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Abstract: Wind energy has been widely used in renewable energy systems. A probabilistic 
prediction that can provide uncertainty information is the key to solving this problem. In this paper, 
a short-term direct probabilistic prediction model of wind power is proposed. First, the initial data 
set is preprocessed by a box plot and gray correlation analysis. Then, a generalized method is 
proposed to calculate the natural gradient and the improved natural gradient boosting (NGBoost) 
model is proposed based on this method. Finally, blending fusion is used in order to enhance the 
learning effect of improved NGBoost. The model is validated with the help of measured data from 
Dalian Tuoshan wind farm in China. The results show that under the specified confidence, 
compared with the single NGBoost metamodel and other short-term direct probability prediction 
models, the model proposed in this paper can reduce the forecast area coverage probability while 
ensuring a higher average width of prediction intervals, and can be used to build new efficient and 
intelligent energy power systems. 

Keywords: wind power; short-term direct probability prediction; improved natural gradient 
boosting; blending fusion 

 

1. Introduction 

With the low-carbon development of energy, the penetration rate of renewable energy 
represented by wind power has increased year by year [1]. Due to the strong randomness and 
fluctuation of wind energy, it is so hard to obtain complete uncertainty information by only 
performing a point prediction on it since the prediction results are biased [2] resulting in the 
challenges of a safe and stable operation [3]. In order to build an efficient and intelligent new energy 
power system, effectively adjust the scheduling plan, expand the advantages of wind power bidding 
and grid connection, it is crucial to perform accurate a probability prediction on wind power [4]. 

There are two methods for calculating wind power [5]. One is to calculate with the help of fixed 
calculation formulas based on meteorological data and its internal relationship. Using a numerical 
weather prediction (NWP), the geographical factors of wind farms, the data are transformed into 
physical equations for prediction [6,7]. However, this method requires a lot of historical data and is 
more suitable for medium-term or long-term forecasting [8,9]. It is not universal. What is more, the 
formulas between meteorological data and wind power in different wind farms are diverse [10,11]. 
Therefore, in actual engineering applications, machine learning modeling methods are often used. 
These models are trained through measured data, and the nonlinear relationships between the input 
data and output data are better obtained based on data mining, which ensure the universality and 
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robustness of calculating wind power [12,13]. Poncela et al., used the maximum likelihood estimation 
method to fit the wind power sequence to make an ultra-short-term wind power prediction [14]. 
Zhang et al., used a least squares wavelet support vector machine (LSSVM) to obtain prediction 
parameters [15]. Villacorta et al., used the autoregressive integrated moving average model (ARIMA) 
time series forecasting model to predict the wind power time series data [16]. These methods have 
the advantages of a fast calculation speed, good estimation effect in nonlinear systems, and high 
accuracy [17,18]. However, they cannot provide complete uncertainty information.  

Probabilistic prediction methods of wind power can usually be divided into two categories— 
indirect prediction and direct prediction. Indirect prediction is based on the point prediction model 
and calculates the probability distribution of the point prediction error to indirectly realize the 
probability prediction. The main models include neural networks [19], extreme learning machines 
[20], nonparametric kernel density estimations [21] and so forth. Although indirect predictions are 
widely used, it is excessively dependent on the accuracy of point prediction models and requires 
large sample sizes. Direct prediction assumes the probability distribution form of wind power and 
establishes a machine learning model to solve the corresponding parameters which realize the 
dynamic estimation. The main models include quantile regression [22], sample entropy [23], sparse 
Bayesian learning machine [24], Warped Gaussian process regression [25] models, etc. Although 
these types of methods directly implement probabilistic predictions, the learning model structure is 
complicated and the training time commonly takes a few hours. 

