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Abstract: The objective of this paper is to propose an active ripple filter (ARF) using the patented
DC-side direct current control for eliminating the double-line-frequency current ripple in a single-phase
DC/AC conversion system. The proposed ARF and its control strategies can not only prolong the usage
life of the DC energy source but also improve the DC/AC system performance. At first, the phenomena
of double-line-frequency current ripple and the operation principle of the ARF are illustrated. Then,
steady-state analysis, small-signal model, and control loop design of the ARF architecture are derived.
The proposed control system includes: (1) a DC current control loop to provide the excellent ripple
eliminating performance on the output of the DC energy source; (2) a voltage control loop for the
high-side DC-bus voltage of the ARF to achieve good steady-state and transient-state responses;
(3) a voltage feedforward loop for the low-side voltage of the ARF to cancel the voltage fluctuation
caused by the instability of the DC energy source. Finally, the feasibility of the proposed concept
can be verified by the system simulation, and the experimental results show that the nearly zero
double-line-frequency current ripple on the DC-side in a single-phase DC/AC conversion system can
be achieved.

Keywords: double-line-frequency current ripple; active ripple filter (ARF); single-phase DC/AC

1. Introduction

In recent years, the green energy conversion technologies for distributed generation system have
become major industrial developments in the global trend of energy conservation and carbon reduction.
Single-phase DC–AC power converters are generally used to supply AC loads in such applications [1–5].
The power generated by DC/AC conversion technologies according to user demands, and is then
provided for stand-alone AC loads [6–8] or fed into the utility grid [9].

In a single-phase DC/AC conversion system, the DC input or AC output of the power converter
would generate double-line-frequency instantaneous power in addition to the average power. Assuming
that all the components of the converter are ideal, according to the law of conservation of energy,
the instantaneous power at the DC input must be equal to that at the AC output.

Energies 2020, 13, 4772; doi:10.3390/en13184772 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-7224-3955
http://dx.doi.org/10.3390/en13184772
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/18/4772?type=check_update&version=3


Energies 2020, 13, 4772 2 of 16

The instantaneous power will cause the energy storage component such as the inductor or
capacitor to have double-line-frequency ripples, thus affecting the stability of the DC or AC sides of the
power converter [10–25]. As for a further comment in [10], the double-line-frequency current ripple
will reduce the lifetime and performance of DC energy source [10], and increase the input filter size.
Therefore, the problem of double-line-frequency instantaneous power should not be neglected while
developing high performance power converters [11–25].

Previous studies have attempted to use passive or active ripple filters (ARF) to eliminate
double-line-frequency instantaneous power. The passive ripple filter increases the size of the energy
storage components on the low-voltage or high-voltage sides of the single-phase DC/AC conversion
system [9,16], or designs an appropriate inductor–capacitor (LC) series resonant circuit to suppress the
double-line-frequency ripple on the high-voltage bus [17]. Although the aforementioned practices
can be employed to yield low-current ripple, which are relatively ideal, their main disadvantage is
that a considerably large electrolytic capacitor (E-cap) or inductor is required. In addition, the E-cap
which is generally paralleled to the low- or high-voltage bus, may heat up due to long-term absorption
of ripple components. Moreover, the equivalent series resistor (ESR) heats up along with the larger
ripples on the E-cap, which not only causes the additional power consumption, but also reduces the
lifetime of E-cap [20,21].

ARF technique is the power electronics circuit with energy storage elements [4] for eliminating the
problem of double-line-frequency instantaneous power, and the power decoupling method is commonly
used for the control strategy of the ARF [4,5]. Therefore, considering the size, cost, and characteristics
of passive components, passive ripple filters have been gradually replaced by the ARF [11–15,18–25].
As a reference for research origin, the general ARF scheme and its conventional control diagrams for
the single-phase DC/AC conversion system applications are shown in Figure 1.
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Figure 1. The general ARF scheme (a); and its conventional control diagrams (b–d) for the single-phase
DC/AC conversion system applications.
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According to the different current measurement locations of the ARF as shown in Figure 1a,
the conventional control diagram of the ARF can be classified into (1) the input current sensing point
of the ARF, as shown in Figure 1b; and (2) the input current sensing point of the single-phase DC/AC
power conversion system, as shown in Figure 1c,d. For locating the input current sensing point of
the ARF, the proportional-resonant (PR) controller and the proportional-integral (PI) controller are
cascade interconnection to achieve the zero steady-state error for tracking AC reference. For locating
the input current sensing point of the single-phase DC/AC power conversion system, it requires the
low pass filter (Figure 1c) or bandpass filter (Figure 1d) to filter the DC component of the input current
of the single-phase DC/AC power conversion system. In summary, the ARF must provide AC current,
which is difficult to control, and the above-mentioned methods cause the design process of system
controller as well as its parameters more complicated and difficult indeed.

