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Abstract: The energy consumption of an electric vehicle is primarily due to the traction subsystem
and the comfort subsystem. For a regular trip, the traction energy can be relatively constant but
the comfort energy has variation depending on seasonal temperatures. In order to plan the annual
charging operation of an eco-campus, a simulation tool is developed for an accurate determination of
the consumption of an electric vehicle throughout year. The developed model has been validated
by comparison with experimental measurement of a real vehicle on a real driving cycle. Different
commuting trips are analyzed over a complete year. For the considered city in France (Lille), the comfort
energy consumption has an overconsumption up to 33% in winter due to heating, and only 15% in
summer due to air conditioning. The urban commuting driving cycle is more affected by the comfort
subsystem than extra-urban trips.

Keywords: electric vehicle; energy consumption; traction; heating ventilation air conditioning;
simulation; energetic macroscopic representation

1. Introduction

Climate change is a critical challenge for humanity in the 21st century. In developed countries,
the transport sector is the largest producer of greenhouse gases that cause climate change. Electrification
of vehicles is a way to reduce pollutants emissions [1,2]. In fact, according to the International Energy
Agency, limiting climate change to 2 ◦C is possible if 150 million electrified vehicles are on the road
by 2030 [3]. Many cities want to replace conventional vehicles by electrified vehicles or ban thermal
vehicles completely [4].

As an example, the University of Lille would convert its “Cité Scientifique” into an eco-campus
without thermal vehicles [5]. As this campus receives 22,000 daily users in 80 buildings, it is functionally
a small city. Currently, mobility constitutes more than 50% of the greenhouse gas emissions of this
campus. The CUMIN (Campus of University with Mobility based on Innovation and carbon Neutral)
program [5] aims to reduce the emissions from thermal cars, using several strategies including
replacing conventional vehicles with electric vehicles supplied by photovoltaic-based charging stations.
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In anticipation of this shift, a simulation tool is necessary for calculating the amount of energy needed
by the electric vehicles. This tool will be used to plan the required charging stations and photovoltaic
panels necessary to charge the vehicles from a defined electrification scenario.

However, EV adoption by commuters is only slowly increasing [3]. Charging infrastructure,
charging time [6,7] and purchasing price [8] are important barriers to an increase of EV market share.
Driving range is an important problem for EV adoption [7–9] even though charging infrastructure
availability and charging time remain other important issues. Range anxiety due to the high variation
in driving range estimators within vehicles creates uncertainty about the range of the electric car [10].
Consequently, accurate tools are necessary to estimate the driving range before and during a trip [11,12].

The driving range is related to the vehicle energy consumption and the battery behavior (storage
capacity). The energy consumption is mainly related to the vehicle traction, but also to the HVAC to
heat or refresh the cabin. A large number of studies present different factors that impact this energy
consumption. The weather and climatic conditions can have an important impact on the energy
consumption of the traction subsystem [13] and the Heating, Ventilation, Air Conditioning (HVAC)
consumption [14–17]. Battery capacity decreases and battery losses increase when the temperature
falls below 0 ◦C [17–19]. Moreover, traffic conditions [20–23] such as velocity limitations, accelerations,
traffic jams and traffic stops also have an important impact. Furthermore, driver behavior [21–24]
impacts the energy consumption of the vehicle.

However, most EV simulation tools do not consider all of these factors at the same time to assess
the global energy consumption of the vehicle [12]. Generally, studies are limited to a small number of
factors that are easier to calculate. For example, the combined effect of the road trip and temperature
are generally not studied at the same time.

Different methodologies exist to estimate the energy consumption of vehicles. One group of
methods is based on real-world measurements [25,26]. These tools aggregate a large quantity of
historical data from different vehicles and can give a good estimation of energy consumption in
the future. However, this type of tool is difficult to adapt to new vehicles without a lot of time
and investment into data measurement. Another group of methods is based on physical vehicle
modeling [27]. These methods are generally used for energy consumption calculations [13,22],
routing problems [28] and energy management strategies [29,30]. They also depend on the parameters
of the vehicle and are more flexible in application. In this article, a vehicle model is developed for use
in a flexible simulation tool. This model allows for decoupling of the effects between the HVAC and
the traction subsystems.

