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Abstract: Mineralogical and geochemical characteristics of coals provide crucial information on
their potential clean, efficient, and integrated utilization. In this paper, the mineralogical and
geochemical behaviors of the No. 5 coals of the Taiyuan Formation in the Weibei Coalfield,
North China, were investigated, and their geological controlling factors were subsequently discussed.
The minerals in the Weibei coals mainly consist of kaolinite (8.3%), calcite (5.0%), and pyrite (3.1%),
with minor proportions of tobelite (2.9%), dolomite (1.7%), quartz (1.8%), and traces of siderite (0.4%)
and gypsum (0.6%). Several critical elements, including Nb (19.8 mg/kg), Ta (3.6 mg/kg), Zr (71.0 mg/kg)
and Li (32.3 mg/kg), occur at concentrations higher than those averages for world hard coals, making the
Weibei coals potential sources of these critical elements. Several factors, terrigenous material,
seawater invasion, and hydrothermal fluids are responsible for these mineralogical and geochemical
characteristics. The L-type rare earth elements and yttrium (REE-Y) enrichment in the roofs and
partings, Al2O3-TiO2 and Zr/TiO2-Nb/Y plots, and negative Eu and weak negative Ce anomalies in
the Weibei coals indicate a felsic-intermediate dominated sediment provenance primarily derived
from the Qilian-Qinling Oldland on the South. Marine bioclastic limestone, negative Ce and positive
Y anomalies in coals imply the influence of seawater on the Weibei coals. Last but not least,
the cleat-infilling and/or fracture-infilling calcite, pyrite, barite, and tobelite as well as the positive
Eu and Gd anomalies, H-type, and M-type REE-Y enrichment patterns suggest the influence of
hydrothermal fluids, which lead to re-distribution of some critical elements from roof and parting to
the underlying coal seam.

Keywords: critical elements; mineralogy; geochemistry; hydrothermal fluids; Weibei coalfield

1. Introduction

As the development of western regions in China, Shaanxi Province is becoming one of the most
significant bases for resource exploitation. Shaanxi Province is the fourth largest coal producing
province in China, with estimated coal reserves of 4143Gt [1,2]. According to the geological age
and the geographic distribution, there are primarily five important coalfields in Shaanxi province,
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including Weibei (Permo-Carboniferous), Huanglong (Jurassic), and the three Shanbei (Trassic, Jurassic,
and Permo-Carboniferous)coalfields (Figure 1a,b). The Weibei Permo-Carboniferous Coalfieldis the
fourth largest coalfield in Shaanxi (up to 83 GT) [3]. Geochemical patterns, especially those related
with the concentrations of hazardous elements in coal have been studied, and abnormal concentrations
of hazardous elements in the Weibei coalfield, such as As, Se, Hg, and F have caused serious endemic
diseases induced by coal utilization as fuel [1,4,5]. Moreover, the enrichment of some critical metals,
such as Ga, Ce, and Y have also been found [6], which has a potential interest from a potential
exploitation point of view.
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Figure 1. Geological location of the Weibei Coalfield, southeastern Ordos Basin (a,b) and distributions
of different mining districts and sampling sites (c).

Geochemical characteristics of coals, especially those enriched in criticalelements, including Ge,
Ga, U, Li, and rare earth elements and yttrium (REE-Y), have attracted much attention in recent
years due to their high potential as raw materials for criticalelement recovery [7–16]. The modes of
occurrence, geological controlling factors as well as enrichment mechanism of criticalelements in coals
have also been investigated by a number of researches [14,17–22]. However, geochemical characteristics,
modes of occurrence, origin, and enrichment mechanism of elements in the Weibei coals were few
studied in the literature [6,23], which restrict the clean and efficient utilization of these coals.

On the basis of these preliminary understandings, this paper aims to investigate the mineralogical
and geochemical characteristics of coals from the Weibei Coalfield, with special emphases on the
environmentally-relevant and valuable elements (eg., Nb, Ta, Zr, Hf, and Li), and subsequently
expound the implications of possible geological factors, e.g., sediment source region, sea water,
and hydrothermal fluids.

2. Geological Setting

The Weibei Permo-Carboniferous Coalfield is geographically located in central Shaanxi Province,
and tectonically situated in the Weibei uplift area at the southeastern corner of the Ordos Syneclise
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(Figure 1a,b), and is subdivided into Hancheng, Chenghe, Pubai, and Tongchuan mining districts from
east to west (Figure 1c). The Weibei coalfield has undergone at least two structural changes of different
properties, modes, and directions, resulting in a complex structural pattern with early compression
and late extension [24,25]. The tectonic structures trend approximately northeast–southwest and faults
are well developed in this coalfield [6,26].

The Early Permian Shanxi Formation and the Late Carboniferous Taiyuan Formation are the
major coal bearing strata in the Weibei Coalfield (Figure 2). The former was formed in a continental
environment and is composed of sandstone, mudstone, and four thin and discontinuous coal seams
(Nos. 1–4 coals), among which the No. 3 coal seam is the most economically significant (2.9 m thick
on average) and thins out from east to west [6,26]. The latter was deposited in a marine-continental
transitional environment where episodic transgressions formed marine carbonate beds [26], and it
mainly consists of sandstones, mudstones, limestones, muddy limestones, sideritic shales, claystones,
and coal seams (Nos. 5 to 11), among which the No. 5 coal seam is the major minable and 2.5 m thick
on average. It is worth noting that the bottom of the Shanxi Formation is usually characterized by a
marker bed that is composed of quarzitic sandstone and/or sandy conglomerate.
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Figure 2. Stratigraphic columnof Permo-Carboniferous coal-bearing strata in the Weibei Coalfield and
sampling distributionin the No. 5 coal seam of the Dongdong and Jinhuashan underground coal mine.

3. Methodology

3.1. Sample Collection

Twenty-five bulk samples, including seven coal samples, one roof, and two parting samples
from the Jinhuashan mine, and thirteen coal samples, one roof and one parting samples from the
Dongdong mine, were collected from underground coalfaces of the No. 5 coal seam in the Jinhuashan
and Dongdong coal mines, which are respectively located in the Tongchuan and Chenghe coal mining
districts of the Weibei Coalfield (Figure 1c). The roof sample for the Jinhuashan andDongdong coals
are named as JHS-R and DD-R, respectively. The coal samples for the Jinhuashan and Dongdong coals
are respectively numbered as JHS-1 toJHS-7and as DD-1 to DD-13from top to bottom. The partings
are numberedasJHS-P1 to JHS-P2 and DD-P1 from top to bottom, respectively for Jinhuashan and
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Dongdong coals (Figure 2). Note that the No. 5 coal seam was being mined at the sampling time,
so the lower portion of the No. 5 coal seam in both coal mines could not be accessed for safety reasons.

3.2. Analytical Methods

Proximate analysis was performed according to ASTM Standards D3173-11 (2011); D3175-11
(2011), and D3174-11 (2011) [27–29]. The total sulfur and forms of sulfur were determined following
ASTM Standards D3177-02 (2002) and D2492-02(2005), respectively [30,31].