In this study, an ARF using the DC-side direct current control for eliminating the
double-line-frequency current ripple in a single-phase DC/AC conversion system would be proposed.
Compared with the other conventional control diagrams as shown in Figure 1b–d, the DC-side direct
current control strategy is relatively simple to implement. The current command and feedback signals
are DC values, hence the nearly zero-steady state error can be fulfilled easily. The steady-state analysis,
small-signal model and control loop design of the proposed ARF architecture are derived.

2. Principle of Double-Line-Frequency Instantaneous Power

Figure 2 illustrates a single-phase DC/AC conversion system, and characteristic waveforms of the
system for the power flows without and with the ARF are presented in Figure 3.
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Figure 2. Integration of the ARF into a single-phase DC/AC conversion system [26].

The key waveforms without the ARF are shown in Figure 3a. In this figure, the instantaneous
output voltage, output current, and output power of the single-phase DC/AC conversion system are
expressed as vOUT,INV, iOUT,INV, and pOUT,INV, respectively, as follows:

vOUT,INV = Vm sin(ωLt) (1)

iOUT,INV = Im sin(ωLt) (2)

POUT,INV = vOUT,INV · iOUT,INV. (3)

According to the conservation of energy and the assumption that the energy dissipation of the
system can be neglected, the output power of the energy source pS can be expressed as follows:

pS = pOUT,INV = PS + pR (4)
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PS =
VmIm

2
(5)

pR =
VmIm

2
cos(2ωLt±π) (6)

where PS is the average power and pR refers to the double-line-frequency ripple power generated by
the product of vOUT,INV and iOUT,INV.

Assuming that the energy source provides pure DC voltage (i.e., vS ≈ VS), and the output current
of the energy source can be derived as follows:

iS = IS + iR =
PS
VS

+
PS
VS

cos(2ωLt±π) (7)

where IS and iR refer to the DC current and the AC (ripple) current provided by the energy
source, respectively.
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Figure 3. Key waveforms to illustrate the operating principles for double-line-frequency components
of a single-phase DC/AC conversion system [26]: (a) without the ARF and (b) with the ARF.

According to (7), the double-line-frequency ripple power generated by the single-phase DC/AC
conversion system was completely reflected on the current provided by the energy source. As a result,
the current ripple would suffer the performance of the energy source and substantially reduce its
service life [27–30]. Figure 3b illustrates the key waveforms of the single-phase DC/AC conversion
system after the integration of the ARF. In this figure, iIN,INV and iARF are respectively defined as the
input current of the single-phase DC/AC conversion system and the compensating current provided
by the ARF. It can be seen from Figure 2, iIN,INV can be directly expressed as follows:

iIN,INV = IS + iARF. (8)

The double-line-frequency ripple components of were provided by the ARF, as shown in (9):

iARF = iR =
PS
VS

cos(2ωLt±π). (9)

3. Operating Principles of the ARF

The ARF must possess the ability of bidirectional power flow to provide double-line-frequency
current ripple and thus yield a pure DC current of the energy source. As shown in Figure 4, the circuit
architecture of the ARF is a bidirectional buck-boost converter. The polarities of the output current of
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the ARF can be divided into the boost and buck modes. When the polarity of the output current is
positive, the ARF operates in a buck mode. By contrast, when the polarity of the output current is
negative, the ARF operates in a boost mode.

The assumptions are made in analyzing the ARF:

(1) the ARF operates in continuous conduction mode (CCM);
(2) the drive signals for active switches Q1 and Q2 of the ARF are respectively defined as d1 and d2;
(3) the DC-bus voltage vDC,ARF could be approximated as a constant value, i.e., vDC,ARF ≈ VDC,ARF;
(4) all voltages and currents in the ARF are periodic in steady-state condition; for simplicity, it is

assumed that all the components of the ARF in Figure 4 are idealized.
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3.1. Buck Mode

Figure 5a illustrates the circuit architecture of the ARF operated in the buck mode. When Q1 was
turned off and Q2 was turned on, the relation between current iARF and voltage of inductor LARF can
be calculated using the equation as follows:

diARF
dt

=
VDC,ARF −VS

LARF
(10)

when Q1 was turned on and Q2 was turned off, the relation between current iARF and voltage of
inductor LARF can be calculated using the equation as follows:

diARF
dt

= −
VS

LARF
. (11)

