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Abstract: Aiming at the problems of large excitation loss and low power generation efficiency of
silicon rectifier generators and the unstable output voltage of permanent magnet (PM) generators,
a hybrid excitation generator (HEG) with suspended brushless claw pole electrical excitation rotor
(EER) and combined magnetic pole PM rotor is proposed in the present work. With only one fractional
slot winding stator, the generator adopts PM field as the main magnetic field and electrical excitation
field as the auxiliary magnetic field, which not only retains the advantages of high efficiency of PM
generators but also effectively reduces excitation consumption. The main structure parameters and
the design method were analyzed, and a simulation analysis of no-load magnetic field distribution
and flux regulation ability was carried out using finite element software to verify the rationality
of the hybrid excitation parallel magnetic circuit design. Moreover, the no-load, load, regulation,
and voltage regulation characteristics of the designed generator were tested, and the results show
that the designed generator has a wide range of voltage regulation, which can ensure stable output
voltage under variable speed and load conditions.

Keywords: hybrid excitation generator; brushless claw pole electrical excitation; combined magnetic
pole; vehicles

1. Introduction

At present, silicon rectifier generators are widely used in vehicle generators. However, their thermal
effect of electric excitation winding consumes a lot of heat energy, so their power generation efficiency is
low. In contrast, permanent magnet (PM) generators use PM steel to generate the main magnetic field,
which has the advantages of high power density and high output efficiency. However, it is difficult
for the output voltage to be stable due to the nonadjustable PM field [1–4]. Therefore, based on the
power demand of modern vehicles, hybrid excitation generators (HEGs), which use the two excitation
methods together to generate a magnetic field, not only combine the advantages of the two generators
but can also overcome the defects to a certain extent. Therefore, they have gradually become the

Energies 2020, 13, 4723; doi:10.3390/en13184723 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1908-9645
http://www.mdpi.com/1996-1073/13/18/4723?type=check_update&version=1
http://dx.doi.org/10.3390/en13184723
http://www.mdpi.com/journal/energies


Energies 2020, 13, 4723 2 of 13

development trend of vehicle generators for the future [5–9]. Experts and scholars from home and
abroad have invested in research in this field, and the structure and voltage stabilizing performance
of HEGs have been continuously improved and innovated. The authors of [10] proposed a parallel
HEG consisting of a PM rotor and a doubly salient electrical excitation rotor (EER). In this, the output
voltage of the generator is provided by two armature windings in series, and the electric excitation
winding of the doubly salient EER is wound in the stator slot of the corresponding stator. In [11],
a brushless hybrid excitation direct current generator composed of a structure-parallel PM part and a
flux modulation part was proposed, and the operation mode of the flux modulation part was fully
analyzed under different conditions. This structure can reduce the short-circuit current by adjusting
the electrical excitation current (EEC), but the double stator and double armature winding structure
increases the length of the two ends of the middle part and the axial length of the generator. In [12]
and [13], the authors researched a HEG with a PM rotor and a magnetic shunt rotor. In this structure,
a special magnetic bridge is used to transfer the magnetic field in the electric excitation part, which
increases the additional air gap as well as the axial length of the generator. The authors of [14] proposed
a built-in PM and salient pole electrical excitation HEG with stator skew. Here, the electric excitation
part of the structure is the salient pole type, and it needs to use the structure of a carbon brush slip
ring, which will affect the service life of the generator. In terms of voltage control, on the basis of the
traditional electronic control system, some improved voltage stabilizing control system with neural
network control, robust control, and sliding mode control were proposed in [15–17], respectively,
and achieved good voltage stabilizing performance.

To sum up, researchers have carried out in-depth research on parallel-structure HEGs and
achieved certain research results that provide useful reference for the research and development of
high-performance HEGs [18–24]. On this basis, this paper proposes a HEG with suspended brushless
claw pole EER and combined magnetic pole PM rotor coaxially connected in parallel and sharing the
same armature winding. The generator uses the PM field as the main magnetic field to improve the
power density and the electrical excitation field as the auxiliary magnetic field to reduce the excitation
loss. Meanwhile, the brushless claw pole rotor eliminates the easily damaged carbon brush slip ring
structure, which can effectively improve the reliability of the generator.