Mineralogical compositions of the collected samples were determined by powder X-ray
diffraction (XRD) using a Bruker D8 A25 Advance diffractometer with monochromatic Cu Kα1
radiation(λ = 1.5405 Å) from 4 to 60◦of 2θ range, a step size of 0.019◦, and a counting time of
0.1 s/step. A semi quantitative XRD mineral analysis was carried out using the internal reference
method devised by Chung (1974) [32]. In addition, morphology, and modes of occurrence of minerals
and specific elements were evaluated by means of a Field Emission-Scanning Electron Microscope
(FE-SEM, FEI Quanta™ 650 FEG) with an Energy Dispersive X-Ray Spectrometer (EDS; Genesis Apex 4).
The sampleswere not coated for low-vacuum SEM working conditions (60 bars). The working distance
of the FE-SEM-EDS was 10 mm, beam voltage20.0 kV, aperture 6, and spot size 5. Images were captured
via a retractablesolid state back-scattered electron detector.

The concentrations of major and selected trace elements (Ti, Mn, P, B, Ba, Cu, Ni, Sr, Zn, and V) were
determined by inductively coupled plasma atomic-emission spectrometry (ICP-AES, Iris Advantage
TJA Solutions), and those of most trace elements were determined by inductively coupled plasma
mass spectrometry (ICP-MS, X-Series II Thermo). Prior to determination, each sample was digested
using a two-step acid-digestion method (first with HNO3to dissolve the most volatile elements,
and subsequently with a full HF: HNO3: HClO4 digestion reagents,) [17]. International reference
material (South African coal reference material, SARM-19) and blank samples were treated in the same
way to subtract blanks and controlling the quality of the analysis. The analytical precision wasbetter
than ±2.5% for Si, Al, K, Cr, Ba, Pr, Gd, and Th; better than ±5.0% for Ca, Fe, Be, V, As, Y, Nd, Dy, Er,
and Pb; and better than ±10.0% for theremaining major and trace elements.

Because most Si is lost by the HF digestion (forming the highly volatile SiF6), Si contents were not
determined by ICP-AES, but calculated through a mass balance method [12,21]. To further check the
accuracy of the above calculated method, Si contents of the Jinhuashan coal and rock samples were
also measured by X-ray fluorescence (XRF) and correlated with the calculated Si contents.

For the identification of the elemental affinities, the Pearson’s correlationanalysis was applied to
illustrate the correlations betweenelement concentrations in the studied samples, especially the
correlationsbetween trace element concentrations and ash yields/common majorelement oxide
concentrations (e.g., Al2O3 and SiO2). In the presentresearch, with a statistical sample numbers of 24,
the Pearson’s correlation coefficients are significant at a level of 0.01 (p < 0.01). The interpretation of the
origin of elemental affinitiesis always subjective, but was based on the typical geochemicaloccurrence
of the elements with the highest loading factors (e.g., S-Fe, sulfide affinity; Al-Ti-Rb-K, clay minerals;
and Ca-Mg-Mn, carbonate minerals) [13].

4. Results

4.1. Coal Chemistry

The No. 5 coal seam from the Weibei coalfield has extremely low moisture contents (0.08–0.5%,
avg. 0.3%, air dry basis, Appendix A Table A1) according to Chinese Standard MT/T 850-2000,
which classifies coal with moisture content <6.0% as extremely-low-moisture coal [33]. The high
temperature ash (HTA) yields (7.1–32.9%, avg. 18.7%, dry basis, Appendix A Table A1), point to
classification of Weibei coals as medium-ash coal (ash yield of 16.01–29.00% for medium-ash coal) [34].
The similar HTA yields of Dongdong and Jinuashan coals (avg. 18.1% and 19.6% db, respectively)
indicate similar terrigenous detrital supply during peat accumulation. The volatile matter yields
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(15.7–27.54%, avg.19.7%, dry ash free basis) indicate that the Weibei Coals fall within the rank of low
volatile bituminous coals (Appendix A Table A1) [35]. The average total sulfur content of No. 5 coal
seam in the Weibei coals is from 1.0% to 9.0% (avg. 3.0%, Appendix A Table A1), belonging to group of
high-sulfur coal [36]. However, there are differences in sulfur contents and types at different regions
in the Weibei Coalfield (averages 3.6 and 2.0% db, respectively, in Dongdong and Jinhuashan Mine).
Higher S content in Weibei coal is probably ascribed to high marine influence during peat deposition and
coal formation. The sulfur in coals includes pyritic sulfur, organic sulfur, and trace proportions of sulfate.
In the Dongdong coal, the average pyritic S prevails over the organic one (1.9 vs. 1.2% db, respectively),
while the opposite occurs in the Jinhuashan (0.7 and 1.0% db, respectively). Despite differences in
sulfur contents and types at different regions in the Weibei coalfields (Figure 3), pyritic sulfur is the
primary form of sulfur in the roof and parting samples of both coals (Appendix A Table A1).
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4.2. Coal Mineralogy

The minerals occurring in the coal samples from Weibei Coalfield are mainly represented by
kaolinite (0.3–30.6%, avg. 8.3%), calcite (0.7–24.0%, avg. 5.3%), and pyrite (0.2–13.4%, avg. 3.1%),
along with minor proportions of tobelite (0.3–11.6%, avg. 3.0%), dolomite (0.2–5.4%, avg. 1.7%)
and quartz (0.7–2.7%, avg. 1.8%), and traces of siderite (0.1–1.0%, avg. 0.4%) and gypsum (0.3–1.0%,
avg. 0.6%, Appendix A Table A2). Anatase also occurs in trace amount in the lower portion of the coal
seam (DD-13) beneath coal parting. Although below the detection limit of the XRD techniques, barite,
rutile, apatite, and chalcopyrite have been occasionally observed by SEM-EDS techniques (Figure 4).
In contrast, mineral occurring in the roof and parting sample of Weibei coals varies from place to place,
which is dominantly kaolinite, calcite, and quartz, along with minor amounts of dolomite, pyrite,
and tobelite (Appendix A Table A2).
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Lens-like or banded kaolinite infusinitecell fillings. (b) Dispersed and lens-like kaolinite in fusinite 
cell fillings. (c) Massive kaolinite and fracture-filling pyrite. (d,e) Massive pyrite, possibly as cleat 
infilling. (f) Syngenetic kaolinite and rutile as infillings of fusinite cells. (g) Microcrystal of apatite as 
infilling of fusinite cells. (h) Aggregates of chalcopyrite as infilling of fusinite pores. 

Figure 4. SEM back-scattered electron images of minerals in the Dongdongcoals (sample DD-3).
(a) Lens-like or banded kaolinite infusinitecell fillings. (b) Dispersed and lens-like kaolinite in fusinite
cell fillings. (c) Massive kaolinite and fracture-filling pyrite. (d,e) Massive pyrite, possibly as cleat
infilling. (f) Syngenetic kaolinite and rutile as infillings of fusinite cells. (g) Microcrystal of apatite as
infilling of fusinite cells. (h) Aggregates of chalcopyrite as infilling of fusinite pores.
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4.3. Coal Geochemistry

As shown in Appendix A Tables A3 and A4, the contents of all the major element oxides in the
Weibei coals are either similar to or lower than the corresponding averages for common Chinese
coals [5]. The higher proportion of CaO in the Jinhuashan coals is probably caused by the higher calcite
content. The average value of SiO2/Al2O3 ratio in the Weibei coals is 0.9 (0.9 and 1.1, respectively,
in Dongdong and Jinhuashan coal), lower than that of other Chinese coals (1.4) [5], and even lower
than the theoreticalSiO2/Al2O3 ratio of kaolinite (1.2).

SiO2 content inferred from the XRD analysis is highly correlated with that determined by XRF
analysis (r = 0.99, Table A4), suggesting the accuracy of XRD data-based semi-quantification method in
the present study.