According to the volt-second balance principle of the inductor LARF, the voltage conversion ratio
between the low-voltage and high-voltage sides of the ARF can be derived as follows:

VDC,ARF

VS
=

d1 + d2

d2
. (12)

3.2. Boost Mode

Figure 5b illustrates the circuit architecture of the ARF operated in the boost mode. When Q1 was
turned off and Q2 was turned on, the relation between current iARF and voltage of inductor LARF can
be calculated using the equation as follows:

diARF
dt

= −
VS −VDC,ARF

LARF
(13)
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when Q1 was turned on and Q2 was turned off, the relation between current iARF and voltage of
inductor LARF can be calculated using the equation as follows:

diARF
dt

= −
VS

LARF
. (14)

Likewise, according to the volt-second balance principle of inductor LARF, the result of (12) was
also applicable to the boost mode due to the ARF has the bidirectional power flow characteristic. If the
drive signals of switches Q1 and Q2 are assumed to be complementary (i.e., d1 = 1 – d2), then the
voltage conversion ratio of the ARF can be simplified as follows:

VDC,ARF

VS
=

1
1− d1

. (15)
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4. Control Strategy of the ARF

Figure 6 illustrates the developed control system for the ARF. At first, it can be seen that the
DC-bus voltage (vDC,ARF) is sensed and compared with the voltage reference to produce an error signal.
Second, the voltage controller receives the error signal to produce the average power reference signal,
ps,ref, which is divided by the feedforward compensation signal (i.e., energy source voltage, vS) to
generate the current reference, iS,ref. In the inner current control loop, the energy source current (iS) is
sensed and compared with the current reference to generate the modulated signal (vcon) of the pulse
width modulation (PWM) generator.

It is noted that the ARF must provide AC current (i.e. ripple current), which is difficult to control.
In this study, the current reference and the sensed signals are all DC value, hence the nearly zero-steady
state error can be fulfilled easily. In other words, this study proposes a method of indirectly regulating
the output AC current of the ARF by directly controlling the input DC current of the energy source.
According to Figure 7, the controller design of the outer voltage loop and inner current loop of the
ARF was illustrated as follows.
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4.1. Designing the Controller of the Current Loop

Considering the buck mode operation, the inductor voltage in one switching period can be
expressed as follows:

vL,ARF = LARF
diL,ARF

dt
= vDC,ARFd2 − vS. (16)
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Perturbation was introduced into the inductor current and the drive signal d2 of Q2, and d1 = 1−d2.
This study assumed that vS and vDC,ARF operated in a stable DC status. Thus, (16) can be rewritten as
follows:

LARF
dĩL,ARF

dt
= −VDC,ARFd̃1 (17)

when the converter was operated in the boost mode, the inductor voltage in one switching cycle can be
expressed as:

vL,ARF = LARF
diL,ARF

dt
= vDC,ARF(1− d1) − vS. (18)

Perturbation was introduced into the inductor current and the drive signal d1 of Q1. Similarly, vS
and vDC,ARF were assumed to operate in a stable DC status.

Accordingly, (18) can be further expressed as:

LARF
d(ĩL,ARF)

dt
= −VDC,ARFd̃1. (19)

An observation of (17) and (19) indicated that the small-signal models derived in the buck and
boost operational modes were the same. In addition, this study controlled the output current of
the ARF indirectly by controlling the output current of the energy source to regulate the required
current ripple provided by the ARF. Therefore, the derived small-signal model must undergo minor
modifications. According to (8), the three branch currents of the input side of the ARF-integrated
single-phase DC/AC conversion system were interrelated. This study assumed that the input current
iIN,INV required by the single-phase DC/AC conversion system can be regarded as a definite value in
consideration of small signals. In other words, perturbation in the current provided by the energy
source would be directly reflected on the output current of the ARF.

Therefore, the introduction of perturbation into the two signals in (8) would result in the following
equation:

ĩS = −ĩL,ARF. (20)

Substituting (17) or (19) into the equation, performing the Laplace transform, and deriving the
transfer function of the small-signal model of the current loop is as follows:

Gc =
ĩS
d̃1

=
VDC,ARF

sLARF
. (21)

The equivalent circuit derived in the aforementioned process is illustrated in Figure 7.
The parameters were VDC,ARF = 100 V and LARF = 250 µH, and the open-loop gain of the current loop
is expressed as (22).