In [22] an accurate traction model of an EV has been developed to study the impact of velocity
profiles on energy consumption, independently of the other factors (such as the climate, driver behaviors
or traffic). In this paper, the comfort subsystem of the vehicle is added to the previously developed
vehicle model. The objective of this paper is to study the annual variation of the energy consumption
of an electric vehicle used for commuting trips. The method seeks to include the supplementary
consumption due to the HVAC independently of the other factors (such as the traffic, driver behavior,
or battery behavior), so that it can be isolated and compared to those other factors. A simulation
package is developed to compute the energy for the traction and HVAC subsystems. The supplementary
energy due to heating or air conditioning can thus be estimated throughout the year under changing
climate conditions.

Section 2 develops the simulation tool of the vehicle. This tool is then validated with measurements
on an actual electric vehicle. Section 3 deals with annual variation in energy consumption for an urban
trip. Then, the annual variation is extended to different daily trips in Section 4. The accuracy and
comparison of the effect of different factors are also discussed in this section.
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2. Simulation Tool for an Electric Vehicle

2.1. Modeling of the Electric Vehicle

The chosen EV for the simulation tool is the Renault Zoé (Figure 1) [31]. The main parameters
of the vehicle are given in Table 1. This case study is applied to a moderate oceanic climate and the
thermal effect of the battery is not considered. While including thermal effects on the battery is relevant,
prior research suggests that battery capacity is mainly impacted for temperatures below 0 ◦C [18].
Future work that applies this model to other climates will require a more complex battery model.
The driver is modeled by a simple proportional integral controller. Thus, this work does not vary
driver behavior and focuses only on the effects of climate and commuting route.
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Table 1. Parameters of the studied Electric Vehicle.

Elements Characteristics

Battery Li–ion NMC–22 kWh
Electric Machine Synchronous machine 65 kW

Weight 1468 kg

2.1.1. Modeling of the Traction and Battery Subsystems

The traction subsystem of the electric vehicle is composed of an electric drive, a gearbox, the wheels
and a chassis. The modeling of the traction subsystem has been developed in [22].

The battery voltage ubat depends on the open-circuit voltage (OCV) uocv, the current ibat and the
battery resistance Rbat. The OCV depends on the State-of-Charge (SoC) of the battery.

ubat = uocv(SoC) + Rbatibat (1)

The battery is connected to the auxiliaries, the HVAC subsystem, and the electric drive. The battery
current ibat is the sum of the electric drive currents, the auxiliary current iaux and the HVAC current iHVAC.

ibat = ied + iaux + iHVAC (2)

The torque of the electric drive Γed depends on the reference torque Γed_ref. The current of the
electric drive depends on the electric drive torque Γed, the speed of the gearboxΩgb, the battery voltage
ubat and a static efficiency ηed = 87%. For the expected accuracy of range estimation, prior research
suggests that a static model for the electric drive is sufficient for calculation of the traction energy
consumption [32]. 

Γed = Γed_re f

ied =
ΓedΩgbη

ked
ed

ubat

with ked =

{
−1 if ΓedΩgb < 0
1 if ΓedΩgb ≥ 0

(3)

The gearbox speed Ωgb depends on the wheel speed Ωwh and the gearbox ratio kgb. The gearbox
torque Γgb depends on the electric drive torque Γed, the gearbox ratio and the gearbox efficiency ηgb.
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 Ωgb = Ωwhkgb

Γgb = Γedkgbη
kg

gb
with ked =

{
−1 i f ΓedΩgb < 0
1 i f ΓedΩgb ≥ 0

(4)

The wheel transforms the vehicle velocity vev into wheel speed Ωwh with the wheel radius Rwh
and the gearbox torque Γgb into the wheel force Fwh. Ωwh = vev

Rwh

Fwh =
Γgb
Rwh

(5)

The wheel force Fwh is added to the mechanical braking force Fbr to give the total force applied to
the vehicle Ftot.

Ftot = Fwh + Fbr (6)

Newton’s second law is used to calculate the velocity of the car vev, which depends on the total
traction force, resistive force to the motion Fres and the vehicle mass Mev.

vev =
1

Mev

∫
(Ftot − Fres)dt (7)

The resistive force Fres is composed of the aerodynamic force Fa, the road resistance force Fr and
the slope Fs.