Based on the average concentrations of trace elements for world hard coals [37], and the enrichment
classification of trace elements [19], the Weibei coals are characterized by enrichment of Ta-Nb-W-Li
assemblage (Figure 5). According to Dai et al. (2015a) [19], in the Dongdong coal, tantalum is
significantly enriched (10 < CC < 100) (Figure 5a),the elements Nb, and Ware enriched (5 < CC < 10),
and Li, P, Se, Zr, and Th are slightly enriched (2 < CC < 5), while the remaining are depleted (CC < 0.5)
or in the normal range (0.5 < CC < 2) (Figure 5a). In the Jinhuashan coal, Ta is enriched and Nb, W, Li, P,
Sr, Y, La, and Ce slightly enriched, while the other elements depleted or in the normal range (Figure 5b).
Furthermore, concentrations of these elevated elements are extremely higher in the non-coal rocks of the
Weibei coalfield than in the corresponding coals (Figures 6 and 7). The average concentration of REE-Y
is 88.0 µg/g (from 17.7 ug/g to 264.4 ug/g) in the Weibei coals, higher than the average of world hard
coals (68.6 µg/g) but lower than that of common Chinese coals (136 µg/g) [5,37]. Considering that coal
by its nature is closer to the UCC (upper continental crust,) than to PAAS (Post-Archaean Australian
shale), e.g., coal was deposited within the upper continental crust, and contains many detrital UCC
contributions mixed within the peat environment [38], the REE-Y in coal are normalized to values for
the UCC in the present researchas reported by Taylor and McLennan (1985) [39]. According to the
classification proposed by Seredin and Dai (2012) [11], the REE-Y enrichment pattern in the Weibei
coals is dominantly of H-type (LaN/LuN < 1) (from DD-3 to DD-12, JHS 1, JHS-5 to JHS-7, Appendix A
Table A5), and of L-type (LaN/LuN > 1) or M-type in the coal samples adjacent to the roof and floor
(DD-1, DD-2, and D-13, JHS-2 to JHS-4). In the roof and parting of the Weibei coals, the REE-Y
enrichment pattern is characterized by an L-type (Table A5). Vertically, the REE-Y concentrations are
higher in the roof and parting samples than in respective coal samples, presenting similar variation to
kaolinite and also to the elevated Nb, Ta (Figures 6 and 7), and pointing to an aluminosilicate affinity.
This is also evidenced by the positive correlation coefficients of REE-Ys in the Weibei coals with HTA
yields (rREE-Y-HTA = 0.37–0.83), Al2O3 (rREY-Al2O3 = 0.28–0.93), and SiO2 (rREY-Al2O3 = 0.35–0.94)
contents on a whole-coal basis. Furthermore, the correlation coefficients are higher for light REE-Y
(LREY) than heavy REE-Y (HREY), probably due to the higher inorganic affinity of LREY, and a mixed
inorganic–organic affinity of HREY [19,20,40].

In order to avoid interference of the Gd anomaly with the Eu anomaly, the UCC-normalized Eu,
Ce and Gd anomaly (expressed as EuN/EuN*, CeN/CeN*, and GdN/GdN*, respectively) was calculated
using the formula modified by Bau and Dulski (1996) and Dai et al. (2016, 2017b) [20,38,41]. Except for
four coal samples (DD8 to DD11) with positive Eu anomalies (Eu/EuN* of 1.12 to 1.71) and obvious
negative Gd anomalies (Gd/GdN* of 0.23 to 0.73), the Weibei coals are generally characterized by
weak to pronounced negative Eu anomalies and weak negative Ce anomalies, and weak negative to
positive Gd anomalies, with Eu/EuN*, CeN/CeN*, and Gd/GdN*, respectively, ranging from 0.25 to 1.71
(avg. 0.78), 0.82 to 1.30 (avg. 0.96), and 0.23 to 2.19 (avg. 1.14) (Appendix A Table A5). The roof and
parting of the Weibei coals have obvious negative Eu anomalies (0.18–0.84, avg. 0.48) and positive Gd
anomalies (1.05–1.71, avg. 1.21). Notably, REE-Y concentrations in the four coal samples with positive Eu
anomalies(DD8 to DD11) are significantly lower than in other coal and non-coal samples (Figures 6 and 7).
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5. Discussion

The mineralogical and geochemical characteristics of the Weibei Coal are mainly controlled by three
factors: (1) sediment provenance, (2) marine influence during deposition, and (3) hydrothermal fluids.

5.1. Influence of Sediment Provenance

Combinations ofAl2O3/TiO2, Zr/TiO2-Nb/Y, and REE-Yenrichment patterns, and/or other geochemical
parameters have been widely used for a more precise sediment provenance analysis [42]. Al2O3/TiO2 ratio is
effectively used to identify the provenance of sedimentary rocks [43], coal seams [19,20,44,45], and altered
volcanic ashes in coal-bearing sequences [16,46,47], with Al2O3/TiO2 ratios of 3–8, 8–21, and 21–70, respectively
for mafic-, intermediate-, and felsic-dominated provenance [43]. As illustrated in Figure 8, Al2O3-TiO2

plots of the coal and host rocks in the Weibei coalfield principally fall in the felsic field, and secondarily in
the intermediate field, indicate that the terrigenous materials dominantly derived from felsic-intermediate
dominated sediment source region.



Energies 2020, 13, 4818 10 of 26

Energies 2020, 13, x FOR PEER REVIEW 11 of 28 

 

 
Figure 7. Vertical distribution of elevated elements through coal benches of the Jinhuashan coal mines. 

5. Discussion 

The mineralogical and geochemical characteristics of the Weibei Coal are mainly controlled by 
three factors: (1) sediment provenance, (2) marine influence during deposition, and (3) hydrothermal 
fluids. 

5.1. Influence of Sediment Provenance 

Combinations ofAl2O3/TiO2, Zr/TiO2-Nb/Y, and REE-Yenrichment patterns, and/or other 
geochemical parameters have been widely used for a more precise sediment provenance analysis 
[42]. Al2O3/TiO2 ratio is effectively used to identify the provenance of sedimentary rocks [43], coal 
seams [19–20,44,45], and altered volcanic ashes in coal-bearing sequences [16,46,47], withAl2O3/TiO2 
ratios of 3–8, 8–21, and 21–70, respectively for mafic-, intermediate-, and felsic-dominated provenance 
[43]. As illustrated in Figure 8, Al2O3-TiO2 plots of the coal and host rocks in the Weibei coalfield 
principally fall in the felsic field, and secondarily in the intermediate field, indicate that the 
terrigenous materials dominantly derived from felsic-intermediate dominated sediment source 
region. 

 
Figure 8. Plots of elements in the coal and non-coal samples from the Dongdong and Jinhuashan coal 
mines. (A) Plots of Al2O3 vs. TiO2. (B) Diagram showing Zr/TiO2 vs. Nb/Y ratios using the magma 
source discrimination diagram of Winchester and Floyd (1977) [48]. 

The elevated Ta, Nb, Zr, Li, and Win the Weibei coals exhibit high correlations and similar 
vertical distributions with HTA yields, Al2O3 and SiO2 contents (Figures9 and 10), which represent an 
obvious aluminosilicate affinity and imply the terrigenous origin of these elevated elements. The 
Zr/TiO2-Nb/Y plot was widely used as an auxiliary indicator to discriminate the provenance, 
classification and evolution of altered volcanic ashes and associated coal bearing sequences 

Figure 8. Plots of elements in the coal and non-coal samples from the Dongdong and Jinhuashan coal
mines. (A) Plots of Al2O3 vs. TiO2. (B) Diagram showing Zr/TiO2 vs. Nb/Y ratios using the magma
source discrimination diagram of Winchester and Floyd (1977) [48].