Lc(s) =
ĩs

ṽcon
= FmGc(s) =

4000
s

(22)

where Fm is the equivalent small-signal gain of pulse-width modulation, as follows

Fm =
1

Vtri
=

1
100

(23)

where Vtri is the peak value of the carrier wave of the PWM generator.
According to Figure 7, the open-loop gain of the current loop was in a first-order integral form.

Therefore, the controller only needed to be in a proportional-integral (PI) form to achieve satisfactory
control. The form and parameters of the designed PI controller are presented as follows:

Cc(s) = KP1 +
KI1
s

= Kpc ·
s + zc

s
= 4.5 ·

s + 10000
s

. (24)

After incorporating the compensation from the controller, the open-loop gain of the current loop
is expressed as follows:
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Tc(s) = Cc(s)Lc(s) = 18000 ·
s + 10000

s2 . (25)

The bode plot of the response frequency of the current loop after receiving compensation from the
controller is also illustrated in Figure 8. According to the figure, the zero crossover frequency (i.e.,
closed-loop bandwidth) was 3 kHz, and the phase margin was 60◦. In other words, the closed-loop
control enabled the ARF to attain sufficient response and stability.
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4.2. Designing the Controller of the Voltage Loop

In practice, the capacitor voltage on the high-voltage side of the ARF also involved
double-line-frequency components. Consequently, the compensation current command may be affected
through feedback control, resulting in the failure to completely eliminate the double-line-frequency
components at the output side of the single-phase DC/AC conversion system. To prevent this problem,
the bandwidth of the voltage loop on the high-voltage side of the ARF must be substantially lower
than the double-line-frequency to ensure that the current command remains unaffected.

According to Figure 9, the small-signal model of the voltage loop was derived as follows from the
perspective of power, where pCH and iCH refer to the power and current of the capacitor energy storage
on the high-voltage side of the ARF.

pRIP = pIN,INV − pS = −pCH (26)

vSiL,ARF = −vDC,ARFiCH. (27)

Assuming the stable operation of vS and vDC,ARF, to consider (20) and substitute perturbation into
iS and iCH. Thus, (27) can be rewritten as:

ĩCH

ĩS
=

VS
VDC,ARF

. (28)

Multiplying (28) by the capacitive resistance on the high-voltage side, to perform the Laplace
transform, and then the transfer function of the small-signal model of the voltage loop can be expressed
as follows:

Gv =
ṽDC,ARF

ĩS
=

VS
sVDC,ARFCDC,ARF

. (29)

The parameters of the small-signal model of the voltage loop included vS = 36 V, VDC,ARF = 100 V,
and CDC,ARF = 3400 µF. The open-loop gain of the voltage loop is as follows:

Lv(s) =
ṽDC,ARF

p̃S,re f
=

Pv(s)
VS

=
2.941

s
. (30)
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Notice that (30), which includes the feedforward term of the S at denominator, which can eliminate
fluctuation caused by vS. Similar to the current loop, the open-loop gain of the voltage loops was in a
first-order integral form as well. Therefore, the PI form can be used on the controller. The parameters
of the controller are expressed as follows:

Cv(s) = KP2 +
KI2

s
= Kpv ·

s + zv

s
= 16 ·

s + 20
s

. (31)

After incorporating the compensation from the controller, the open-loop gain of the voltage loop
is presented as follows:

Tv(s) = Cv(s)Lv(s) = 47.05 ·
s + 20

s2 . (32)
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Figure 9. Small-signal equivalent circuit of the voltage loop.

Figure 10 illustrates the open-loop gain of the voltage loop before and after compensation.
The figure shows that, after compensation, the zero crossover frequency was 8 Hz and the phase margin
was 68◦. The closed-loop control improved the stability of the capacitor voltage on the high-voltage
side of the ARF.Energies 2020, 13, x FOR PEER REVIEW 11 of 16 
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5. Simulation and Experimental Results

MATLAB© and PSIM© software were used to analyze and verify the feasibility of the proposed
method. The specifications of the system are listed as follows: an input DC voltage of 36 V for the
distributed energy source, an output AC voltage of 110 Vrms, and a rated power output of 500 W for
single-phase DC/AC grid-connected operation [31]. The experimental platform was implemented,



Energies 2020, 13, 4772 11 of 16

as shown in Figure 11. The parameters of circuit components and the specification of the experimental
platform are listed in Tables 1 and 2, respectively.
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Table 1. Component parameters of the ARF circuit.

Component Symbol Value/Model

Inductance LARF 250 µH
MOSFET Q1, Q2 FDA59N30

Capacitance CDC, ARF 3400 µF/250V

Table 2. Equipment of the experimental platform.