2. Design and Calculation of HEG

In the design structure of HEG, the PM part is the main magnetic potential source and the electrical
excitation part plays an auxiliary regulating role. Therefore, the design power of the PM part and the
electrical excitation part are 700 and 300 W, respectively. The structure of the designed HEG is shown
in Figure 1, and its main technical indexes are shown in Table 1.
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Table 1. Main technical indexes of HEG.

Technical Index Parameter Value Technical Index Parameter Value

Rated voltage 14 V Insulation class E

Rated power 1000 W Protection level IPX3

Rated speed 4000/r/min Working temperature −40 to +75 ◦C

Work form Continuous work Output mode Direct current

2.1. The EER Rotor of HEG

In the EER, the electric excitation winding is fixed by a fixed iron ring, and the outer side of that
ring is welded on the stator. The claw part is shortened on both sides so as to avoid sweeping the
chamber when the rotor rotates. The installation diagram of EER and the corresponding stator is
shown in Figure 2, and the dimensions of the designed claw pole structure are shown in Figure 3.
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Figure 3. Parameter dimension diagram of claw pole structure.

The thickness of flange plate bm, the yoke diameter Dc, and the thickness of claw root ac determine
the magnetic flux of the claw pole and the material consumption, which are important parameters of
the claw pole structure, and can be calculated as follows [25–27]:

bm =
πDi1Lef1BmBδσe

8(τs−4δ)

Dc =

√
pKDi1Lef1BmBδσe

2

ac = a0 +
(

Le−6
2 − bm

)
tan β0

(1)

where Di1 is the inner diameter of stator; Lef1 is the axial length of EER; Bm is the magnetic flux density
of the claw pole body; Bδ is the magnetic flux density of the main air gap; σe is the magnetic flux
leakage coefficient of EER; τs is the pole distance of the generator; δ is the length of the main air gap;
p is the pole pairs; K is the claw pole calculation coefficient, which is usually taken as 1 to 1.2; a0 is the
thickness of the tip of the claw; Le is the length of the claw, and β0 is the inclination angle of the claw,
which is usually taken as 10 to 15◦.
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By calculation, the parameter dimensions of EER are shown in Table 2.

Table 2. The parameter dimensions of EER.

Parameter Name Parameter Value Parameter Name Parameter Value

The thickness of flange plate 7 mm The claw root thickness 6.2 mm

The arc length of claw root 42 mm The thickness of the tip of the claw 2.2 mm

The diameter of claw pole yoke 44.5 mm The length of claw 7 mm

The diameter of the bare wire of electric excitation winding is determined by EEC and EEC density,
and the diameter of the enameled wire is selected according to the winding standard of the generator
based on the diameter of the bare wire. The diameter of the bare wire of winding can be calculated
as follows:

df =

√
4If

πJf
(2)

where If is the EEC, Jf is the EEC density, and we selected Jf = 10 A/mm2. From this calculation, we can
get df = 0.637 mm, and referring to the enameled wire diameter standard, we selected dq = 0.67 mm.

2.2. The PM Rotor of HEG

The PM rotor adopts a combined magnetic pole with radial V-shaped PM steel and rectangular
PM steel to provide the magnetic flux of each pole. It has a significant “magnetic gathering” effect
and can effectively improve the main magnetic flux of each pole and avoid the sag of output voltage
peak [28]. In order to prevent magnetic flux leakage, arc-shaped magnetic separation grooves are set
on both ends of the PM steel. The structure of the combined PM rotor is shown in Figure 4.

Energies 2020, 13, x FOR PEER REVIEW 4 of 13 

 

Table 2. The parameter dimensions of EER. 

Parameter Name 
Parameter 

Value Parameter Name 
Parameter 

Value 
The thickness of flange 

plate 7 mm The claw root thickness 6.2 mm 

The arc length of claw root 42 mm 
The thickness of the tip of the 

claw 2.2 mm 

The diameter of claw pole 
yoke 44.5 mm The length of claw 7 mm 

The diameter of the bare wire of electric excitation winding is determined by EEC and EEC 
density, and the diameter of the enameled wire is selected according to the winding standard of the 
generator based on the diameter of the bare wire. The diameter of the bare wire of winding can be 
calculated as follows: 

f

f
f

4
J
Id

π
=

 
(2)

where fI  is the EEC, fJ  is the EEC density, and we selected fJ  = 10
2mmA . From this 

calculation, we can get fd  = 0.637 mm, and referring to the enameled wire diameter standard, we 

selected qd  = 0.67 mm. 