The elevated Ta, Nb, Zr, Li, and Win the Weibei coals exhibit high correlations and similar vertical
distributions with HTA yields, Al2O3 and SiO2 contents (Figures 9 and 10), which represent an obvious
aluminosilicate affinity and imply the terrigenous origin of these elevated elements. The Zr/TiO2-Nb/Y
plot was widely used as an auxiliary indicator to discriminate the provenance, classification and
evolution of altered volcanic ashes and associated coal bearing sequences [16,22,49,50]. The majority
of the coal and non-coal rocks in the Dongdong mine fall within the trachyandesite and trachyte
fields, pointing to a felsic-intermediate sediment provenance, while those in the Jinhuashan coal
mine are distributed in slightly broader areas, falling within the fields of trachyandesite, trachyte,
as well as rhyodacite/dacite (Figure 8B), pointing to a felsic-dominated sediment provenance. Overall,
the sediment provenance of the terrigenous materials in the Weibei coalfield was characterized by
felsic to intermediate chemical composition.
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Likewise, several REE-Y parameters, e.g., Ce, Eu, and Gd anomalies, as well as REE-Y enrichment
patterns are extensively used for sediment provenance analysis [11,21,51–56]). Sediments, including coal
bearing sequences, with L-type REY enrichment pattern are generally indicative of a terrigenous
origin [21]. The host rocks (roofs and partings) in the Weibei coalfield and several coal samples
adjacent to the partings in the Jinhuashan coal are all characterized by L-type REE-Y enrichment
patterns, which are consequently inherited from the terrigenous sediment source origin. Furthermore,
sediment source regions with weak negative Ce and distinct negative Eu anomalies are primarily
composed of felsic or felsic-intermediate rocks, and notably, coals with terrigenous inputs from
felsic-intermediate dominated provenance are expected to inherit similar negative Ce and Eu
anomalies [21]. Asaforementioned, the Weibei coals and non-coal rocks mostly display negative
Eu and weak negative Ce anomalies, which indicates the terrigenous input into the Weibei coalfield
was largely derived from felsic or felsic-intermediate sediment source region.

Based on Al2O3-TiO2 plots, Zr/TiO2-Nb/Y plots, REE-Y distribution patterns, as well as Eu and
Ce anomalies, the sediment provenance of the No. 5 coals in the Weibei Coalfield are dominantly
by felsic-intermediate provenance, which probably originated from the Qilian-Qinling Old land
on the south [57,58]. Wan (2011) also suggested that the Qilian-Qinling Old land is comprised of
Proterozoic metamorphic rocks (e.g., quartzite, gneiss, and marble) and Proterozoic-Palaeozoic granites,
metamorphic sedimentary rocks, and carbonates, which is characterized by LREY enrichment [59].

5.2. Influence of Sea Water

The coal characteristics are highly influenced by marine-influenced sedimentary environment
as well, apart from the influence of sediment provenance. HREY enrichment in coals is probably
caused by strong influences of HREY-rich natural waters circulating in coal basins [60], for instance,
sea water [61], alkaline waters [62], high pCO2 or other acid waters [63,64], low-temperature
hydrothermal solutions [65], or volcanogenic solutions [62,66]. With exception of the roofs, partings,
and coals adjacent to them, the REY enrichment patterns are dominantly of the H-type in most
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of the Dongdong and Jinhuashan coals, which is probably attributed to the influence of sea water.
This tconclusion is further evidenced by the following distinct features of Ce, Y, and Gd anomalies.

As discussed above, coals with terrigenous inputs from felsic and/or felsic-intermediate dominated
sediment source regions are characterized by weak negative Ce anomalies. Nonetheless, negative Ce
anomalies are also indicative of influence of sea water [67,68], consequently, coals formed in a marine
environment are also characterized by negative Ce anomalies [21,69]. The weak negative Ce anomalies
of the Dongdong and Jinhuashan coals were consequently considered to be caused by the integrated
influences of felsic-intermediate sediment provenance and seawater. Furthermore, the Dongdong coals
(CeN/CeN* of 0.9 to 0.99, Appendix A Table A5) were formed in anoxic marine environment, while the
Jinhuashan coals (CeN/CeN* of 0.76 to 0.96) in suboxic to anoxic marine environment according to
the classification with CeN/CeN* values of < 0.5, 0.6–0.9, and 0.9–1.0 respectively for oxic marine,
suboxic marine, and anoxic marine environment [70]. The more anoxic marine environment in the
Dongdong coals may reflect higher influence of sea water and is suggested to be responsible for the
higher total S content and pyritic sulfur content in Dongdong coals with respect to the Jinhuashan coals.

In addition, felsic-intermediate rocks generally have weak or no Y anomalies, so coals with input
of felsic-intermediate terrigenous materials would be expected to exhibit weak or no Y anomalies [38].
By contrast, seawater usually has positive Y and Gd anomalies [38,41,61,71,72]; hence, coals with
positive Y and Gd anomalies may have been formed in a marine sedimentary environment. In the
present research, the roof, partings, and coals adjacent to the roof and partings show weak Y anomalies
(Appendix A Table A5), which was thought to have been inherited from the felsic-intermediate
sediment provenance. However, most of the Dongdong and Jinhuashan coals dominantly show
positive Y and Gd anomalies (Appendix A Table A5), which is probably indicative of the influence of
sea water.

5.3. Influence of Hydrothermal Fluids

Except the sediment provenance and marine effects, hydrothermal fluids are the most important
controlling factors of the mineralogical and geochemical characteristics in the Weibei coal samples.

5.3.1. Mineralogical Evidence

The influence of hydrothermal fluids has been obviously evidenced by the occurrence of
cleat-infilling and/or fracture-infilling minerals, such as kaolinite, pyrite, goyazite, barite, and tobelite
in coals [13,20,52,73,74].

Kaolinite in the Weibei coals occurs mainly in lens-like (Figures 4a and 11a), banded (Figure 11a,c,d
and Figure 12a,b,e), and massive (Figure 11b) forms as cleat infillings, while in some cases,
kaolinite occurs in banded forms as infillings of fusinite cells (Figures 11a and 12a,b), suggesting
both a terrigenous origin and an authigenic origin. The cell-infilling kaolinite, to some extent, has
been re-mineralized by epigenetic disseminated pyrite (Figure 12a). In a few cases, kaolinite also
occurs as dispersed particle, intergrown with illite (Figure 11d), also representing its formation by
authigenesis process.

