximum consumption Co, based on explanatory variables (X1, . . . , Xn) representing the
large-scale circulation of the atmosphere (explanatory variables are described in Section 2.3):

P(Pr, Co |X1, . . . , Xn) =
P(Pr, Co, X1, . . . , Xn)

P(X1, . . . , Xn)
(3)

The high dimensionality of such PDF is problematic. Following the idea of [11] we define 2
indexes IPr and ICo, explaining respectively Pr and Co, to be the polynomial regression of a number n
of explanatory variables Xi with Pr and Co given by the following equation:

I = β0 +
n

∑
i=1

βiX(i) +
n

∑
i=1

βii(X(i))2 +
n−1

∑
i=1

n

∑
j>i

βijX(i)X(j), (4)

We set n to 25 as explained in the Appendix A.
The joint PDF can be written as follows:

P(Pr, Co |IPr, ICo) =
P(Pr, Co, IPr, ICo)

P(IPr, ICo)
(5)

To simplify the model, we make the assumption that (i) conditionally on the indexes IPr and ICo,
production and consumption are independent and (ii) the production depends only on IPr while the
consumption depends only on ICo. This leads to

P(Pr, Co |IPr, ICo) = P(Pr|IPr).P(Co|ICo) (6)

Both P(Pr|IPr) and P(Co|ICo) are estimated by Kernel Density Estimation (KDE). To check the
assumption of conditional independence, we compare the conditional and unconditional correlation
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between Pr and Co. The unconditional correlation coefficients for winter and fall are −0.22 and −0.11,
respectively. The conditional correlation coefficient is defined as the correlation between P̃r and C̃o,
the residuals of linear regression of Pr and Co on their respective indexes, defined by

P̃r = Pr− ρ(Pr, IPr)IPr, and C̃o = Co− ρ(Co, ICo)ICo

with

ρ(Pr, IPr) =
Cov(Pr, IPr)

Var(IPr)
and ρ(Co, ICo) =

Cov(Co, ICo)

Var(ICo)

We find the conditional correlation values of −0.04 for winter and −0.09 for fall with 25
explanatory variables to fit the indexes. These correlation values are found to be significant at the 95%
confidence level.

The joint distribution seasonal average P(Pr, Co) of Equation (6) is computed as the seasonal
mean of the daily estimation:

P(Pr, Co) =
1
T

T

∑
t=1

Pt(Pr|IPr = iPr).Pt(Co|ICo = iCo) (7)

t being a given day and T the number of days in the season.

2.2.1. Explanatory Variables

The 500-hPa geopotential height (Z500) is used to represent the large scale atmospheric circulation.
Applying principal component analysis (PCA) to Z500, obtained over a large domain covering the
North Atlantic/European region (Figure 2a), allows to reduce its dimensions and extract large-scale
atmospheric circulation patterns which explain a large part of the climate variability over Europe.
The outputs of the PCA are the empirical orthogonal functions (EOFs) describing the prevalent spatial
patterns in the data, and the associated principal components (PCs) time series which show how the
state of the atmosphere projects onto these patterns (Figure 3). In other words, denoting Zt(x) the
500-hPa geopotential height Z500 on day t at the spatial location x, the PCA allows to reconstruct
Zt(x) as:

Zt(x) =
n

∑
i=1

X(i)
t fi(x) + Et(x),

where X(i)
t are the PCs, fi(x) are the EOFs and E is the component which is not explained by the first n

PCs. The quantity X(i)
t are used as explanatory variables of the consumption and production and are

gathered into two indexes (ICo and IPr) throught polynomial regression Equation (4).
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Figure 2. (a) North Atlantic/European domain from where the 500-hPa geopotential height Z500 is
retrieved. The red box corresponds to the domain in panel b. (b) Domain covering France and part of
its neighbouring countries. The colors represents the topography and bathymetry.
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Figure 3. First EOFs (left) and first five PCs (right) of the PCA performed on the fitting and validation
period on the North Atlantic/Europe domain of ERA-Interim Z500 dataset. (a) EOF and (b) PC
corresponding to the seasonal pattern. (c) EOF and (d) PC corresponding to North Atlantic Oscillation
pattern. (e) EOF and (f) PC corresponding to Scandinavian pattern.