2.2. The PM Rotor of HEG 

The PM rotor adopts a combined magnetic pole with radial V-shaped PM steel and rectangular 
PM steel to provide the magnetic flux of each pole. It has a significant “magnetic gathering” effect 
and can effectively improve the main magnetic flux of each pole and avoid the sag of output voltage 
peak [28]. In order to prevent magnetic flux leakage, arc-shaped magnetic separation grooves are set 
on both ends of the PM steel. The structure of the combined PM rotor is shown in Figure 4. 

A B C In Out

S N
B

C A
Stator core

Upper layer
of stator slot

Magnetic
isolation alot

Rectangular
PM steel

Rotor core

Lower level
of stator slot

V-shaped PM steel

 
Figure 4. Structure diagram of combined pole permanent magnet (PM) rotor. 

In order to improve the magnetic field strength, the Nd-Fe-B PM material NTB35 with high 
remanence induction strength, high coercivity, and high magnetic energy product is adopted. Its 

remanence induction strength is 1.17 T, the maximum coercivity is 836 mkA , and the maximum 

magnetic energy product is 263
3mkJ . According to the dimensional constraint equation of PM steel, 

the main dimension of PM steel can be calculated as follows [29]: 

Figure 4. Structure diagram of combined pole permanent magnet (PM) rotor.

In order to improve the magnetic field strength, the Nd-Fe-B PM material NTB35 with high
remanence induction strength, high coercivity, and high magnetic energy product is adopted.
Its remanence induction strength is 1.17 T, the maximum coercivity is 836 kA/m, and the maximum
magnetic energy product is 263 kJ/m3. According to the dimensional constraint equation of PM steel,
the main dimension of PM steel can be calculated as follows [29]:

h =
µr

B′r
Bσ −1

δ

b =
αpτsLef2

Lp

(3)

where h is the magnetizing direction length of PM steel; b is the width of PM steel; µr is the relative
recovery permeability; B′r is the residual magnetic induction strength of PM steel at working temperature;
Lp is the axial length of PM steel; αp is the polar arc coefficient; and Lef2 is the axial length of the
PM rotor.

The parameter dimensions of PM steel were calculated according to the calculation and are shown
in Table 3.
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Table 3. The parameter dimensions of PM steel.

Parameter Name V-Shaped PM Steel Rectangular PM Steel

Magnetization direction length 2.5 mm 4.0 mm

Width 30 mm 14 mm

Axial length 20 mm 20 mm

2.3. Stator of HEG

The stator core is made of a 0.5 mm silicon steel sheet, which can effectively reduce the stator eddy
current loss and magnetic flux leakage [30]. In order to match the brushless design of EER, the stator is
a combined stator with the same slot moment, tooth width, and yoke length, as shown in Figure 5.
It can be seen that the stator of the EER part is welded by radial stator teeth and tangential stator yoke
in order to cooperate with it. The PM rotor part adopts a semiclosed rectangular slot, and its structural
parameters are shown in Figure 6.
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The stator tooth width bt and the height of stator yoke hj1 determine the stator slot area and the
flux density of stator teeth and stator yoke, which are important structural parameters of stator slot
and can be calculated as follows:  bt =

πBσ[Di1+2(hs0+hs1)]
ZBt1Kc

hj1 = K1Bστs
Bj1

(4)

where hs0 is the height of the stator slot; hs1 is the height of the stator slot wedge; Z is the number of
stator slots; Bt1 is the flux density of the stator teeth and Bt1 = 1~1.3Bσ; Kc is the lamination coefficient
of stator lamination, and in this paper, Kc = 0.95; K1 is the calculation coefficient of the stator slot and is
usually taken as 0.358 to 0.37; and Bj1 is the flux density of the stator yoke. The calculated stator tooth
width bt is 3.9 mm and the height of the stator yoke hj1 is 7 mm.