In recent years, ensemble learning represented by boosting algorithms has received extensive 
attention in wind power, photovoltaic, and load forecasting fields. Many researchers improve 
traditional machine learning algorithms based on the Adaboost algorithm, which significantly 
reduces the root mean square error of point prediction, and fully demonstrates the advantages of 
ensemble learning when dealing with point prediction problems [26–29]. Xie et al., used gradient 
boosting decision tree (GBDT) combined with a bayes optimization algorithm to predict photovoltaic 
output and significantly shorten the running time of the forecasting model [30]. Liu et al., combined 
XGBoost and stacking fusion to apply short-term load forecasting which significantly enhances the 
model’s ability to predict electricity load in different seasons [31,32]. Although the above boosting 
algorithms have the advantages of a high solution accuracy, short running time, strong generalization 
ability, they are only suitable for solving the point prediction problems that only care about the 
expected value of output. As a result, they cannot be applied to solve the probability prediction 
problems that aim to obtain complete statistical information.  

Aiming at the application defects of boosting algorithms in probabilistic predictions, the 
Stanford University team led by Andrew Y. Ng proposed NGBoost model [33]. Although the 
promotion and application of boosting algorithms have been realized, it still has the following 
shortcomings in terms of solving short-term direct probability prediction of wind power. (1) The 
model lacks data preprocessing, bringing about a weak generalization ability and robustness for 
different wind farms. (2) The calculation principle of natural gradient is complicated and practical 
engineering applications are challenged. (3) The NGBoost metamodel is too elementary to guarantee 
the accuracy and sharpness of probability prediction. 

Based on the above analysis, a new improved methodology which based on the NGBoost 
metamodel has been proposed in this paper. This method can be well-used for short-term direct 
probability prediction of wind power. The establishment of the model includes the following steps. 
(1) Preprocess the initial data set by the box plot in order to eliminate abnormal values in the initial 
data set, and use a gray correlation analysis to extract strongly correlated meteorological variables. 
(2) Use generalized natural gradient calculation methods to improve the NGBoost metamodel. (3) 
Use blending fusion to further strengthen the model learning effect. The comparative analysis based 
on the measured data of Dalian Tuoshan wind farm in China verifies the effectiveness and 
advantages of the model in this paper. 

2. Establish Model 



Energies 2020, 13, 4629 3 of 15 

 

Suppose that the model data set D contains nD samples and m features, as D = {(xi,yi)} (xi ∈Rm,yi 

∈R). xi represents the feature vector of the ith sample. yi represents the label value (true value) that 
the ith sample corresponds to, where i∈(1,nD). Based on the above hypothesis, the specific principles 
of model are explained as follows.  

2.1. Data Preprocessing 

Considering actual engineering conditions, there are many outliers in the initial data set which 
will cause the final prediction errors. Therefore, this paper firstly uses the box plot to eliminate 
outliers. 

Wind power is related to meteorological variables such as temperature, wind speed, etc. [34,35]. 
However, the correlation between meteorological variables and wind power are diverse in varied 
wind farms. Hence, this paper employed a gray correlation analysis to calculate the degree of 
correlation in order to choose variables. A threshold φ was set and the variables used in the model 
were selected when their degree of association was over the threshold φ. The specific steps are as 
follows [36]. 

1. Normalize the time series of each variable. Taking the kth of n meteorological variables as the 
comparison sequence 𝑆௞(t) and the wind power sequence as the reference sequence 𝑆଴(t), the 
absolute sequence ∆௞ (t) is calculated showing the difference between the two sequences by 
Equation (1), where k∈(1, n). 

( ) ( ) ( )0k kt S t S tΔ = −  (1) 

2. Calculate the correlation coefficient 
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where Min (·) and Max (·) means the minimum and maximum value of the sequence.  

3. Solve the degree of association  
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where Tn is the sequence length.  

4. Set the threshold 𝜑 and select the variables whose 𝛾௞ is over the threshold as a new data set. 

2.2. Improved NGBoost 

The key of NGBoost is the natural gradient. However, the related concepts and calculation of it 
are extremely complex, bringing inconvenience to its popularization and application in actual 
engineering. Focusing on the process of solving natural gradient, this paper adopts an improved 
approach, which establishes a connection between the general gradient and natural gradient through 
Fisher information. The specific principles are as follows.  

A scoring function S(𝜽, 𝑦௜) is established based on the Shannon information of yi. 

( ) ( ), logi iS y P y= − θθ  (4) 

where, 𝑃𝜽(yi) is the probability value of yi; 𝜽 is the parameter vector of the prediction probability 
distribution.  