2.2.2. Consumption (Co) and production (Pr)

The consumption value of interest is the daily consumption peak in fall and winter.
The consumption peak at 7:00 pm Co is inferred here from the daily mean temperature in France TF (in
◦C). First, the temperature driven national mean consumption CoF expressed in GW is computed for
winter and fall using the following relation:

CoF =

{
2.4× (15− TF), if TF < 15 ◦C.

0, otherwise.
(8)

The national peak of consumption Co is then estimated as a linear regression of the national mean
consumption CoF. In order to model the weekly variability of the consumption in France, we write the
linear regression as follows:

Co = (βw
c CoF + Iw

C )θ
w(t) + (βo

cCoF + Io
C)θ

o(t) (9)

with t the day of the year. And

θw(t) =

{
1 if t is a working day.

0, otherwise.

and

θo(t) =

{
1 if t is a day off.

0, otherwise.
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We compute the national wind energy production Pr0 by applying a typical power curve
(e.g., a power curve of Vestas V90-2.0 MW wind turbine which is one of the most deployed in France)
to daily wind speed. A bias correction using a linear regression is then applied beween observed and
computed production Pr0:

Pr = βPrPr0 + IPr. (10)

2.3. Calibration of the Model

Table 1 gives a summary of the data used in this study as well as of their transformation to obtain
variables directly used in the model.

Table 1. Summary of the data used for this study as well as of their transformation.

Variable Data
Source

Time
Period

Time
Resolution Computation Result

10 m
wind speed ERA-I

01-01-1979
31-12-2015 6-hourly

- Averaged daily
- Compute Pr

Pr
(1979 to 2015)French

Production RTE
01-01-2015
31-12-2015 hourly

2 m
temperature ERA-I

01-01-1979
31-12-2015 6-hourly - Averaged daily

- Average in France
- Compute Max Co

Co
(1979 to 2015)French

consumption RTE
01-01-2015
31-12-2015 hourly

Z500 ERA-I
01-01-1979
31-12-2015 6-hourly

- Averaged daily
- PCA
- Select several PCs

X1, . . . , Xn
(1979 to 2015)

Z500
ECMWF seasonal
ensemble forecasts

01-01-2012
31-12-2015

6-hourly
Available

every month

- Averaged daily
- Apply PCA
- Select horizon

Ensemble of Xn
(2012 to 2015)

ERA-Interim (ERA-I) is a global atmospheric reanalysis performed by the European Center of
Medium-range Weather Forecast (ECMWF) from 1 of January 1979 to 31 of August 2019. From ERA-I
reanalysis, we retrieve the 500-hPa geopotential height (Z500) over the large domain (Figure 2a)
(20◦ N to 80◦ N and 90◦ W to 40◦ E, with resolution 0.75◦). The time period considered in this study
spans from 1 January 1979 to 31 December 2015. The data are available at 6-hour frequency, and are
then averaged daily. After data averaging, we apply the PCA transformation to obtain the EOFs
( fi) and PCs (X(i)). Figure 3 shows the three first EOFs and PCs. The first EOF ( f1) and PC (X(1))
corresponds to the seasonal cycle (Figure 3a,b), explaining as much as 54.1% of the variance in
the dataset. The following EOF ( f2) and PC (X(2)) is related the North Atlantic Oscillation (NAO)
(Figure 3c,d). The third EOF( f3) and PC (X(3)) is related to the Scandinavian pattern (SCA) (Figure 3e,f).

From ERA-I, we also retrieve the 10 m wind speed (which is extrapolated to 80 m height using the
power law) and the 2 m temperature over the domain covering France (Figure 2b) (40.5◦ N to 52.5◦ N
and −6.75◦ W to 10.5◦ E, with resolution 0.75◦). From the daily averaged data we compute the French
daily wind energy production and peak of consumption. The parameters are calibrated with the hourly
national consumption and wind energy production in 2015 retrieved from the French TSO Réseau de
Transport d’Électricité (RTE) website (https://opendata.rte-france.com/). The consumption peak as
well as the wind energy production thus correspond to the fixed electricity grid state in 2015. As a
consequence, to adapt the model we need a good knowledge of the present electricity grid and wind
installed capacity in France. Figure 4 shows the computed and measured wind energy production and
consumption peak for winter and fall 2015.

https://opendata.rte-france.com/
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Figure 4. French daily wind energy production (a) in winter and (b) in fall 2015 from RTE data
(in black) and computed using ERA-I surface wind speed (in green) ; and French daily maximum
consumption (c) in winter and (d) in fall 2015 from RTE data (in black) and computed using ERA-I
surface temperature (in green).