The armature winding is designed as three-phase, eight-pole, 36-slot fractional slot winding,
which can effectively weaken the high-order harmonics and reduce the sinusoidal distortion rate of
the output voltage waveform [31–33]. According to the 40◦ slot angle and 60◦ phase band, the vector
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coils of each phase winding are distributed as shown in Table 4. The winding schematic diagram of
fractional slot winding can be seen in Figure 4.

Table 4. The vector coil distribution table of each phase winding.

Phase Vector Coil Number

Phase A 1 2 −6 10 11 −15 19 20 −24 28 29 −33

Phase B 4 5 −9 13 14 −18 22 23 −27 31 32 −36

Phase C −3 7 8 −12 16 17 −21 25 26 −30 34 35

The number of conductors in series for each phase of the armature winding N is determined by
the line load of generator A, and it can be calculated as follows:

N =
AπDi1

mIN
(5)

where m is the phase number of generator, and IN is the rated current of the generator.
Moreover, the number of conductors per slot NS can be calculated as follows:

NS =
Nma

Z
(6)

where a is the number of parallel branches.
The number of turns in each phase of the double-layer winding Wc is half of the number of

conductors in each slot, and we calculated Wc as 8 turns.

3. Magnetic Field Simulation Analysis and Output Characteristic Analysis

3.1. The Finite Element Simulation Model

The normal operation of a vehicle generator meets the Maxwell’s equation [34]:

∇×

(
v∇×

→

A
)
=
→

J (7)

where
→

A is the vector magnetic potential and
→

A =
[
Ax Ay Az

]T
, where Ax, Ay, and Az are the

components of
→

A on each coordinate axis;
→

J is the current density vector and
→

J =
[
Jx Jy Jz

]
, where

Jx, Jy, and Jz are the components of
→

J on each coordinate axis; and v is the permeability and

v =


vx 0 0

0 vy 0
0 0 vz

, where vx, vy, and vz are the components of v on each coordinate axis.

By solving the formula, the partial differential equations can be obtained as follows:
∂
∂y

{
vz

(
∂Ay
∂x −

∂Ax
∂y

)}
−

∂
∂z

{
vy

(
∂Ax
∂z −

∂Az
∂x

)}
= Jx

∂
∂z

{
vx

(
∂Az
∂y −

∂Ay
∂z

)}
−

∂
∂x

{
vz

(
∂Ay
∂x −

∂Ax
∂y

)}
= Jy

∂
∂x

{
vy

(
∂Ay
∂x −

∂Ax
∂y

)}
−

∂
∂y

{
vx

(
∂Az
∂y −

∂Ay
∂z

)}
= Jz

(8)

Therefore, the flux density of any point in the magnetic field Br and the magnetic flux of any
surface Φr can be obtained as follows:
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 Br =

√(
∂Az
∂y −

∂Ay
∂z

)2
+

(
∂Ax
∂z −

∂Az
∂x

)2
+

(
∂Ay
∂x −

∂Ax
∂y

)2

Φr =
∫

BrdS
(9)

From the above calculation, under certain boundary conditions, the vector magnetic potential of
any point in the generator magnetic field can be obtained by solving Maxwell’s equations. The magnetic
flux density of this point can be calculated using the vector magnetic potential, and the magnetic flux
of a certain plane can be solved.

3.2. Simulation Analysis of Magnetic Field

The simulation analysis model of HEG was established using finite element software.
After simulation, the magnetic density cloud diagram of HEG was obtained, as shown in Figure 7.
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Therefore, the flux density of any point in the magnetic field rB  and the magnetic flux of any 

surface rΦ  can be obtained as follows: 
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From the above calculation, under certain boundary conditions, the vector magnetic potential of 
any point in the generator magnetic field can be obtained by solving Maxwell’s equations. The 
magnetic flux density of this point can be calculated using the vector magnetic potential, and the 
magnetic flux of a certain plane can be solved. 

3.2. Simulation Analysis of Magnetic Field 

The simulation analysis model of HEG was established using finite element software. After 
simulation, the magnetic density cloud diagram of HEG was obtained, as shown in Figure 7. 
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Figure 7. Magnetic density map of HEG. (a) magnetic density map in the direction of PM rotor, (b) 
magnetic density map in the direction of EER. 