Type Model

DC Source Chroma 62050P-100-100
Scope Tektronix MDO3024

Power Analyzers Yokogawa WT310

The simulation and experimental results at 500 W before the ARF were integrated into the
distributed energy source as shown in Figure 12a,b, respectively. The distributed energy source
provides an average current of 13.85 A, the peak-to-peak value of the double-line-frequency current
ripple is 24 A.

The only difference is that the peak value of the output current of the single-phase DC/AC
conversion system are 6.3 A and 5.8 A, respectively. As shown in the results, the ripples strongly affect
the service life of the DC energy source and reduces the operating efficiency of the power system.

Next, after integration of the ARF, the double-line-frequency current ripple is suppressed,
the average current is 14 A and 14.25 A, the peak-to-peak value of the inductor current is 23 A and
22 A, the results are shown in Figure 13a,b, respectively. In this case, the life service of the distributed
energy source not only increased, but the performance of the power system was also enhanced.
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(a) Simulation result and (b) experimental result.
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Figure 13. Steady-state of the output voltage and inductor current of the ARF: (a) Simulation result
and (b) experimental result.

Figure 14 shows the simulation and experimental results of the DC/AC output voltage and output
current at 500 W when the ARF was integrated, respectively. In Figure 14a (simulation), the peak
voltage of 155.7 V, the peak value of the output current is 6.25 A. In Figure 14b (experiments), the peak
current of the output current is 5.8 A.Energies 2020, 13, x FOR PEER REVIEW 13 of 16 
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Figure 14. The output voltage and current of the proposed single-phase DC/AC conversion system. (a)
Simulation result and (b) experimental result.

To add a soft-start circuit made the output of the system start up smoothly, the current remained
stable, the output voltage increased to 100 V smoothly without overshot, and the soft-start time was
about 0.55 s. The results are shown in Figure 15a,b, respectively.
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Figure 15. The bus voltage and inductor current of the ARF during the soft start process: (a) Simulation
result and (b) experimental result.

As seen in Figures 12–15, the simulation coincided with experimental results to validate the
proposed method. These results correspond with the calculations in the steady-state analysis as well.
Figure 16a illustrates spectrum of the input current at 120 Hz before the integration of ARF and
Figure 16b verifies the double-line-frequency current ripple of the input side is significantly reduced.
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Figure 16. Experimental results of measurement input DC current spectrum in 120Hz: (a) before DC
energy source integrates with ARF and (b) DC energy source integrates with ARF.

By observing Figure 17, in the full load case, the peak-to-peak current ripple is 24 A, which is
175% of the average value. When ripple suppression was enabled, the peak-to-peak current ripple
reduced to 2 A, which was 14% of the average value. Therefore, it can be proved that energy source
was integrated with ARF and the double-line-frequency current ripple of the energy source could be
significantly reduced. Figure 18 show that the highest conversion efficiency is about 97%.
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Finally, the comparison dataset for the system integrated with, and without the ARF, the actual
efficiencies are measured by a WT310 power analyzer under different loads, as listed in Table 3.

Table 3. Measured ARF dataset.

Without Proposed ARF With Proposed ARF

VS (V) IS (A) IS,RIP-pp
(A) PS (W) IS (A) IS,RIP-pp

(A) PS (W) η (%)

36 1.35 2.1 48.6 1.4 0.35 50.4 96.4
36 2.72 4.9 97.92 2.79 0.7 100.44 97.4
36 4.1 8.1 147.6 4.2 1.2 151.2 97.6
36 5.67 12 204.12 5.82 1.3 209.52 97.4
36 7.12 13 256.32 7.3 1.4 262.8 97.5
36 8.22 14 295.92 8.42 1.5 303.12 97.6
36 9.66 15 347.76 9.92 1.55 357.12 97.3
36 11.12 18 400.32 11.4 1.7 410.4 97.5
36 12.45 20.5 448.2 12.75 1.8 459 97.6
36 13.85 24 498.6 14.25 2 513 97.1

6. Conclusions

In this paper, simulations and experiments were carried out to demonstrate that the proposed
ARF and its DC-side direct current control system structure could be potentially applied to produce a
zero-ripple input current single-phase DC/AC architecture (patented [32,33]). The proposed control
system has a DC current control loop, a voltage control loop, and a voltage feedforward control
loop. The efficacy of the proposed method is verified experimentally under steady-state conditions.
The results show that the proposed ARF and its control strategies offers many advantages, such as a
fast dynamic response, simple implementation, a nearly zero-steady state error, and the elimination of
the double-line-frequency current ripple in a single-phase DC/AC conversion system above 90%.
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