Let −log𝑃𝜽(yi) = f (𝜽) and perform a Taylor expansion on f (𝜽 + d’). For convenience of calculation, 
the third-order and above terms are discarded.  
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where, 𝒅’ is the infinitesimal step vector that θ moves along ∇෩𝑆(𝜽, 𝑦௜); ∇෩ represents the natural 
gradient.  

Convert the Euclidean Space into a statistical manifold, and deal with Equation (5) in this 
Riemann Space: 
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According to the calculation rule of integral, Equation (6) can be decomposed into two parts to 
calculate separately. The calculation of first item can be simplified as: 
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Express the second item as: 
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where, 𝜓(𝜽) is the Riemann metric of the statistical manifold at 𝜽 that is used to characterize the 
Fisher information brought by 𝑃𝜽(yi).  

( ) ( ) ( )~ , ,θ θ θ
i

T
y P i iE S y S yψ  = ∇ ∇   (9) 

In this way, the natural gradient ∇෩𝑆(𝜽, 𝑦௜) can be calculated through the general gradient: 

( ) ( ) ( )1, ,θ θ θi iS y S yψ −∇ = ∇  (10) 

An improved NGBoost model can be established based on Formula (10) by the following steps. 
(1) Take 𝜽0 as the initial parameter vector. (2) Use the ordinary gradient to calculate yi and its 
corresponding parameter vector 𝜽𝒊𝒎ି𝟏  assuming that the calculation is carried out in the mth 
iteration. (3) Calculate the natural gradient ∇෩𝑆(𝜽𝒊𝒎ି𝟏, 𝑦௜) and generate a new set of base learners 
along this natural gradient direction, so as to realize the parameter vector update. The final prediction 
result can be expressed as Formula (11): 

1

0 mθ θ B
M

m

m
β α

=
= −   (11) 

where, 𝛼௠ is the scale factor; 𝛽 is the unified learning rate; Bm is the unified representation of the 
base learner. For example, the calculation example of this paper is predicting the probability of wind 
power. Although the overall change process of wind power is non-Gaussian, according to the 
literature [33], the value of each sample point can be assumed to meet the Gaussian distribution. 
Hence, 𝜽 can be expressed as (𝜇,𝜎) and the mth training stage of 𝜽 can correspond to two base 
learners 𝐵ఓ௠ and 𝐵ఙ௠, that is Bm = (𝐵ఓ௠, 𝐵ఙ௠). 

2.3. Blending Fusion 
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The fusion of the metamodel can not only strengthen the learning effect, but also avoid causing 
excessive redundancy of the overall model. In recent years, model fusion, especially stacking fusion 
[31,37], has been widely used in solving prediction problems. However, stacking fusion is too 
complicated, and there will be data traversal that the training data will refer global statistics during 
the training process, which is not suitable for solving the probability prediction. Therefore, in view 
of the above-mentioned shortcomings, the blending fusion is proposed since it is simple and 
overcomes the matter of data traversal. It can not only strengthen the learning effect, but also avoid 
causing excessive redundancy of the overall model [38]. The schematic diagram of blending fusion is 
shown in Figure 1. The specific steps are as follows: 

1. Original data set segmentation 

The original training set is divided into a subtraining set DT and test set DA, in proportion. The 
original prediction data set is named as DP. 

2. Model fusion 

Assume a confidence level. Construct V NGBoost metamodels MO1, MO2, ..., MOV. Use these 
metamodels to learn DT, and output the prediction results DA_P and DP_P. The predicted mean 
value determined by DA_P and the actual result DA_OUT are formed in a new data set.  

A new metamodel MODA is established for training, and then the predicted output MODA_P is 
obtained. Compared with DA_P, MODA_P has a higher accuracy and smaller sharpness which reflects 
the advantages of model fusion. 

Combine MODA_P and DP_P to form a new data set. Establish a new metamodel MOP for 
training, and output the final prediction statistical parameter vector.  