It can be seen from Figure 7 that the synthetic magnetic field of the generator is evenly 
distributed. The maximum flux density of the main flux magnetic circuit is less than 2 T, so the 
magnetic field is not saturated. There are a lot of magnetic field saturation phenomena at the air gap 
between the two ends of the PM steel, which is the main leakage flux distribution area. Those 

Figure 7. Magnetic density map of HEG. (a) magnetic density map in the direction of PM rotor,
(b) magnetic density map in the direction of EER.

It can be seen from Figure 7 that the synthetic magnetic field of the generator is evenly distributed.
The maximum flux density of the main flux magnetic circuit is less than 2 T, so the magnetic field is
not saturated. There are a lot of magnetic field saturation phenomena at the air gap between the two
ends of the PM steel, which is the main leakage flux distribution area. Those saturations can effectively
reduce the magnetic flux loss, guide the magnetic flux to converge into the main flux magnetic circuit,
improve the magnetic field gathering effect, and enhance the magnetic field strength.

According to the model simulation analysis, when the EEC is 0, +3, and −3 A, the vector
distribution of magnetic flux density of the generator and the radial magnetic density in the main air
gap are shown in Figures 8–10.
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In Figures 8–10, the Φsp is the PM flux and the Φse is the electrical excitation flux. Figure 8 shows
that when the EEC is 0 A, the electrical excitation field is almost zero and the radial magnetic density
of the main air gap corresponding to the EER is almost zero too. At this time, the main magnetic field
of the generator is only provided by the PM field, and it is weak. As shown in Figure 9, when the EEC
is 3 A in the forward direction, the generated electrical excitation field is not zero. It is in parallel with
the PM field in the rotor part and synthesized in the main air gap, and the direction is the same as that
of the PM field. The radial magnetic density distribution shows that the electrical excitation part and
the PM part have the same direction under the same polarity. The peak magnetic flux density of the
PM part is about 1.2 T, and the electrical excitation part is about 0.9 T. Meanwhile, the magnetic flux
of the main air gap is mainly provided by the PM field, and the electrical excitation field plays the
role of “enhancing magnetic field”. As shown in Figure 10, when the EEC is 3 A in negative direction,
the direction of the electrical excitation field is opposite to that of the PM field, and the radial flux
density of the main air gap of the electrical excitation field is opposite to that of the PM field part under
the same polarity. At this time, the magnetic density of the main air gap is the difference between
the two parts. The electrical excitation field plays a role of “weakening magnetic field”, which can
effectively weaken the synthetic magnetic field and reduce the output voltage.

From the above analysis, it can be concluded that changing the direction of the EEC can change
the direction of the electrical excitation field so as to achieve the purpose of adjusting the size of the
main magnetic field and make the output voltage of the HEG stable in a certain range.

3.3. The Output Characteristic Analysis

The output characteristics of the newly developed HEG were tested and analyzed, and the no-load
characteristics of the HEG under rated speed of 4000 r/min is shown in Figure 11.
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Figure 11. No-load characteristic curve of HEG.

Figure 11 shows that when the EEC increases from 0 to 5 A, the generator output voltage increases
from 39.32 to 68.25 V, an increase of 73.5%. When the EEC is between −2 and 2 A, the output voltage
increases linearly with increasing EEC. However, when the EEC is greater than 2 A or less than −2 A,
the electrical excitation field gradually tends to be saturated, and the regulation ability to the main air
gap magnetic field is weakened. Thus, the growth trend of the output voltage is obviously weakened.
Moreover, it can be seen that the output voltage can be changed within 12–68 V by changing the
magnitude and direction of EEC, so the generator has a wide range of voltage regulation.

Figure 12 shows the changes in output voltage when the EEC changes from 0 to 3.5 A and the
generator speed changes from 500 to 4500 r/min.
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It can be seen from Figure 12 that the output voltage increases almost linearly with the increase
in speed, no matter how large the EEC is. When the EEC is 2 A and the speed changes from 500 to
4500 r/min, the output voltage increases from 7 to 72 V. When the speed is 4500 r/min and the EEC is
0 A, the output voltage is 44 V, which is reduced by 39%. Therefore, changing the size of the EEC can
effectively change the output voltage. Figure 13 shows the external characteristics of the generator
when it is connected with pure resistive load and operates at rated speed of 4000 r/min.