Pyrite in the Weibei coals occurs as discrete crystals (Figure 12a,h), veins of very fine to large cleat
infillings (Figure 12f–h), and in many cases, occurs in banded (Figures 11c and 13a–d,g) and massive
forms (Figures 12f and 13a), as cleat infillings as well. The various forms of occurrence of pyrite represent
anauthigenic origin for its formation and the occurrences as cleat/fracture-fillings suggest an epigenetic
origin. Barite occurs as cleat-filling veins in the Jinhuashan coals (Figure 13a,b), and represents a
hydrothermal origin. Moreover, the barite cross-cut the cleat-infilling pyrite (Figure 13a,b), indicating
that the precipitation of pyrite was prior to that of barite. Carbonate minerals in the studied coals,
principally dolomite and calcite, usually coexist with pyrite, and occur primarily as irregular fracture
infillings (Figure 13c,d), indicative of an epigenetic origin.
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Figure 11. SEM back-scattered electron images of kaolinite, pyrite, rutile, and goyazitein the Jinhuashancoals.
(a) Lens-like and banded kaolinite as fusinite cell infillings, coexisting with rutile; (b) Massive kaolinite and
goyazite particles as cleat infillings; (c) Fracture/Cleat-infilling pyrite and kaolinite intergrown with goyazite;
(d) Enlargement of yellow square in (c); (e,f) EDS spectrum respectively for kaolinite and goyazite in (c,d).
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Figure 12. SEMback-scattered electron images of kaolinite, pyrite, and illite in the Jinhuashancoals
(sample JHS-2). (a) Kaolinite and pyrite as cleat infillings as well as framboidal pyrite and banded
kaolinite, in some cases remineralized by disseminated pyrite; (b) Enlargement of yellow square in (a);
(c) Pyrite veins as cleat infillings and dispersed particle of kaolinite and illite; (d) Enlargement of
yellow square in (c); (e) Banded kaoliniteand intergrown pyrite as cleat infillings; (f,g) Fragments of
banded pyrite and pyrite mineralization in very fine to large cleats, mostly in vitrinite bands;
(h) Discreted (mostly framboidal) pyrite crystals and massive pyrite as fine cleat infillings.
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Figure 13. SEM back-scattered electron images of pyrite, barite, dolomite, and calcitein the Jinhuashancoals.
(a) Massive pyrite infilling of epigenetic cleats, cross-cutby cleat-filling barite veins; (b) Enlargement of
yellow square in (a); (c) Cleat-filling pyrite and dolomite; and (d) Pyrite, calcite, and dolomite as
cleat infillings.

Particles of goyazite grows as cleat infillings and usually intimately associated with kaolinite in
the Jinhuashan coals (JHS-2, Figure 11b,f), and in some cases, surrounded by epigenetic cleat-infilling
kaolinite (Figure 11d), which reflects an authigenic, epigenetic process for its formation. Goyazite also
occurs in the boehmite-rich coals from the Jungar (Guanbanwusu, Heidaigou, and Haerwusu coal
mines) and DaqingshanCoalfield (Adaohai, Hailiushu, and Datanhao coal mines), in which goyazite
is closely related to kaolinite, boehmite, or diaspore, and occurs in the forms of cell infillings and
as massiveand discrete particles, indicating an authigenicorigin [7,8,16,75–77]. Authigenic goyazite
has also been found in several other coals; for instance, in the coal-bearing strata of the Fusui
Coalfield [55], and in the K2 coal of the Moxinpo coalfield [78]. Goyaziteis an important mineral
indicating hydrothermal activity, which is usually formed by reaction between Al-rich hydrothermal
solutions and P derived from organic matter in peat swamp [55,73].

Tobelite ((NH4,K)Al2(AlSi3O10)(OH)2, a member of illite group) is another important hydrothermal
indicator. As shown in Figure 14, tobelite occurs with lower amounts in the middle to the lower portion,
and higher amounts in the bottom of the No. 5 coal from the Dongdong mine, obtaining the maximum
content in the lower parting sample (Appendix A Table A2). By contrast, it occurs with minor amount
in the parting, and higher amount in the bottom of the No. 5 coal in the Jinhuashan mine (Appendix A
Table A2 and Figure 15). It has been reported that tobelite occurs in the Permo-Carboniferous coals
from the Moxinpo coalfield, Chongqing, SW China [20], Daqingshan Coalfield, Inner Mongolia,
NW China [18], as well as Qinshui coalfield, North China [58]. It is proved that the presence of
tobelite in coals was caused by the hydrothermal alteration of existing kaolinite in coals with the active
participation of NH4+ from organic matter at a relatively high temperature (e.g., >200 ◦C) [73,79–82].
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5.3.2. Geochemical Evidence

High sulfur contents (1.01–9.02%, avg. 3.01%)in the Weibei coals suggest sulfur were probably
carried into the peat swamp by hydrothermal fluids and then evenly combined with Fe to form pyrite
or distributed as the organic sulfur [8,55]. Although the Weibei coals were influenced by seawater,
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as mentioned above, the concentration of SO4
2− in paleo-seawater was in the range of 5–27.6 mmol/kg

in the Phanerozoic [83,84], and it could not provide such high sulfur content (up to 9.0%) in coals.
There are differences in sulfur contents and types at different regions in the Weibei coalfields. In the
Dongdong coals, the average pyritic and organic sulfur content is 1.9% and 1.2%, respectively, while the
counterpart in the Jinhuashan coals is 0.7% and 1.0%, respectively (Figure 3). These differences indicate
the intensity of hydrothermal activity varies in the Weibei coalfield. The hydrothermal activity in
the Dongdong coals is higher and responsible for the higher total sulfur content with respect to the
Jinhuashan coals.

Positive Eu anomalies in coals may be ascribed to the influence of high-temperature hydrothermal
fluids [54,65], which could be volcanogenic solutions [38,76], or activities of hydrothermal solutions
(>200 ◦C) in marine environment during coal formation process [85,86]. It is worth noting that Eu
obtain obvious positive anomalies (EuN/EuN* of 1.12 to 1.71) in DD-8 to DD-11 coal samples from the
Dongdong coal section (Appendix A Table A5), probably caused by strong activities of high-temperature
hydrothermal solution other than the aforementioned ones, which covered up the original negative Eu
anomalies inherited from the felsic to intermediate dominated sediment provenance [38,63].

Furthermore, positive Gd anomalies and MREY and/or HREY enrichment are also significant
indicators of activities of hydrothermal fluids [38,62,63]. The coal and non-coal rocks from the Weibei
coalfield generally show positive Gd anomalies (0.23–2.19, avg. 1.14). In addition, the REY enrichment
types are dominantly of H-type in most of the Weibei coals and of M- type in coals adjacent to the roof
and parting, which were also probably caused by hydrothermal fluids. The most probable source of
the hydrothermal solution would be derived from the volcanic/tectonic activity during accumulation
of the Late Carboniferous coals in the Weibei coalfield (Nos. 5, 10, and 11 coals), which have been
evidenced by occurrence of high-temperature quartz, and zircon [6].

Hydrothermal fluids were not only evidenced by some mineral and elemental enrichment as
mentioned above, but also by theirdistribution among coal seam, roof, and parting. Compared to the
overlying roof and parting, the critical elements (Nb, Ta, Zr, Li and HREE) enrichment and the higher
Yb/La, Nb/Ta, and Zr/Hf ratios in the coal probably result from the re-deposition of these elements.
Dai et al. (2013) suggested that the active leaching from roof and parting led to some elemental
re-deposition in the underlying organic matter [55]. For instance, the Yb/La ratios is from 0.03 to 0.67
(avg. 0.12) in the Weibei coal seam, which is higher than the world hard coals (0.09) [37]. This kind of
elemental redistribution, resulting from hydrothermal fluids, has also been reported in the Fusui and
Jungar coals, China [18,55], and some US coals [87].

6. Conclusions

Based on chemical, mineralogical, and geochemical results of the No. 5 coals of the Taiyuan
Formation from the Weibei coalfield, North China, the following can be concluded.

The No. 5 coals from the Weibei coalfield have extremely low moisture contents, low volatile
matter yields, high sulfur contents, and medium HTA yields. The minerals in the Weibei coals mainly
consist of kaolinite, calcite, quartz, pyrite, dolomite, and minor amounts of siderite and tobelite.
The Weibei coals are characterized by enrichment of Ta-Nb-W-Li-P trace element assemblages, close to
or higher than the respective industry cut-off grades or standards for ores containing these strategic
elements, which make the Weibei coals potential sources of these critical elements.