Test 
set 
DA

Sub 
trainin
g set 
DT

60%-80% Original 
training set

20%-40%

MO1
MO2

...
MOv

Original 
prediction 

set DP

DP_P DA_P MODA

Test set output 
value

DA_OUT

MODA_PMOP

forecast result  
Figure 1. Schematic diagram of Blending fusion. 

All in all, the establishment process of the model proposed in this article can be summarized as 
the following three steps. First, after entering the initial data set, it is preprocessed to detect outlier 
and screen feature variables by a box plot and gray correlation analysis. This step can be summarized 
as data preprocessing. Then the revised data set is calculated by an improved NGBoost metamodel 
by a generalized method proposed in this paper. Finally, blending fusion is used to enhance the 
learning effect of improved NGBoost. The overall flow chart of establishing the model proposed in 
this paper is shown in Figure 2. 
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Start

Feature variable 
screening

Outlier detection

Enter the 
initial data set

Output prediction 
distribution

Data 
preprocessing

Improve NGBoost 
meta-model

Blending model fusion

End  
Figure 2. Overall flow chart. 

3. Evaluation Indicators 

In order to objectively quantify the effectiveness and advantages of the model proposed in this 
paper, based on the accuracy and sharpness of the prediction results, the forecast area coverage 
probability (counted as: IF) and the proportion of average width of prediction interval (counted as: IP) 
were proposed as basic indicators. Due to the contradictions between IF and IP, a composite score 
(counted as: IC) was established as a final indicator [39]. The specific calculation methods of the above 
indicators are described as follows.  

1. Forecast area coverage 

The reliability of the model is quantified by introducing the IF to measure the accuracy of the 
probabilistic prediction results. This indicator is based on the number of actual values falling within 
the confidence interval. The larger the IF, the more accurate the model.  

( )
1

1% 100
tN

F i
t i

I
N =

= Ω ∗  (12) 

where, Nt is the number of predicted samples; 𝛺௜ is the mark value of whether the ith sample falls 
within the confidence interval. The format of 𝛺௜  is a Boolean constant. If samples fall in the 
confidence interval, they are counted as 1 and those that do not fall into the interval are counted as 0. 

2. Proportion of average width of prediction interval  

By introducing IP to measure the sharpness of the probabilistic prediction results, the pure 
pursuit of IF being avoided leads to an excessively wide confidence interval and the prediction results 
lose their reference value. The larger the IP, the wider the confidence interval, the greater the 
sharpness of the prediction distribution and the worse the prediction effect. 

[ ]
0 1

1(%)
tN

P i i
t P i

I U L
N I =

= −
∗   (13) 

where, IP0 is the width of the confidence interval under the initial parameters; Ui and Li are the upper 
and lower limits of the confidence interval corresponding to the ith prediction sample. 

3. Overall score 

IC is introduced to comprehensively evaluate IF and IP. The higher the IC, the better the overall 
performance of the model in reducing the sharpness while ensuring accuracy. 
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4. Verification and Analysis 

4.1. Calculation Example and Model Parameter Description 

The effectiveness of the improved NGBoost model proposed in this paper is analyzed using the 
actual supervisory control and data acquisition (SCADA) data of Dalian Tuoshan wind farm in China 
in 2019 as a calculation example. The data sampling interval is 15 min, and 960 samples from 1 
January to 10 January are taken to form the initial data set (the original data visualization is shown 
in Figure 3a (the relevant discussion of the number of samples is shown in Appendix A)). The input 
meteorological variables include the wind direction (angle data, unit: °, located at hub center of the 
wind turbine); temperature (unit: °C); humidity (unit: %rh); air pressure (unit: pa); wind speed (unit: 
m/s). The output variable is the wind power (unit: MW). It can be seen from Figure 3a that the wind 
power itself and related meteorological variables have strong randomness and volatility. The short-
term direct probability prediction of the wind power is just to extract relevant uncertainty 
information. The data preprocessing step is proposed in this paper to enhance the robustness of the 
data within the observed window and achieve the acquisition of valid samples. 