Energies 2020, 13, x FOR PEER REVIEW 10 of 13 

 

It can be seen from Figure 12 that the output voltage increases almost linearly with the increase 
in speed, no matter how large the EEC is. When the EEC is 2 A and the speed changes from 500 to 
4500 r/min, the output voltage increases from 7 to 72 V. When the speed is 4500 r/min and the EEC is 
0 A, the output voltage is 44 V, which is reduced by 39%. Therefore, changing the size of the EEC can 
effectively change the output voltage. Figure 13 shows the external characteristics of the generator 
when it is connected with pure resistive load and operates at rated speed of 4000 r/min. 

 
Figure 13. The external characteristic curve of HEG. 

Figure 13 shows that the output voltage decreases with the increase in load current when the 
generator operates with load and the speed remains unchanged. When the load current is the rated 
load current of 71.4 A, the EEC needs to be greater than 3 A. The power characteristics of the generator 
were calculated and are shown in Figure 14. 

 
Figure 14. Power characteristic curve of HEG. 

From the Figure 14, it can be seen that when the speed is 4000 r/min, the peak load power is 1521 
W. Under the rated load current condition, when the EEC is 3 A, the output power is 980 W, so the 
rated output power can be reached by adding a little EEC. 

When the generator runs at rated speed, the regulation characteristics of the generator can be 
obtained by changing the load and adjusting the EEC to stabilize the output voltage at 14 V. In order 
to study the output characteristics of the designed HEG, the regulation characteristics of the designed 
HEG and the traditional silicon rectifier generator were compared and studied, and the results are 
shown in Figure 15. 

 
Figure 15. Regulation characteristics of HEG and silicon rectifier generator. 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

O
ut

pu
t v

ol
ta

ge
/V

Load current/A

 EEC=0A
 EEC=0.5A
 EEC=1A
 EEC=1.5A
 EEC=2A
 EEC=2.5A
 EEC=3A
 EEC=3.5A

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

O
ut

pu
t p

ow
er

/W

Load current/A

 EEC=0A
 EEC=0.5A
 EEC=1A
 EEC=1.5A
 EEC=2A
 EEC=2.5A
 EEC=3A
 EEC=3.5A

0 10 20 30 40 50 60 70 80
-4

-2

0

2

4

6

8

10

EE
C/

A

Load current/A

 HEG
 Silicon rectifier generator

Figure 13. The external characteristic curve of HEG.

Figure 13 shows that the output voltage decreases with the increase in load current when the
generator operates with load and the speed remains unchanged. When the load current is the rated
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load current of 71.4 A, the EEC needs to be greater than 3 A. The power characteristics of the generator
were calculated and are shown in Figure 14.

Energies 2020, 13, x FOR PEER REVIEW 10 of 13 

 

It can be seen from Figure 12 that the output voltage increases almost linearly with the increase 
in speed, no matter how large the EEC is. When the EEC is 2 A and the speed changes from 500 to 
4500 r/min, the output voltage increases from 7 to 72 V. When the speed is 4500 r/min and the EEC is 
0 A, the output voltage is 44 V, which is reduced by 39%. Therefore, changing the size of the EEC can 
effectively change the output voltage. Figure 13 shows the external characteristics of the generator 
when it is connected with pure resistive load and operates at rated speed of 4000 r/min. 

 
Figure 13. The external characteristic curve of HEG. 

Figure 13 shows that the output voltage decreases with the increase in load current when the 
generator operates with load and the speed remains unchanged. When the load current is the rated 
load current of 71.4 A, the EEC needs to be greater than 3 A. The power characteristics of the generator 
were calculated and are shown in Figure 14. 

 
Figure 14. Power characteristic curve of HEG. 

From the Figure 14, it can be seen that when the speed is 4000 r/min, the peak load power is 1521 
W. Under the rated load current condition, when the EEC is 3 A, the output power is 980 W, so the 
rated output power can be reached by adding a little EEC. 