The L-type REE-Y enrichment in the roofs and partings, as well as the Al2O3-TiO2 plots,
Zr/TiO2-Nb/Y plots, and UCC-normalized negative Eu and Ce anomalies, demonstrate that the
sediment provenance of the No. 5 coals from the Weibei coalfield are mainly of felsic-intermediate
composition, dominantly from the Qilian-Qinling Oldland on the south. Marine bioclastic limestone,
negative Ce anomalies, and positive Y anomalies in coals suggest the influence of sea water. Activities of
hydrothermal fluids are evidenced by the occurrence of cleat-infilling and/or fracture-infilling minerals,
HREY and MREY enrichment patterns, and positive Eu and Gd anomalies.
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Overall, factors controlling the mineralogical and geochemical composition of the Weibei coalfield
include the sediment provenance (Qilian-Qinling Old land), seawater invasion during deposition,
and hydrothermal fluids. Although provenance and seawater invasion are partly responsible for the
mineral composition, hydrothermal fluids are probably the main controlling factors of the mineralogical
and geochemical characteristics in the No. 5 coals from the Weibei coalfield.
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Appendix A

Table A1. Coal bench thickness (cm), proximate analysis (%), and forms of sulfur (%) of the No. 5 coals
from Dongdong and Jinhuashan coal mines, Weibei coal field.

Coal Mine Sample No. Thickness Mad HTAd Vdaf St,d Ss,d Sp,d So,d

Dongdong

DD-R 20 1.10 61.33 41.76 8.12 0.51 7.03 0.58
DD-1 20 0.54 27.15 21.40 2.06 0.16 0.35 1.54
DD-2 20 0.46 25.17 20.83 2.98 0.60 1.29 1.09
DD-3 20 0.41 25.72 22.31 9.02 1.74 6.86 0.42
DD-4 20 0.45 14.26 18.41 3.18 0.32 1.35 1.51
DD-5 5 0.45 14.59 17.39 2.72 0.28 1.14 1.30
DD-6 20 0.36 10.62 17.24 2.75 0.28 1.06 1.41
DD-7 20 0.33 9.68 15.76 2.55 0.30 0.99 1.26
DD-8 20 0.32 20.81 25.54 4.76 0.99 2.82 0.96
DD-9 20 0.40 7.61 18.35 3.39 0.63 1.30 1.46

DD-10 20 0.33 9.00 18.66 2.81 0.35 1.07 1.39
DD-11 20 0.34 12.62 20.14 4.50 0.89 2.43 1.18
DD-12 10 0.38 27.75 23.27 4.47 0.42 3.14 0.91
DD-P1 20 0.37 71.60 43.05 0.68 0.02 0.53 0.13
DD-13 20 0.39 30.57 17.69 1.26 0.03 0.36 0.87

Coal Av - 0.40 18.12 19.77 3.57 0.54 1.86 1.18

Jinhuashan

JHS-R 20 1.51 88.49 72.36 0.29 0.01 0.18 0.10
JHS-1 20 0.26 7.13 15.67 1.45 0.03 0.13 1.29
JHS-2 20 0.10 7.51 17.13 1.87 0.09 0.30 1.47

JHS-P1 20 0.48 67.35 29.08 0.97 0.12 0.67 0.18
JHS-P2 40 0.51 81.73 61.72 1.46 0.09 0.88 0.49
JHS-3 20 0.30 32.95 19.37 1.01 0.03 0.19 0.79
JHS-4 20 0.08 16.15 18.33 3.80 0.84 1.88 1.08
JHS-5 20 0.11 25.76 27.54 1.13 0.06 0.75 0.32
JHS-6 20 0.30 23.84 18.15 1.56 0.03 0.43 1.10
JHS-7 15 0.17 24.10 19.92 2.90 0.63 1.22 1.04

Coal Av - 0.19 19.63 19.44 1.96 0.24 0.70 1.01

M, moisture; HTA, high temperature ash yield; V, volatile matter; St, total sulfur; Ss, sulfate sulfur; Sp, pyritic sulfur;
So, organic sulfur; ad, as-received basis; d, dry basis; daf, dry and ash-free basis; and Av, average.
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Table A2. The semi-quantitative contents of main mineral phases in the studied coals (%, on whole-coal basis).

Coal Mine Sample No. Qtz Kln Cal Dol Ill Py Tb Sd Gp Mc Ant Rt

Dongdong

DD-R 1.1 24.5 20.7 7.9 7.2
DD-1 0.7 16.2 1.5 2.7 5.5 0.5
DD-2 1.8 13.8 2.0 2.1 4.6 0.8
DD-3 8.2 1.1 3.0 13.4
DD-4 11.0 0.7 2.5
DD-5 7.4 0.8 2.8 2.2 0.5 1.0
DD-6 4.5 1.7 1.7 2.1 0.7
DD-7 1.1 5.4 0.2 1.2 1.4 0.4
DD-8 0.3 15.1 2.2 2.3 0.3 0.3 0.3
DD-9 0.5 3.1 2.4 1.4 0.2
DD-10 0.4 5.9 0.3 1.1 0.7 0.1 0.3
DD-11 1.5 5.5 1.1 3.3 1.1
DD-12 16.0 2.2 2.1 3.5 4.0
DD-P1 47.6 0.9 0.9 18.5 0.6 2.4 0.7
DD-13 25.6 4.2 0.7
Max 1.8 25.6 15.1 3.0 13.4 4.2 0.7 0.8
Min 0.7 0.3 0.7 0.2 1.1 0.3 0.1 0.3
Av 1.3 8.3 4.0 1.7 3.8 1.9 0.3 0.5

Jinhuashan

JHS-R 41.4 43.9 3.2
JHS-1 1.2 4.4 1.3 0.2
JHS-2 3.4 3.6 0.4

JHS-P1 9.9 56.7 0.4 0.4
JHS-P2 30.8 42.3 5.4 1.1 2.0
JHS-3 2.4 30.6
JHS-4 2.7 8.9 1.8 2.5 0.2
JHS-5 0.6 24.0 0.9 0.2 0.1
JHS-6 14.7 2.7 5.4 1.0
JHS-7 2.7 2.2 4.9 0.4 2.2 11.6 0.2
Max 2.7 30.6 24.0 5.4 2.5 1.0
Min 1.2 0.6 1.3 0.2 0.2 0.1
Av 2.1 8.4 7.6 1.7 1.3 0.4

Kln, kaolinite; Qtz, quartz; Cal, calcite; Dol, dolomite; Ill, illite; Py, pyrite; Sd, siderite; Gp, gypsum; Mc, microcline;
Tb, tobelite; Ant, anatase; Rt, rutlie; andnd, not detected by XRD.

Table A3. Concentrations of major element oxides (%) and trace elements (µg/g) of the No.5 coal seam
from Dongdong coalmine (on whole-coal basis).