The initial data set was preprocessed according to the methods proposed in the Section 2.1 of 
this paper. First, a box diagram was drawn of the input weather variables as shown in Figure 3b. It 
can be seen from Figure 3b that there were many abnormal values of wind speed and temperature 
variables. Finally, 902 valid samples were selected. Then the correlation degree between each 
meteorological variable and wind power was calculated through a gray correlation analysis (the 
resolution coefficient 𝜌 is the default value: 0.5), and the stacked histogram was drawn as shown in 
Figure 3c. It can be seen from Figure 3c that the meteorological variables that have a strong correlation 
with the wind power fluctuation sequence were wind speed, air pressure, humidity, and wind 
direction correlation. Influenced by the local microclimate in the northeast of China, the correlation 
of temperature is the lowest. Under the constraint of a higher threshold (φ = 0.8 in this paper), the 
temperature variable should be discarded. 

The preprocessed data were normalized to eliminate the influence of dimensions on the 
calculation results. The data from day 1 to day 9 is set as the original training set. The experiment 
found (see Appendix B for experimental details and results analysis) that a higher proportion of the 
DA test set helps overcome model overfitting. So, this paper divided 60% of the original training set 
into the DT subtraining set, and the remaining 40% was divided into testing set DA. Set the wind 
power on the 10th as the original forecast set DP for short-term forecasting. V was set to 8. 

In this paper, classification and regression tree (CART) is selected as the base learner. Its basic 
structure and principle can be derived from the literature [31]. The main parameter settings of the 
model are as fellows. The maximum depth is 5 (see Appendix C for related discussion). The M of 
improved NGBoost is 400. M limits the total number of iterations to prevent training from falling into 
an infinite loop. According to our experience, the model can acquire good prediction results within 
400 iterations. So, we set it to 400. The scale factor 𝛼௠ is 0.5, avoiding the local approximation being 
far away from the current parameter position in the calculation process which can lead to training 
failure. The setting of learning rate β refers to traditional boosting algorithms. This value is generally 
set to 0.1/0.01. A smaller learning rate helps overcome the phenomenon of model overfitting, so this 
paper set it to 0.01. The initial parameters are the corresponding values for constructing a rectangular 
area bounded by the upper and lower limits of the data set. 

It should be noted that: (1) In order to meet the needs of graph visualization, the graphs in this 
paper were drawn at 95% confidence level. (2) The model in this paper was based on the same period 
data to establish a complete and accurate mapping relationship between the input data and the 
output data. However, the prediction and comparison in this paper were based on historical data in 
order to simulate actual engineering conditions. Through the comparison between the forecast data 
and actual data and indexes analysis, the validity and advantages of the model proposed in this paper 
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are further verified. (3) In Figure 4b: the min and max represent the upper and lower limits of data 
truncation, which were calculated by Formula (15); Q1 and Q3 represent the upper and lower 
quartiles, respectively: IQR = Q3 − Q1.  
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Figure 3. Data analysis charts. (a) original data visualization; (b) Box diagram of input weather 
variables; (c) Stacked histogram of input weather variables. 

4.2. Results Analysis 

4.2.1. Effectiveness Analysis of Model Improvements 

Different from the NGBoost metamodel proposed in the literature [33], the model proposed in 
this paper has the following innovations and improvements. (1) Data preprocessing is added. (2) 
Natural gradients are calculated through general gradients. (3) Blending fusion is used for 
strengthening the model training effect. In order to verify the effectiveness of the above 
improvements, based on the principle of controlled variables, we have conducted different 
experiments to prove the rationality and effectiveness of the improved model proposed in this paper. 
The visualization of the experimental results is shown in Figure 4. 
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Figure 4. Improved model validity comparison verification. (a) Comparison with and without data 
preprocessing; (b) The fusion model comparison; (c) The comparison of model. 

The prediction effect is compared with and without data preprocessing drawn as shown in 
Figure 4a. It can be seen from Figure 4a that when the data set is not preprocessed, the abnormal data 
and weakly correlated input data represented by the temperature directly reduce the overall 
prediction level and the confidence of the prediction under the same confidence level. The interval 
shifted and expanded, which shows that weakly correlated data and outliers should not be used as 
training data for the model. The data preprocessing step added in this paper is reasonable and 
effective.  