We first define a period of 33 years between 1979 and 2011 to apply our model to ERA-I
transformed data and to assess its accuracy for reconstructing risks of imbalance in a cross validation
mode. Conditional PDF P(Pr, Co |IPr, ICo) is estimated by KDE over 32 years and the joint PDF is
reconstructed for the remaining year. We also estimate using KDE the real joint PDF for the remaning
year. Doing this 33 times, we obtain 33 reconstructed and real joint PDF for winter and fall. A seasonal
joint PDF of the climatology is estimated by KDE on the entire sample of 33 years, after checking that
no significant variations can be found after removing one of the 33 years (stable climatology). So for
each season among the 33 years, we obtain 3 joint PDFs, namely a climatology, a real joint PDF, and a
forecasted joint PDF, as explained previously.

The years from 2012 to 2015 are kept for forecast purpose (Section 4). In order to forecast the
joint distribution of Pr and Co, we project the Z500 field of each members of the ensemble onto the
EOFs identified previously to obtain the PCs (Xi). We compute the indexes IPr and ICo. By integrating
the conditional distributions over the indexes and averaging through time, we obtain forecasted joint
distribution at the monthly and seasonal horizon. Again, for each season and month of forecast,
we obtain 3 distinct joint PDFs, a climatology, a real joint PDF, and a forecated joint PDF.

3. Model Performance Assessment

3.1. Modelling Results

Figure 5 displays the real (contour lines, Figure 5a), reconstructed (contour lines, Figure 5b) and
climatological (color shading) joint PDFs P(Pr, Co) for winter 2010. The red vertical and horizontal
lines correspond to the average production and consumption, respectively. They define the 4 quadrants
as shown in Figure 1. The red dashed line correspond to the climatological VaR95 of Dcp and the black
dashed lines correspond to the real (Figure 5a) and reconstructed (Figure 5b) VaR95 of Dcp. The model
shows higher risk of high consumption and low production (Rc+p−) than normal. Indeed, deviation
from the climatology is significant for both real and reconstructed PDFs. The maximum probability is
well located by the reconstructed PDF and is located in the quadrant corresponding to Rc+p−. The real
(Figure 5a) and reconstructed (Figure 5b) PDFs are very similar but the reconstructed PDFs is more
peaked around the maximum probability in comparison to the real PDF.
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Figure 5. Blue contour lines show (a) the real and (b) the reconstructed joint PDF for winter 2010.
Red shading show the winter climatological joint PDF. Red vertical and horizontal lines correspond
respectively to the mean production and mean consumption given by climatology. Red dashed line
shows the VaR95 of Co− Pr given by the climatological joint PDF, black dashed lines show the VaR95

of Co − Pr given by (a) the real and (b) the reconstructed joint PDF. (c) Time series of the wind
energy production (in blue) and the temperature driven consumption (in red) during winter 2010.
Dashed lines show the winter mean climatological value of the wind energy production (in blue) and
of the consumption (in red).

Integrating the real and reconstructed PDFs over the quadrant corresponding to Rc+p− gives a
risk of high consumption and low production 30% higher than the corresponding climatological risk.
The VaRreal

95 for this winter is 90 GW while the climatological PDF gives a VaRclim
95 of 86GW. This means

that there is a higher risk than normal to have situations of extreme imbalance. In other worlds,
to secure the network 95% of the time, a TSO needs to plan a stock of 90 GW. The reconstructed PDF
gives a good estimation of this risk as the VaRrec

95 is of 90GW as well. Thus, the model representation
of the joint PDF of production and consumption is satisfactory for this particular case of winter 2010.
In Figure 5c, is displayed the time series of production (in blue) and consumption (in red) of winter
2010. It shows a 1.5 month period between 1 January and mid-February of higher consumption
than normal (dashed red line) and lower production than normal (dashed blue line), during which
stable anticyclonic conditions resulted in colder temperatures and weaker winds. During this period,
production also displays peaks, associated with passing weather fronts, that helped satisfy the demand
momentarily. On 20 February, consumption decreases while production sharply increases. This event
only lasts 5 days and corresponds to a front passing over France bringing strong winds as well as
warmer air from the South.