µg/g DD-R DD-1 DD-2 DD-3 DD-4 DD-5 DD-6 DD-7 DD-8 DD-9 DD-10 DD-11 DD-12 DD-P DD-13

SiO2 12.4 8.4 8.4 3.9 5.1 4.5 3.2 1.3 0.2 0.9 0.6 1.3 9.6 32.1 14.1
Al2O3 12.5 6.0 5.6 5.2 4.5 4.6 3.3 2.0 1.3 1.3 1.3 2.0 8.3 28.3 12.5
CaO 5.5 1.1 0.7 0.8 0.4 0.6 0.7 1.9 6.2 1.0 2.0 1.6 0.7 0.4 0.1

Fe2O3 9.7 5.8 4.1 11.4 2.2 2.7 1.1 1.4 4.7 2.4 1.7 4.3 4.5 0.9 0.6
K2O 0.5 0.1 0.1 0.08 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.1 0.02
MgO 1.0 0.4 0.3 0.3 0.06 0.04 0.03 0.08 0.4 0.03 0.06 0.2 0.2 0.2 0.04
Na2O 0.2 0.09 0.07 0.05 0.05 0.04 0.03 0.03 0.02 0.03 0.03 0.02 0.05 0.08 0.05

Li 43 43 59 32 32 25 21 10 7 5 6 12 60 171 95
Be 1.6 1.8 2.5 1.2 1.2 1.3 1.0 0.2 0.3 0.2 0.2 0.2 1.3 3.0 2.2
B 19.3 9.1 10.3 7.9 11.8 28.2 22.3 30.4 31.7 24.5 35.6 33.9 22.7 21.6 27.0
P 71 82 121 100 549 1388 1501 1049 1065 940 917 350 562 973 185
Sc 4.0 4.6 3.4 2.1 2.1 2.4 1.0 0.2 0.3 0.2 0.2 0.2 5.7 14.3 14.0
Ti 1511 945 1480 720 607 1165 908 494 273 246 307 252 1234 7961 4466
V 17.4 15.7 15.6 10.5 10.1 10.7 10.9 11.3 7.3 5.8 6.9 7.6 21.2 49.7 44.7
Cr 16 15 16 11 14 19 18 19 10 6 9 9 19 46 33
Mn 78 20 13 21 10 10 14 100 240 53 162 69 47 30 5
Co 1.3 1.3 0.9 1.5 1.3 0.9 0.2 0.3 0.3 0.2 0.2 0.9 1.8 0.2 0.3
Ni 5.3 3.5 2.0 2.2 1.6 1.5 1.4 1.9 2.4 1.6 1.9 2.5 4.4 5.2 4.4
Cu 8.8 12.8 11.7 18.6 8.6 21.7 7.3 6.4 13.5 3.9 4.3 7.2 18.1 40.5 29.4
Zn 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Ga 13.4 8.7 9.4 6.5 6.5 3.9 2.2 1.7 1.1 1.2 1.4 3.8 24.9 36.4 15.2
Ge 0.2 0.2 0.2 0.3 2.7 1.0 0.2 1.0 1.0 0.2 1.3 1.0 1.1 0.8 0.2
As 5.6 6.7 5.0 10.1 5.9 8.3 4.5 7.2 15.9 10.9 6.9 11.9 5.8 2.1 1.7
Se 9.5 5.6 4.4 9.7 3.3 4.0 1.0 1.8 5.8 2.7 1.7 3.4 2.7 3.3 5.1
Rb 23.1 5.7 5.2 9.7 2.0 3.8 1.3 0.2 0.3 0.2 0.2 0.2 2.4 5.2 1.7
Sr 255 74 73 69 230 469 296 230 213 167 192 109 113 497 89
Y 11.8 16.2 15.3 10.0 9.3 10.6 10.2 5.5 4.1 2.7 3.5 5.5 12.9 20.9 28.5
Zr 140 95 97 66 43 42 28 17 10 13 12 13 216 383 399
Nb 44.7 30.1 40.5 19.0 14.2 19.2 11.8 5.6 3.6 4.6 3.8 3.8 27.8 170.8 76.2
Mo 1.9 2.9 1.8 4.1 2.2 1.8 0.2 0.2 0.3 0.2 0.2 1.6 5.2 5.1 1.5
Cd 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
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Table A3. Cont.

µg/g DD-R DD-1 DD-2 DD-3 DD-4 DD-5 DD-6 DD-7 DD-8 DD-9 DD-10 DD-11 DD-12 DD-P DD-13

Sn 2.8 2.9 2.6 2.0 1.3 1.5 1.1 1.0 1.0 0.9 0.8 0.9 4.7 7.0 4.9
Sb 1.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Cs 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Ba 89 36 39 36 79 99 57 45 37 46 49 38 86 278 91
La 28.2 24.2 14.8 6.3 20.8 18.2 11.6 8.1 2.4 3.3 5.0 2.3 9.2 44.9 14.7
Ce 54.3 54.5 36.8 15.6 34.8 37.3 24.6 16.3 4.9 6.8 9.1 5.8 21.3 92.9 35.6
Pr 6.0 5.9 4.5 2.0 3.5 4.5 3.1 1.9 0.3 0.8 1.1 0.8 2.6 10.3 4.4
Nd 20.9 20.3 16.7 8.0 11.5 17.5 12.2 7.2 3.0 3.5 3.9 3.3 10.5 37.1 17.6
Sm 3.8 3.6 3.3 1.9 1.9 2.8 2.1 1.2 0.3 0.2 0.2 0.8 2.6 6.8 4.5
Eu 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Gd 3.4 3.4 3.0 1.7 1.9 2.3 1.9 1.1 0.3 0.2 0.2 0.9 2.6 5.8 4.4
Tb 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.9 0.9
Dy 2.9 3.5 3.2 1.9 1.9 2.1 1.9 1.0 0.3 0.2 0.2 1.1 2.8 5.2 5.9
Ho 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.9 1.1
Er 1.5 2.0 1.9 1.2 1.2 1.3 1.2 0.2 0.3 0.2 0.2 0.2 1.6 2.6 3.5
Tm 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Yb 1.3 2.0 2.0 1.3 1.3 1.4 1.2 0.3 0.3 0.3 0.2 0.2 1.4 2.4 3.4
Lu 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3
Hf 3.8 2.4 2.5 1.7 1.1 1.1 0.2 0.25 0.3 0.2 0.2 0.2 3.7 8.3 7.5
Ta 10.2 8.6 11.2 5.7 2.2 4.9 2.4 1.3 0.3 1.1 0.8 0.2 6.4 32.9 13.4
W 7.0 4.3 8.6 5.4 10.7 4.4 6.2 8.1 7.0 7.0 10.3 11.0 9.2 23.0 10.2
Tl 1.6 2.1 1.2 1.8 0.2 1.0 0.2 0.8 1.9 0.2 0.2 0.2 0.2 0.2 0.3
Pb 112 27.0 22.9 22.9 10.2 16.1 4.3 5.0 6.8 2.8 3.1 6.0 28.6 56.2 30.1
Bi 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 1.6 0.8
Th 24.3 11.4 17.8 7.7 4.3 6.7 2.6 1.6 0.9 1.4 1.2 1.7 8.8 46.5 24.3
U 2.8 4.8 3.4 2.1 2.5 1.8 1.1 0.2 0.3 0.2 0.2 1.2 9.1 7.0 5.6

Table A4. Contents of major element oxides (%) and concentrations of trace elements (µg/g) of the
No. 5 coal seam from Jinhuashan coal mine (on whole-coal basis).