Fres = Fa + Fr + Fs (8)

The interconnection between the different models is realized using Energetic Macroscopic
Representation (EMR) [33,34]. The EMR of the traction subsystem of the EV is given in Figure 2.
EMR is a way to organize both the modeling equations and the control scheme (blue parallelograms),
which are described in detail in [22]. A closed-loop controller is used to simulate the driver and
provide the reference of the total force Ftot-ref (action on the acceleration and braking pedals). Moreover,
a strategy block distributes this force between electrical and mechanical braking forces when the
vehicle must decelerate. Only 60% of the braking energy is recovered because only the front wheels
are connected to the electric drive [22]. As stated previously, varying driver behavior is not considered
in this study. A simple proportional controller will be used to represent a common driver for all
simulations. More advanced driver model such as [35] could be used in further work to include the
impact of the driver in energy consumption estimates.
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2.1.2. Modeling of the Comfort Subsystem

The comfort subsystem is composed of a heat pump, a heater, a fan (HVAC) and the cabin’s
thermal behavior. The HVAC subsystem modeling adapts the heating model developed in [36] for
another electric vehicle but adds air conditioning and ventilation elements.

The heat pump is composed of an electric compressor, two heat exchangers and an expansion
valve. The electric machine of the compressor is modeled with a static model where the rotation speed
Ωcomp is imposed by the controller, and the current ihp depends on the mechanical power, the battery
voltage and the machine efficiency ηcom. Ωcomp = Ωcomp_re f

ihp =
Γcomp Ωcomp ηcomp

ubat

(9)

Two equivalent volumetric flows of the refrigerant, one for each exchanger (qve1, qve2) and the
machine torque Γcomp can be calculated as a function of the compressor speedΩcomp, the two exchanger
pressures pe1 and pe2, the two refrigerant enthalpies he1 and he2 and the mass flow of the refrigerant
qmcomp. The equations of the last three variables are given in [36].

Γcomp =
qmcomp(he2−he1)

Ωcomp

qve1 =
qmcomphe1

pe1

qve2 =
qmcomp he2

pe2

(10)

For the two heat exchangers, three equations are necessary to describe their behavior. The first
equation gives the accumulation of pressure inside the exchanger. The pressure on the exchanger pe

depends on the initial pressure pinit, the volume of the refrigerant inside the exchanger Ve, and two
volumetric flows (qva and qvb,), which depend on the heat exchanger inputs (see the EMR of the heat
pump). Ke is a parametric function which depends on the heat exchanger pressure. More details on
this function are given in [36].

pe = pinit exp
(

1
Ve

∫ ( 1
Ke

(qva − qvb)dt
))

(11)

The heat exchanger exchanges heat between the refrigerant and the heat exchanger wall.
The refrigerant loses heat with this exchange. The volumetric flow qvb is a function of the volumetric
flows qvc and qvd. It can be calculated as a function of the exchanger heat flow qse, the exchanger
pressure pe and the exchanger temperature Te which depends on the temperature of the refrigerant at
the considered pressure T(pe). 

qvb = qvc − qvd
Te = T(pe)

qvd =
Teqse

pe

(12)

The volumetric flows qva and qvc depend on the volumetric flow of the expansion valve and the
compressor (see the EMR of the heat pump in Figure 3). Convection drives the exchange between
the air and the heat exchanger. The heat flows qse and qse_out are a function of the temperature of the
exchanger Te, the temperature of the air outside the exchanger Te_out and the convection coefficient Kair
which depends on additional parameters. More details on this coefficient are given in [16]. qse = Kair

(Te−Te_out)
Te_out

qse_out = Kair
(Te−Te_out)

Te

(13)
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Figure 3. EMR of the heat pump.

The expansion valve gives two volumetric flows qve3 and qve4 as a function of the pressure on the
two heat exchangers pe1 and pe2, the mass flow of the refrigerant qmcomp and the enthalpy flows he3 and
he4. The equations for the enthalpy flows are given in [36]. qve4 =

qmcomphe4
pe1

qve3 =
qmcomphe3

pe2

(14)

The EMR of the heat pump is given in Figure 3. The control is deduced from the previous equations
by inversion: closed-loop control for accumulation elements (crossed rectangles) and direct inversion
for other elements [33].