Performing a cross validation year by year over the period between 1979 and 2011 gives a time
series of the risks of supply-demand imbalance for each season of each year. Figure 6 shows the time
series of the real (in black) and reconstructed (in blue) risk measures compared with the climatological
level of risk (in red). Figure 6a,b display the risks Rc+p− normalized by the climatology for winter and
fall respectively and Figure 6c,d displays the opposite risks also normalized by the climatology Rc−p+.
A value above (below) one indicates a higher (lower) risk than normal. Dashed red lines are thresholds
corresponding to a significance level of 10% (see Appendix B). We compute the mean absolute error
(MAE) as well as the coefficient of variatiation of the root mean square error (CV-RSME) between the
normalized real and reconstructed risks (i.e. Rreal/Rclim and Rrec/Rclim, respectively).
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Let us note y = Rreal/Rclim and ŷ = Rrec/Rclim. The MAE and CV-RSME can be written as follows:

MAE =
1
T

T

∑
t=1
|yt − ŷt|

CV(RMSE) =

√
(y− ŷ)

2

y

The MAE ranges between 0.11 and 0.15 and the CV-RMSE ranges from 0.12 to 0.16. The correlation
between the time series is always higher than 0.82 and is even 0.90 for Rc−p+ in winter.

Over the 33 year-period, 26 winters display risk of high consumption and low production
significantly different from the climatological risk (Rc+p−, Figure 6a). Out of these 26 winters, 21 are
reproduced by the model (81%), 9 of which correspond to a risk higher than normal. The model also
produces 4 false alarms and 3 misses (1979, 1981 and 1984) of risk higher than normal. Over the 33
year-period, 27 winters display risk of low consumption and high production significantly different
from the climatological risk (Rc−p+, Figure 6b). Out of these 27 winters, 20 are reproduced by the
model (74%). The model misses 2 risky winters in 1998 and 1999, and produces 1 false alarm. For a
given year, there is no winter displaying risk of low consumption and high production and a risk of
high consumption and low production at a time. During the fall season, Figure 6c,d display much
less deviation from the climatological risk (9 for high consumption and low production and 11 for
low consumption and high production). The model reproduces 56% of high consumption and low
production situations and 82% of low consumption and high production situations.

Figure 6e,f display the timeseries of the real (in black) and reconstructed (in blue) VaR95 for winter
and fall respectively. The level of the VaR95 quantified using the climatological PDFis displayed in
red. Dashed red lines are thresholds corresponding to a significance level of 10% (see Appendix B).
The MAE is 2.8 and 2.5 GW for winter and fall, respectively and the CV-RMSE is 4.2% and 3.8% for
winter and fall, respectively. The correlation is 0.69 and 0.66 for winter and fall, respectively. The good
correlation together with the relatively low error made by the model (3% of the climatological VaR95)
shows the advantage of using such method compared to the climatological approach. For several
winters (Figure 6e) (e.g., 1985, 2003, 2005, or 2010), the model allows to better cover the extreme
risk than when using the climatology. For other winters (e.g., 1984, 1989, 1990 or 2002), while the
climatological approach overestimates the risk, the model allows to better adapt the stock of power
needed to cover the extreme risk which is lower than normal. There is a low fraction (12% of years) of
winters (i.e., 1980, 1981, 1997 and 2009) for which the model underestimates the extreme risk more than
the climatological approach. In these two last cases, there might be a compromise to be done between
a risk of underestimation of the VaR95 by the model, and the probable overestimation of the VaR95 by
the climatology. For the fall (Figure 6f), the reconstructed VaR95 shows a larger fraction (21% of years)
of years when it underestimates the risk more than the climatology. More generally, the model shows
a tendency for underestimating the extreme risk which may be dangerous for the network in cases
when extreme situations indeed happen. Nevertheless, for several falls (e.g., 1980, 1990, 2001 or 2010),
the model allows to better cover the extreme risk than when using the climatology as for winter.
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Figure 6. Time series of the real (black curves) and reconstructed (blue curves) measures risk compared
with the climatological level of risk (in red). (a) Risk Rc+p− in winter; (b) Risk Rc+p− in fall; (c) Risk
Rc−p+ in winter; (d) Risk Rc−p+ in fall; (e) Risk VaR95 in winter; (f) Risk VaR95 in winter. For risks
Rc+p− (panels a,b) and Rc−p+ (panels c,d) the risk measure is normalized by the climatological risk so
that a value above (below) one highlight a higher (smaller) risk than normal., while for the risks VaR95,
the risk is measured in GW. Dashed dotted red lines correspond significance levels at 10% as defined in
the Appendix B.