µg/g JHS-R JHS-1 JHS-2 JHS-P1 JHS-P2 JHS-3 JHS-4 JHS-5 JHS-6 JHS-7

SiO2
a 63.2 3.3 1.6 36.7 54.8 16.8 1.3 0.3 6.9 9.7

SiO2
b 54.3 3.5 2.4 36.7 47.4 17.6 3.1 1.7 11.6 9.1

Al2O3 16.9 2.3 2.2 15.0 15.0 9.0 2.9 1.7 6.4 5.8
CaO 0.2 0.3 1.1 0.1 0.09 0.07 2.8 15.4 0.6 2.3

Fe2O3 0.9 0.1 0.4 1.3 2.3 0.3 3.3 0.9 0.5 2.4
K2O 1.4 0.02 0.02 0.4 1.2 0.07 0.02 0.02 0.3 0.2
MgO 0.4 0.05 0.05 0.2 0.3 0.04 0.3 0.5 0.06 0.2
Na2O 0.3 0.02 0.02 0.1 0.2 0.04 0.02 0.02 0.06 0.04

Li 112 11.5 12.4 215 119 57.6 16.7 16.4 71.2 53.4
Be 3.7 3.8 3.1 5.3 4.5 2.5 2.1 0.2 1.5 1.0
B 36 26 34 22 44 25 28 36 102 101
P 196 47 845 377 202 128 1655 888 1004 815
Sc 11.1 3.4 0.2 9.3 7.5 5.6 1.4 0.2 2.1 3.0
Ti 5723 550 248 4240 5003 1683 1520 205 1770 1384
V 99 29 15 119 85 24 17 7 32 23
Cr 56 9 8 61 57 20 12 5 15 14
Mn 19 6 25 13 20 5 48 396 16 66
Co 10.6 4.0 4.9 24.8 12.5 1.5 4.3 4.4 2.5 3.0
Ni 21.2 6.8 8.5 39.3 22.2 4.1 4.9 2.8 3.9 4.1
Cu 22 16 10 50 38 17 27 8 9 16
Zn 37 7 6 92 148 19 26 4 11 11
Ga 28.1 6.3 3.6 26.2 26.7 11.8 8.2 4.0 11.2 10.0
Ge 2.1 0.2 1.9 1.9 1.8 0.2 0.2 0.2 0.9 0.2
As 3.1 1.2 2.1 10.0 6.0 1.9 5.1 1.5 3.3 3.3
Se 0.2 0.2 0.2 2.8 4.2 1.1 4.4 1.3 0.2 4.2
Rb 89.0 0.2 0.2 21.9 62.8 3.1 0.2 0.2 11.7 7.1
Sr 96 76 412 98 73 37 1088 424 126 155
Y 29.8 18.9 21.4 34.5 27.6 36.5 25.6 10.9 6.4 6.3
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Table A4. Cont.

µg/g JHS-R JHS-1 JHS-2 JHS-P1 JHS-P2 JHS-3 JHS-4 JHS-5 JHS-6 JHS-7

Zr 154 23 15 173 184 93 49 18 77 93
Nb 67.9 7.9 4.7 63.5 68.0 27.5 22.6 3.8 37.8 30.8
Mo 0.8 1.5 1.7 3.3 1.8 0.9 2.2 0.9 1.4 1.5
Cd 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Sn 4.1 0.9 0.9 5.0 5.4 2.7 2.5 0.8 2.0 2.4
Sb 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Cs 10.7 0.2 0.2 2.0 5.0 0.2 0.2 0.2 1.2 0.2
Ba 307 51 712 241 331 64 64 35 124 76
La 57 3 47 55 62 47 73 10 13 11
Ce 102 9 67 98 95 94 100 19 22 22
Pr 13.1 1.3 6.3 13.8 12.9 11.2 9.6 2.2 2.7 2.5
Nd 48.1 5.9 20.3 54.0 44.4 42.1 31.9 8.9 9.3 8.9
Sm 7.6 1.5 3.0 10.0 6.8 7.7 4.6 1.7 1.6 1.6
Eu 1.2 0.2 0.2 1.6 0.3 0.9 0.2 0.2 0.2 0.2
Gd 6.8 1.8 3.5 8.2 5.8 7.0 4.9 1.6 1.4 1.5
Tb 1.0 0.2 0.2 1.2 0.9 1.1 0.2 0.2 0.2 0.2
Dy 6.1 2.5 2.7 7.0 5.6 6.6 4.4 1.4 1.4 1.4
Ho 1.1 0.2 0.2 1.4 1.1 1.3 0.8 0.2 0.2 0.2
Er 3.4 1.9 1.7 4.0 3.5 4.2 2.5 0.9 0.9 0.9
Tm 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Yb 3.2 2.0 1.4 3.8 3.6 4.4 2.2 0.8 0.9 1.0
Lu 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Hf 3.7 0.2 0.4 4.1 4.5 2.3 1.2 0.2 2.0 2.3
Ta 6.4 0.2 0.2 7.1 7.5 3.4 2.2 0.2 4.3 3.1
W 9.6 2.4 7.2 8.1 11.0 3.8 3.9 3.5 5.2 3.8
Tl 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Pb 15.6 2.4 3.0 30.8 35.3 17.0 16.9 7.0 5.6 14.9
Bi 0.2 0.2 0.2 1.1 0.9 0.2 0.2 0.2 0.2 0.2
Th 16.6 1.7 1.1 22.6 24.7 15.6 4.4 1.3 10.6 7.4
U 5.8 1.3 0.2 4.9 5.1 5.0 3.1 0.8 1.9 2.5

Sia and Sib is Si content derived from the aforementioned calculation method and the XRF analysis data, respectively.

Table A5. Total REY concentrations and elemental pairs and anomalies of typical rare earth elements.

Coal Mine Sample No. REY LaN/LuN LaN/SmN GdN/LuN EuN/EuN* CeN/CeN* GdN/GdN* YN/HoN

Dongdong

DD-R 135 1.26 1.10 1.22 0.39 0.95 1.71 1.81
DD-1 137 1.06 1.01 1.16 0.42 1.04 1.71 2.41
DD-2 103 0.64 0.67 1.01 0.45 1.02 1.56 2.25
DD-3 51 0.27 0.49 0.58 0.69 0.99 1.13 1.45
DD-4 89 0.96 1.60 0.69 0.64 0.92 1.29 1.47
DD-5 99 0.76 0.99 0.76 0.54 0.94 1.29 1.50
DD-6 71 0.52 0.84 0.69 0.62 0.94 1.28 1.58
DD-7 44 0.35 1.02 0.39 0.92 0.94 0.86 0.81
DD-8 17 0.10 1.39 0.08 1.71 1.30 0.23 0.57
DD-9 19 0.15 2.15 0.08 1.71 0.92 0.23 0.43

DD-10 25 0.23 3.26 0.08 1.71 0.90 0.23 0.55
DD-11 22 0.10 0.43 0.30 1.12 0.98 0.73 0.84
DD-12 69 0.43 0.54 0.94 0.52 0.99 1.58 2.06
DD-P1 231 2.08 0.99 2.11 0.18 0.98 1.05 0.86
DD-13 125 0.63 0.49 1.51 0.25 1.00 0.95 0.93

Jinhuashan

JHS-R 281 2.58 1.13 2.41 0.80 0.85 1.11 0.95
JHS-1 49 0.14 0.32 0.65 0.79 0.96 1.35 2.92
JHS-2 175 2.07 2.33 1.22 0.48 0.85 1.94 3.20

JHS-P1 293 2.42 0.82 2.87 0.84 0.82 1.10 0.92
JHS-P2 269 2.59 1.36 1.92 0.20 0.76 1.07 0.89
JHS-3 264 2.08 0.91 2.43 0.57 0.93 1.09 1.00
JHS-4 260 3.19 2.40 1.69 0.34 0.82 2.19 1.10
JHS-5 58 0.43 0.87 0.56 0.73 0.93 1.12 1.65
JHS-6 61 0.59 1.19 0.52 0.73 0.87 1.04 1.01
JHS-7 58 0.52 1.07 0.53 0.75 0.94 1.07 0.99
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