The fusion model comparison is shown in Figure 4b. It can be seen from Figure 4b that the 
stacking fusion that cannot overcome the problem of data traversal is not suitable for solving the 
probability prediction problem. Their prediction results have a large deviation. The blending fusion 
proposed in this paper exhibits better prediction performance in comparison. 

The comparison of the model prediction effects between the improved NGBoost in this paper 
and the NGBoost metamodel proposed in [33] is shown in Figure 4c. It can be seen from Figure 4c 
that although the NGBoost proposed in document [33] has a good probability prediction effect, the 
prediction effect of the model proposed in this paper has been reinforced. It is better and more 
suitable for practical engineering applications for a short-term direct probability prediction of wind 
power. 

The natural gradient calculation method proposed in the literature [33] and the calculation 
method proposed in this paper are used to calculate the data of the examples, respectively. Based on 
the evaluation indicators proposed in this paper, the calculation results under different confidence 
levels are shown in Table 1. 

It can be seen from Table 1 that the natural gradient calculation method proposed in this paper 
is similar to the method proposed in the original text. However, the method in this paper can calculate 
the natural gradient through ordinary gradients which simplifies the calculation process and is 
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obviously more suitable for a practical promotion and application in engineering situations than 
direct calculations. 

Table 1. Model comparison data at different methods of natural gradient. 

Confidence Level 
Method of [33] Method of This Paper 

IF (%) IP (%) IC IF (%) IP (%) IC 
80% 92.71 11.31 82.80 92.71 11.34 82.77 
90% 96.88 12.11 82.14 96.88 12.07 82.17 
95% 97.92 12.97 81.43 97.92 12.95 81.45 

4.2.2. Comparative Analysis with Other Models 

In order to further illustrate the advantages of the improved NGBoost (model 1) proposed in 
this paper, the kernel extreme learning machine model (model 2) proposed in [40] and the naive 
Bayes combination model (model 3) proposed in [41] are selected as comparisons. The prediction 
results are evaluated according to the indicators proposed in Section 3. The comparison of the 
prediction confidence intervals of each model is shown in Figure 5. The index values of each model 
under different confidence levels are recorded in Table 2. 

It can be seen from Figure 5 and Table 2 that as the confidence level increases, the IF of each 
model increases, and the IP also gradually increases. Under the same confidence level, the IF of model 
1 is larger indicating that there is a smaller deviation in the mean of the prediction results. Similarly, 
the IP of model 1 is larger than that of the models 2 and 3, representing that the sharpness of the 
prediction results is smaller. All in all, the model proposed in this paper can reduce IP while ensuring 
a larger IF and obtain a higher IC. It exhibits a better performance in solving the probability prediction 
problem. 
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Figure 5. Models comparison. 

Table 2. Models comparison at different confidence levels. 

Confidence Level 
Model 1 Model 2 Model 3 

IF (%) IP (%) IC IF (%) IP (%) IC IF (%) IP (%) IC 
80% 93.75 7.81 86.71 43.75 32.36 31.60 81.25 38.22 55.34 
90% 97.92 8.39 90.04 67.71 41.46 44.63 85.42 48.98 52.21 
95% 98.96 9.55 89.95 72.92 49.55 44.32 88.54 58.53 49.17 
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5. Conclusions 

Aiming at the application defects of the NGBoost metamodel in solving the short-term direct 
probability prediction of wind power, this paper proposed an improved NGBoost model. The 
highlights of this model are the addition of data preprocessing avoiding the influence of abnormal 
data on the model prediction results and the use of general gradients to calculate natural gradients, 
simplifying the calculation process and facilitating the promotion of the model in practical 
engineering applications. What is more, this model includes the blending fusion strengthening of the 
model learning effect to obtain better prediction results. The effectiveness and advantages of the 
model proposed in this paper are verified by the measured data of Dalian Tuoshan wind farm in 
China. The following conclusions are drawn.  

(1) Considering actual engineering conditions, there are many outliers in the initial data set from 
SCADA in real wind farms which will cause final prediction errors. With the help of the box plot 
and gray correlation analysis proposed in this paper, the initial data set can be effectively 
preprocessed so that the model has a higher generalization and robustness. 