In any case, the reconstructed risk measures display good correlation with real risk measures.
The risk measures Rc+p− and Rc−p+ go in opposite directions in most cases, while Rc+p− and the
extreme risk measure VaR95 coincide several times. Thus, using both reconstructed risk measures
Rc+p− and VaR95 can sometimes help validating the risk appearance.

3.2. Explanatory Value of the First PCs

Situations of high risk of supply-demand imbalance are generally associated with large-scale
weather regimes, identified with the PCA analysis as the seasonal, NAO and SCA patterns (the 3 first
dominant patterns are analyzed).

Figure 7 displays the winter distribution of the three first PCs used to compute the indexes,
namely the seasonal pattern (Figure 7a,b), NAO (Figure 7c,d) and SCA (Figure 7e,f). Black distributions
are computed using the entire dataset, while blue (red) distributions are computed over the seasons
which display higher (lower) risk of imbalance than normal. For a risk of high consumption and low
production (Rc+p−) higher than normal (Figure 7, red distribution, left column), the PC value of the
seasonal pattern is less negative than normal, whereas it is more negative for the SCA and particularly
NAO pattern which indicates a less marked pressure gradient between the Islandic low and the Azores
high. Overall, such combination of PCs corresponds to a less marked southward shift of the pressure
gradient that influences the position of the jet stream over the Atlantic Ocean which is in turn located
more to the north than normal. It results in a less active storm track, with weaker fronts and storms
bringing high wind speeds and warmer air over Europe. Interestingly, the distribution of the PC values
associated with the SCA pattern displays two modes clearly associated with the two types of risk
(Rc+p− and Rc−p+). The study of [25] shows that during negative phases of SCA pattern, the storm
track activity is enhanced, but it is also shifted northward over Scotland, Denmark and Northern
Germany. This is in agreement with [26] who shows that the NAO pattern is spatially modulated
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by the SCA pattern. It is also in agreement with less wind energy production than normal in France
during SCA negative phase, especially in the north of France where a large part of the installed capacity
is located. During the fall season, there is no evident signal in the distributions, probably due to the
smaller number of cases deviating from the climatology.
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Figure 7. Winter distributions of the 3 first Principal Components corresponding to Figure 3. In each
panel 3 distributions are plotted, the distribution of all winters (in black); the distribution of risk
higher than normal (in red); the distribution of risk lower than normal (in blue). (a) distributions of
the seasonal pattern PC corresponding to a risk of high consumption and low production (Rc+p−);
(b) distributions of the seasonal pattern PC corresponding to a risk of a risk of low consumption and
high production higher than normal (Rc−p+). (c,d) same as (a,b) for the NAO pattern. (e,f) same as
(a,b) for the SCA pattern.

4. Risk Forecasting

4.1. Integration over the Seasonal Ensemble Forecasts of the ECMWF

From the 51 members of the ECMWF seasonal forecasts ensemble we retrieve the Z500 over the
large domain (Figure 2a). An ensemble is a set of several deterministic forecasts—the members—which
differ from their initial state: the initial state of the “control member” is designed using the last forecast
together with the assimilation of all observations available; the initial state of the other members are
slightly perturbed. This way, the ensemble represents the uncertainty which grows with the forecast
horizon. At a given horizon, the ensemble gives a range of the possible states of the atmosphere,
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and allows to estimate probabilities. The ECMWF seasonal ensemble forecasts are available every
month (on the first day) and gives forecasts up to 6 months. The time resolution is 6 h which we average
daily in our case. Due to a major change (in November 2011) in the NWP model and assimilation
system used by ECMWF, we limit our study to four years from January 2012 to December 2015.
Consequently, 48 forecasts are available. Keeping only months of winter season, we keep 12 forecasts
at monthly horizon and 4 forecasts at the seasonal horizon (i.e., 3 months). We do not address the
forecasts for fall season, as the model assessment showed lower performance than for winter, as well
as lower risk to deviate from climatology than in winter.

On each member of the ensemble, we apply the PCA transformation found previously in ERA-I.
We thus obtain for each of the 51 members of the ensemble the 25 PCs used to compute the indexes
IPr and ICo. We integrate the joint conditional PDFs given in Equation (6) over the ensemble of the
computed indexes. We obtain the forecasted joint PDF of Co and Pr at each timestep which we average
to monthly and seasonal (i.e., 3-month) horizon to obtain the joint PDF for a given month and season.