The cabin thermal behavior is modeled following the equations given in [16]. The comfort model
is organized using EMR (Figure 4).

2.2. Validation of the EV Simulation Tool

The traction subsystem has been validated in [22]. The current work validates the global vehicle
model (combining the traction and comfort subsystems), realized with a driving test that also uses air
conditioning. The vehicle is driven on an urban trip of 40 min duration (Figure 5). The trip length is
14 km.
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Figure 6. Vehicle cabin temperature.

The energy consumption is simulated and compared with the energy calculated from the measured
battery voltage and current (Figure 7). The measured velocity and ambient temperature have been
imposed as inputs for the simulation. The simulated energy consumption is 2.09 kWh versus 2.15 kWh
for the measured data. The final error on the energy consumption is about 3%.
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3. Annual Variation in Energy Consumption for an Urban Driving Cycle

3.1. Case Study

Within the CUMIN program, an important objective is to have a precise estimate of the energy
needed to charge electric vehicles for commuters that come to the University of Lille. We thus take this
university campus as a case study. Lille is a city in Northern France. The climate is oceanic, meaning
that temperatures are moderate. In this study, the average daily minimal and maximal temperature
per month in 2018 are considered (Figure 8) [37]. This temperature varies from −1 ◦C (February) to
16 ◦C (July) for the minimal daily temperature and 5 ◦C to 28 ◦C for the maximal daily temperatures.

The energy consumption estimation is calculated for different daily commuting trips. The outgoing
trip is made in the morning around 7 a.m., and we assume this occurs when the temperature is at its
daily minimum. The return trip is assumed to occur at the maximal temperature around 5 p.m. The air
conditioning subsystem is used when the temperature is higher than 25 ◦C, which occurs only in July
in Lille. The air conditioning must maintain the temperature 5 ◦C below the ambient temperature.
The heating subsystem is used when the temperature is below 13 ◦C and has an objective to maintain a
temperature of 20 ◦C in the cabin. These assumptions come from a behavioral study from users of the
University of Lille campus. While a more detailed analysis should be conducted, this initial study
provides a starting point for analysis.Energies 2020, 13, x FOR PEER REVIEW 9 of 15 

 

 

month 

Temperature (°C) max 
min 

 

Figure 8. Average minimal and maximal temperature per month in Lille in 2018 [37]. 

3.2. Generation of a Reference Driving Cycle 

Measured driving cycles are affected by random conditions due to the driver, traffic jams and 

stops at intersections. In this study, an ideal and constant driving cycle is used for each simulation step. 

Additionally, driver behavior is isolated from other effects by assuming a fixed driver behavior using a 

simple controller. Moreover, the thermal behavior of the battery is not considered in this study, which 

has a minor effect for the considered temperature range [18]. This assumption can be studied later. This 

setup allows for a fair comparison of the energy consumption between different scenarios that focuses 

only on the HVAC and the route driven. The driving cycle is established for an average driving profile 

by the driving generator developed in [22]. The generator takes data from the OpenstreetMap API [38] 

to generate a driving cycle. Then this cycle is introduced into the simulation tool. 

3.3. Annual Variation in Energy Consumption for an Urban Driving Cycle 

The simulation is performed for every month of a complete year. This consumption is calculated 

for an outgoing trip in the morning and for a return trip in the evening. The driving cycle is first 

defined for a trip selected in a map-based interface (Figure 9a). Road data is used to provide the 

velocity profile using the Driving Cycle Generator (Figure 9b). The velocity profile as well as the 

ambient temperature are inputs for the vehicle simulation. The EMR has been transcribed into 

Matlab-Simulink©  thanks to the EMR library [34] (Figure 9c). The simulation process thus provides 

an energy consumption estimate for a defined trip and ambient temperature. 

The energy consumption for the urban driving cycle for the outgoing and return trips is 

calculated for each month (Figure 10). Thus, the variation across months is attributable directly to use 

of the HVAC subsystem. In the morning trip, the energy consumption increases up to 33% in 

February due to heating requirements. For the return trip, the air conditioning increases the 

consumption by 15% in July. Because of moderate temperatures in Lille, no air conditioning is 

required except in July during the return trip. This result shows that taking into account the HVAC 

subsystem can lead to additional consumption of energy that is non-trivial compared to the traction 

energy, even in moderate climates like Northern France. This supplementary consumption will affect 

the vehicle range, requiring more frequent charging. This point is important for drivers, but also for 

the required charging infrastructure, especially if storage devices have to be included. 