When the generator runs at rated speed, the regulation characteristics of the generator can be 
obtained by changing the load and adjusting the EEC to stabilize the output voltage at 14 V. In order 
to study the output characteristics of the designed HEG, the regulation characteristics of the designed 
HEG and the traditional silicon rectifier generator were compared and studied, and the results are 
shown in Figure 15. 

 
Figure 15. Regulation characteristics of HEG and silicon rectifier generator. 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

O
ut

pu
t v

ol
ta

ge
/V

Load current/A

 EEC=0A
 EEC=0.5A
 EEC=1A
 EEC=1.5A
 EEC=2A
 EEC=2.5A
 EEC=3A
 EEC=3.5A

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

O
ut

pu
t p

ow
er

/W

Load current/A

 EEC=0A
 EEC=0.5A
 EEC=1A
 EEC=1.5A
 EEC=2A
 EEC=2.5A
 EEC=3A
 EEC=3.5A

0 10 20 30 40 50 60 70 80
-4

-2

0

2

4

6

8

10

EE
C/

A

Load current/A

 HEG
 Silicon rectifier generator

Figure 14. Power characteristic curve of HEG.

From the Figure 14, it can be seen that when the speed is 4000 r/min, the peak load power is 1521
W. Under the rated load current condition, when the EEC is 3 A, the output power is 980 W, so the
rated output power can be reached by adding a little EEC.

When the generator runs at rated speed, the regulation characteristics of the generator can be
obtained by changing the load and adjusting the EEC to stabilize the output voltage at 14 V. In order to
study the output characteristics of the designed HEG, the regulation characteristics of the designed
HEG and the traditional silicon rectifier generator were compared and studied, and the results are
shown in Figure 15.
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Figure 15 shows that with the increase in load current, the greater the power required by the
generator, the greater is the EEC. When the load current is in the range of 7 to 71.4 A, the EEC increases
almost linearly, which indicates that the generator has good regulation characteristics. When the
load current is 21.7 A, the load power of the generator is 304 W and the EEC is −0.3 A. At this
time, the electrical excitation field and the PM field are reversed, and the composite magnetic field is
weakened. Moreover, with the decrease in load current, the EEC will always decrease to ensure the
output voltage. And with the increase in load current, in order to maintain the stability of the generator
output voltage, both the HEG and the silicon rectifier generator need to increase EEC. However,
the EEC required by the HEG is far less than that by the silicon rectifier generator, so it can avoid
large excitation heating and loss and has higher output efficiency and wider voltage adjustment range.
It can also be seen from the figure that under the condition of rated load current, the EEC of the silicon
rectifier generator needs to be connected with 10 A, but the HEG only needs 3.2 A to ensure stable
voltage output.

After installing voltage regulator controller for the generator, the voltage stabilizing performance
test was carried out under the load power of 980, 1000, and 1020 W. The results are shown in Table 5.
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Table 5. Test results of voltage stabilizing performance of the HEG.

Speed (r/min) Load Power (W) The Voltage of HEG (V)

2000

950 13.83

1000 13.01

1050 12.01

4000

950 14.23

1000 14.14

1050 14.06

4800

950 12.21

1000 14.13

1050 14.08

As shown in Table 5, when the speed changes from 2000 to 4800 r/min and the load power changes
from 950 to 1050 W, the output voltage is stable between 12.01 and 14.23 V, which shows that the
designed HEG has a good voltage stabilizing effect.

4. Conclusions

In this work, we studied a HEG for vehicles that consists of a combined rotor with brushless claw
pole EER and combined PM rotor in coaxial parallel as well as a double-layer fractional slot winding
stator. The main structure parameters were analyzed and calculated in detail, and magnetic field
simulation and output characteristic analysis were carried out. The results show that the magnetic
field distribution is uniform, the main magnetic circuit flux is not saturated, and the designed magnetic
circuit is reasonable. Changing the magnitude and direction of the EEC can effectively change the
size of the main air gap magnetic field and stabilize the output voltage. Under rated load conditions,
the generator can output a stable voltage and has a wide voltage regulation range and good regulation
characteristics. Moreover, under variable speed and load conditions, the output voltage of the generator
can be stabilized between 12.01 and 14.23 V, which indicates that the HEG has good voltage stability.
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