4.2. Monthly and Seasonal Forecasts

Figure 8 shows the forecast at the monthly horizon for January 2014 which is one of the well
performing forecast in our small sample of forecasts. For this particular month, the risk of high
consumption and low production (Rc+p− ) is significantly below normal and is accurately predicted by
our forecast. Indeed the consumption is between 10% and 25% below mean consumption. The risk of
low consumption and high production (Rc−p+) is conversely higher than normal as low consumption
is associated with wind energy production peaks. It is also well predicted by our forecast. The VaR95

is also significantly below normal. Our forecast also predict a significantly lower VaR95 than normal,
but still overestimates the real VaR95 by about 3 GW.

Figure 8. Forecast of January 2014 at the monthly horizon. (a) Reconstructed joint PDF (blue contour),
real daily data (yellow dots) and the climatological PDF for January (red contour). (b) time series of the
ensemble forecast of production (in blue contour) and of the real production (in yellow). (c) time series
of the ensemble forecast of consumption (in blue contour) and of the real consumption (in yellow).
The red line indicates the climatological value of production and consumption. The red, blue and
yellow dashed lines indicate the extreme risk VaR95 given by the climatology, the forecasted and the
real PDFs respectively.

Figure 9 shows the forecasted (in blue) and real (in black) risks, i.e., the risk Rc+p− (Figure 9a),
the risk Rc−p+ (Figure 9b) and the extreme risk VaR95 (Figure 9c) compared with the climatological
risk (in red) for the first month of every 12 forecasts in winter. The correlations between the normalized
real and forecasted risks are 0.54 and 0.82 for Rc+p− (Figure 9a) and Rc−p+ (Figure 9b), respectively.
Three occurrences of risk deviating from their climatological value are found for both high consumption
and low production (Rc+p−) and low consumption and high production (Rc−p+). The correlation
between the real and forecasted extreme risks is 0.65 for VaR95 (Figure 9c). Nevertheless, despite the
good correlation, the forecasted VaR95 stays close to the climatological VaR95. The model gives only
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one false alarm in February 2015 indicating a significantly higher extreme risk than normal whereas
the real extreme risk is in fact lower than normal. In all other cases, the model gives correct indications
(or the same indication as the climatology), but with an error.

Figure 10 shows the seasonal forecasts for winter 2014 (from January to March). By comparison
with monthly forecasts, the forecasted joint PDF is difficult to discern from the climatological joint PDF.
The real values nevertheless seem to deviate from climatology as almost no values are in the top left
quadrant. This can be seen when calculating the real risk Rc+p− normalized by the climatological risk
(Figure 11a). For winter 2014, the real risk Rc+p− is much lower than 1, while the forecasted risk is
close to 1. The same indication is given by the real and forecasted of the VaR95 (Figure 11c).

This is not only the case for 2014, but for any winter and fall. The forecast seem to tend to the
climatology (Figure 11). Contrary to monthly forecast, significance of this conclusion is difficult to
assess because of the small number of samples.

Figure 9. Monthly forecasted (blue) and real (black) risk relative to the climatology for winter months
for (a) high consumption and low production (Rc+p−) and (b) low consumption and high production
(Rc−p+) and (c) Extreme risk VaR95. Dashed red lines indicate significance levels at 10%.
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Figure 10. Same as Figure 8 for winter 2014 and the 3-month forecast horizon (January to March).

Figure 11. Same as Figure 9 for winters at the 3-month forecast horizon (January to March).

5. Conclusions

In this study, three risk measures of supply-demand imbalance associated with wind energy
production are defined. Two of them correspond to the risk of deviation from the climatological means
of consumption and wind energy production. They are both quantified in terms of probability by
integrating the joint probability of energy consumption and wind energy production in 2 quadrants.
The other which corresponds to the extreme risk of supply-demand imbalance is the Value at Risk at
95% confidence level (VaR95) of the difference between consumption and production, quantified in
GW. It is also derived from the joint probability of energy consumption and wind energy production.
With such approach, the risk measures are compared to their climatological values.

To forecast the risks of supply-demand imbalance at monthly to seasonal time horizons,
a statistical model is developed to reconstruct the joint probability of consumption and production.
It is based on the conditional probability of production and consumption with respect to indexes
obtained from a linear regression of principal components of large-scale atmospheric predictors.