Figure 8. Average minimal and maximal temperature per month in Lille in 2018 [37].

3.2. Generation of a Reference Driving Cycle

Measured driving cycles are affected by random conditions due to the driver, traffic jams and
stops at intersections. In this study, an ideal and constant driving cycle is used for each simulation
step. Additionally, driver behavior is isolated from other effects by assuming a fixed driver behavior
using a simple controller. Moreover, the thermal behavior of the battery is not considered in this study,
which has a minor effect for the considered temperature range [18]. This assumption can be studied later.
This setup allows for a fair comparison of the energy consumption between different scenarios that
focuses only on the HVAC and the route driven. The driving cycle is established for an average driving
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profile by the driving generator developed in [22]. The generator takes data from the OpenstreetMap
API [38] to generate a driving cycle. Then this cycle is introduced into the simulation tool.

3.3. Annual Variation in Energy Consumption for an Urban Driving Cycle

The simulation is performed for every month of a complete year. This consumption is calculated
for an outgoing trip in the morning and for a return trip in the evening. The driving cycle is first defined
for a trip selected in a map-based interface (Figure 9a). Road data is used to provide the velocity profile
using the Driving Cycle Generator (Figure 9b). The velocity profile as well as the ambient temperature
are inputs for the vehicle simulation. The EMR has been transcribed into Matlab-Simulink© thanks
to the EMR library [34] (Figure 9c). The simulation process thus provides an energy consumption
estimate for a defined trip and ambient temperature.
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The energy consumption for the urban driving cycle for the outgoing and return trips is calculated
for each month (Figure 10). Thus, the variation across months is attributable directly to use of the
HVAC subsystem. In the morning trip, the energy consumption increases up to 33% in February due
to heating requirements. For the return trip, the air conditioning increases the consumption by 15% in
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July. Because of moderate temperatures in Lille, no air conditioning is required except in July during
the return trip. This result shows that taking into account the HVAC subsystem can lead to additional
consumption of energy that is non-trivial compared to the traction energy, even in moderate climates
like Northern France. This supplementary consumption will affect the vehicle range, requiring more
frequent charging. This point is important for drivers, but also for the required charging infrastructure,
especially if storage devices have to be included.
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4. Annual Variation in EV Energy Consumption Considering Different Commuting Trips

4.1. Studied Driving Cycles

Six daily trips are defined to represent different commuting trips to the University of Lille
(Figure 11). These generated trips are associated with distinct residential areas where university
commuters live. Their characteristics are summarized in Table 2.
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Table 2. Characteristics of the six daily trips (one way).

Daily Trips Road Type Average Velocity (km/h) Distance (km) Duration (min)

1 Urban 28 7 15
2 Urban 34 4 7
3 Extra-urban 42 9 13
4 Extra-urban 49 16 20
5 Highway 69 27 23
6 Highway 89 20 13

4.2. Annual Variation in Energy Consumption

For each trip, energy consumption is calculated for each month with the simulation tool.
These results are presented to illustrate the variation in EV energy consumption across both commute
types and weather conditions.

4.2.1. Effect of the HVAC and Traction Subsystems on Consumption

First, the daily energy consumption of the traction subsystem (without HVAC) is calculated
for each trip (Figure 12). For a fair comparison of trips with different distances, this consumption
is represented in kWh per 100 km. The consumption is impacted by the velocity, which is the most
important factor for traction energy consumption, as already demonstrated in [22]. The number of
stops also had an impact on the traction consumption of the first trip, leading to a higher consumption
than trips 2 and 3.Energies 2020, 13, x FOR PEER REVIEW 12 of 15 
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climates. This work quantifies the contribution of HVAC energy use to overall consumption and 

Figure 12. Energy consumption of the traction subsystem in the six sample trips.