(2) The related concepts of direct calculation by natural gradients are extremely complicated, which 
is not conducive to popularization and applications in actual engineering. Based on the amount 
of Fisher information, calculating natural gradients through ordinary gradients is liable to 
simplify the metamodel calculation process and promote the model applicated in practical 
engineering. 

(3) Blending fusion is more suitable for solving probabilistic prediction problems effectively 
strengthening the learning effect of the metamodel without causing excessive model 
redundancy. 

Based on the model proposed in this article, the subsequent research work that can be carried 
out includes: (1) the promotion and application of this model in other probabilistic forecasting fields, 
such as photovoltaics, load and so on. (2) The development of new energy integration based on the 
uncertainty information of wind power provided by this model into the research of power system 
scheduling optimization, new energy power market evaluation and other topics. 
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Appendix A 

The selection of the capacity of the training data set is very critical. A smaller data set means that 
the model cannot be fully trained inevitably leading to a decrease in the comprehensive prediction 
score. A larger data set will enable the model to be fully trained, but it inevitably causes a significant 
increase in the model training time. In order to select the optimal sample size, based on the overall 
score index proposed in this paper, we tested different numbers of input samples and plotted the 
corresponding curve as shown in Figure A1: 

It can be seen from Figure A1 that as the number of samples in the data set increases, the model 
prediction overall score and training time increase. When the number of samples is 100 to 500, the 
overall score increases significantly. This result shows that the model has not been fully trained. The 
increase in the number of samples will significantly increase the overall prediction score. When the 
number of samples is 500 to 700, the overall score tends to be flat, but the model is still not trained to 
the best state. Considering that the model training time is still within the acceptable range, the 
number of samples is continued to increase. When the number of samples is 700–1100, the overall 
score of the model increases, but when the number of samples is greater than 900, the model training 
time increases significantly. 
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In summary, after comprehensively considering the higher model overall score and shorter 
training time, this paper selects 960 samples as the initial input sample size. After data preprocessing, 
the actual effective samples are 902. It can be seen from Figure 2 that the model can obtain a higher 
overall score and a relatively short training time. 
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Figure A1. Curve of overall score in different numbers of input samples. 

Appendix B 

Overfitting refers to the phenomenon of the model making the hypothesis excessively strict in 
order to obtain a consistent hypothesis. The specific manifestation is that the model shows a very 
high overall score on the training set, but the overall score is not high when the test set is predicted. 
Overcoming overfitting is a core task in designing predictive models. Although the blending fusion 
proposed in this paper overcomes the problem of data traversal and has the advantages of simplicity, 
efficiency, and a higher overall score compared with the stacking model, it is still necessary to discuss 
how to overcome its overfitting. 

For this reason, this paper analyzes the root cause of the overfitting of the blending fusion. The 
experiment found that the original training set will be divided into the DT subtraining set and DA 
test set according to the proportions. The proportion of the DA test set directly affects the degree of 
overfitting of the final model. By continuously adjusting the ratio of the DT and DA, using the overall 
score proposed in this paper as the index, the score curve of the different ratio between training set 
and the test set is drawn as shown in Figure A2. 
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Figure A2. Score curve of the different ratio. 

It can be seen from Figure A2 that as the proportion of DA in the test set continues to increase, 
the score of the training set does not change much, but the score of the test set increases significantly 
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showing that the degree of model overfitting gradually decreases. That is, a higher percentage of DA 
in the test set is more conducive to overcoming model overfitting. 

Appendix C 

There are many parameters involved in the model training process. Among them, the CART 
depth needs to be given, which directly affects the training time and effect of the model. A larger 
value will significantly extend the model training time and a smaller value may cause a larger model 
error. Figure A3 shows the comparison of Shannon’s information and training time when the CART 
is given different depths. 
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Figure A3. Comparison of different depths of CART. 

It can be seen from Figure A3 that the model training time increases exponentially with the 
increase in the CART depth. However, a larger depth does not reduce the amount of Shannon’s 
information. It may have a negative effect. The optimal setting of the maximum depth in this paper 
is based on the corresponding value of the minimum Shannon information. 
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