For the first two risks, the reconstructed risk accurately reproduces the actual risk with over about
0.80 correlation in time (up to 0.90 in winter), and a hit rate around 70–80% (down to about 60% in
fall for high consumption and low production risk). The accurate reconstruction, especially in winter,
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shows that the model is able to follow the interannual variations of consumption and production,
in relation with large-scale weather pattern variability. For the extreme risk, the MAE is about 3% of
the climatological risk, the CV-RMSE is about 4% of the mean actual VaR95 and the correlation is 0.69
and 0.66 for winter and fall, respectively.

By applying our model to ensemble forecasts performed with a numerical weather prediction
model, we show that forecasted risk measures up to 1 month horizon can outperform the climatology
often used as the reference forecast (time correlation with actual risk ranging between 0.54 and 0.82).
At seasonal time horizon (3 months), our forecasts seem to tend to the climatology. The small sample
of seasonal forecasts used in the study nevertheless limits this conclusion.

Our study only accounts for weather driven variability of wind energy production and energy
consumption (related to the temperature). The seasonal risk for energy systems also depends on other
weather driven production sources (hydropower, solar energy) and on non-meteorological factors
such as the availability of conventional power plants, long term storage capacity such as pumping
power plants and power-to-gas, as well as calendar (hour of the day, day of the week, holidays) and
socio-economic factors (e.g., economic growth, energy policies). As skills have been shown at least
at monthly time horizon, this study is therefore a first step to a more integrated monthly to seasonal
energy forecasting system.
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Appendix A. Sensitivity of the Model to the Number of PCs Used to Fit the Indexes

We first build 6 models with the number of PCs used to fit both indexes ranging from 5 to 30
with increment 5. We compute the mean absolute error (MAE) between the real and reconstructed
risks normalized by the climatological risk. Figure A1 displays the result of the sensitivity analysis.
The minimal error is found for 20 PCs for the risk of high consumption and low production (Rc−p+)
and 25 for the risk of low consumption and high production (Rc+p−) for winter and fall. However,
the difference of MAE between 20 and 25 PCs is low (at most 10% difference). In the study, 25 PCs are
therefore used to compute the two indexes for both Rc−p+ and Rc+p− and any season.
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Figure A1. Mean absolute error (MAE) between the real and reconstructed risks normalized by the
climatological risk as a function of the number of PCs used to fit the indexes IPr and ICo in Equation (4).

Appendix B. Significance Levels for the Risk Measures

We perform a 2 dimensional Kolmogorov-Smirnov test [24] to test whether the real joint PDF and
the climatological joint PDF are statistically identical or not. The p-value of the Kolmogorov-Smirnov
test is then compared to the real risk measure normalized by its climatological value (Figure A2).
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Figure A2. p-value resulting from the 2 dimensional Kolmogorov-Smirnov test performed between
the climatological sample and the seasonal samples as a function of the real computed risk measure
normalized by climatology. Black dashed line represents the 10% significance level for which the
hypothesis of 2 samples coming from the same distribution cannot be rejected; Red dashed lines
represent the threshold defined; (a) for winter and risk of high consumption and low production
Rc+p−, (b) for winter and risk of low consumption and high production Rc−p+, (c) for fall and risk
of high consumption and low production Rc+p−, (d) for fall and risk of low consumption and high
production Rc−p+.

We consider the 10% significance level indicated with the black dashed line in Figure A2.
Small p-values show that the 2 samples may not come from the same distribution, while high p-values
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show that the hypothesis that the seasonal joint PDF and the climatological joint PDF are identical
cannot be rejected. Red dashed lines correspond to the thresholds for which we consider that the risk is
significantly higher or lower than normal (climatology). They are defined by the largest deviation from
1 when the p-value is above significance levels of 10% (the value 1 corresponds to the climatological
risk). This method is applied for both monthly and seasonal joint PDFs. The same method is applied
to derive the significance levels for the extreme risk VaR95, as shown in Figure A3.

Figure A3. p-value resulting from the 2 dimensional Kolmogorov-Smirnov test performed between the
climatological sample and the seasonal samples as a function of the absolute difference between the
VaRreal

95 and VaRclim
95 . Black dashed line represents the 10% significance level for which the hypothesis

of 2 samples coming from the same distribution cannot be rejected; Red dashed lines represent the
threshold defined; (a) for winter, (b) for fall.
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