The energy consumption of the vehicle including both traction and HVAC subsystems each
month is given in Figure 13a. for trips 1 and 6. The dashed lines represent the extremum of the energy
consumption for the two trips. The energy consumption of trip 1 is globally lower than trip 6. However,
the annual variation of trip 1 is larger. For trip 1, in June, the HVAC system is not used at all, leading
to the minimal energy consumption of the vehicle. In February, the consumption is highest due to
use of the HVAC system. The difference between the consumption of these two months is 21% for
trip 1. For trip 6, the variation is only about 8%. The six different trips are compared in Figure 13b.
The box represents the extremum of the consumption for each trip. The line inside the box represents
the median for the different trips. The variation in energy consumption is largest in the urban trips due
to the lower traction consumption and the higher time spent on the road compared to the other trips.
This is especially true in trip 1, which has more traffic stops that increase the duration of the trip and
represent time when the vehicle is heated but not driven.
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Figure 13. (a) Energy consumption of the Electric Vehicle over 12 months of the year for trips 1
and 6. The dashed lines represent the extremum of the energy consumption for each trip. (b) Energy
consumption of the Electric Vehicle for 6 different trips. The boxplot represents the extremum of the
energy consumption for the different trips. The lines inside the boxes represent the median.

4.2.2. Annual Consumption of the Electric Vehicle

Finally, the annual energy consumption is calculated (Figure 14). The yellow parts represent
the energy consumption of the traction subsystem while the dark blue bars represent the additional
energy used by the HVAC system. The HVAC system adds an average of 12% to the annual energy
consumption estimate without the HVAC system. The error varies from 5% for trip 6 to 21% for urban
trip 2. These results are for a location with a mild climate that neither requires significant heating
nor air conditioning and would be much higher for extreme cases of temperature variation, as in
continental climates. This work quantifies the contribution of HVAC energy use to overall consumption
and demonstrates that it is not trivial even in a favorable location like Lille, France. Estimates of energy
consumption should not neglect HVAC consumption in EVs, especially for urban trips.
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5. Conclusions

A simulation tool was developed to study the energy consumption of EVs including energy
required for passenger comfort. This model has been validated through a comparison with measured
data from a real EV. An analysis of the energy consumption of an electric vehicle that includes the
comfort subsystem was performed for an oceanic climate with a temperature variation between −1 ◦C
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and 28 ◦C for different daily trips. The results show the relevance of both driving cycles and climate
conditions to energy consumption. Average vehicle velocity has a large effect when the different trips
are compared. At the same time, the ambient temperature leads to a higher variation in all types of
travel, especially for urban trips, due to the use of the HVAC subsystem. The results for the campus
case study here shows an increase in consumption up to 33% in winter due to cabin heating and up
to 15% in the summer due to air conditioning. Greater amounts of charging energy should thus be
expected in these periods.

Generated driving cycles are used in order to directly and fairly compare between different trips.
Consequently, no traffic congestion, no random stops, and no driver effects impacting the driving profile
have been considered. These random conditions add even more variation to the energy consumption
of the vehicle as they impact both traction and HVAC subsystem consumption. For a daily driving
range estimator, the generated driving cycle should be as realistic as possible. This generator can be
improved to take into account traffic and driver behavior effects.

In this work, there are several important caveats. First, the analysis focuses on daily commuting
trips to the campus of the University of Lille. Reality is more complex as other trips are normally made
for different purposes (shopping, collecting children, etc.). Thus, the work can be expanded to other
trip types to understand the diversity of trips made by users. The study in this article has addressed a
limited temperature range in a moderate climate. The results of this study cannot be directly applied in
other climates, particularly for extreme climatic conditions. Moreover, the consumption of the HVAC
subsystem increases rapidly when the temperature is below 0 ◦C and higher than 30 ◦C [14,15]. Overall,
applying these methods outside the mild oceanic climate of Lille should demonstrate stronger effects.
In order to extend this to other climates with broader temperature range, two improvements should be
pursued. First, a thermal model of the battery should be included as the energy storage and losses are
affected at low and high temperature. Second, the control strategies of the HVAC subsystem should be
studied in detail because other comfort strategies may be more appropriate for extreme temperature
values (such as battery heating).

To conclude, this study quantitatively shows the importance of accounting for the effect of ambient
temperature on the energy consumption for daily trips or estimation of the vehicle range. This is
relevant for drivers but also for evaluating the design of infrastructure needed to charge a fleet of
vehicles. Further works should now be realized to consider the effects of driver behaviors and traffic
jams on energy consumption independently of other effects. Then, all effects could be coupled in a
comprehensive model.
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