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Abstract: As wind farms have great influences on power system stability, it is essential to develop
an adaptive as well as robust equivalent model of it. In this paper, a detailed equivalent model of
PMSG wind farm and initialization method is developed. The trajectory sensitivity of parameters is
analyzed. Then, the key parameters are estimated using improved Genetic Learning Particle Swarm
Optimization (GLPSO) hybrid algorithm with phasor measurement unit (PMU). The description
and generalization capability, stability for parameter identification of the equivalent model under
wake effects, and when some wind turbines are off-line or wind speed is unknown after an event
are analyzed. The maximum differences between the values of estimated parameters and their real
ones are less than 10% for the proportional magnification constant of DC voltage controller Kp2 and
grid side current controller Kp3. The convergence rate and global optimization performance of the
improved GLPSO hybrid algorithm is 0.5 times higher than the classical particle swarm optimization
algorithm (PSO) and genetic algorithm (GA).

Keywords: PMSG; trajectory sensitivity; parameter identification; improved GLPSO hybrid algorithm

1. Introduction

Connecting a large scale PMSG wind farm to grid brings about great influence on angle [1,2],
voltage [3,4] and frequency [5,6] stability of power system. If detailed model of PMSG wind farm
is built to simulate all wind turbines, the complexity and simulation time will greatly increase [7].
Therefore, the establishment of a simplified, accurate and effective wind farm equivalent model is
essential for analysis and control of power system [8].

Wind farm can be equivalent to a single machine [9,10] or multi-machines [11,12]. The equivalent
methods mainly include aggregation method using detailed physical parameters [13] or parameters
estimation method using PMU data in the point of common interconnection. Yingchen Zhang et al.
report that the output from the standard model cannot match the measurements of he DFIG wind
farm [14]. J. Brochu et al. carry out short circuit test on field and show that for stability and
electromagnetic transient studies, single machine representation of wind farm after disturbance
provide good and adequate results [15]. Jin Lin et al. analyze the wide-area trajectory sensitivity for
parameters of constant speed induction generator wind farm. GA is used to estimate the parameters [16].
Xueyang Cheng et al. estimate the key parameters of the equivalent model of DFIG wind farm using PSO
gradient search optimization with PMU data [17]. Yinfeng Wang et al. use improved GA to strengthen
the capability of global optimization [18]. L. P. Kunjumuhammed et al. pointed out that aggregation
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methods must be improved to enhance precision [19]. Dong-Eok Kim et al. formulate a linear model
for DFIG wind farm. The recursive least square method is used to estimate the parameters [20]. Yuhao
Zhou et al. propose an aggregation method of collecting system. The robustness of the equivalent
model for DFIG wind farm when some wind turbines are offline is analyzed [21]. Jian Zhang et al.
consider the control system limiting units of grid side (GSC) and machine side converters (MSC) of
DFIG wind turbine in the parameters estimation process. As an outcome, the precision are greatly
improved [22]. Xueping Pan et al. propose a simplified model of PMSG wind turbine, in which
the mechanical subsystem is neglected. The combination of PSO method and Levenberg-Marquardt
method is used to estimate the simplified model parameters. Furthermore, the simplified PMSG wind
turbine model and the classical load model are paralleled to illustrate the generalized synthesis load in
the distribution network [23]. However, the permanent magnet flux linkage of PMSG is not identified.
Moreover, the parameters of PMSG wind farm are identified with load parameters. Peipeng Zhou et al.
formulate the frequency-domain impedance equivalent model of PMSG wind farms to cope with
sub-synchronization and sup-synchronization oscillation problems [24]. Parameter sensitivity of wind
generator input admittance to wind speed is analyzed. The input admittance and the participation
factor for the dominant oscillation mode are used as the indexes of dividing groups. Based on the
circuit equations, node-by-node aggregation is proposed. However, this approach still belongs to the
aggregation method. After long-time running, the dynamical characteristics may be changed due to
the change of parameters of each PMSG wind turbine. As a result, this method cannot be applicable
any longer.

At present, a large number of researches focus on DFIG wind farm. The literature on equivalent
model of PMSG wind farm is very rare. In this paper, in view of the fact that the traditional aggregation
method cannot solve the problem of parameter variation during long-time running of wind farms,
and manufacturers regard control system parameters as commercial secrets, we propose that the
time-varying and control parameters with high sensitivity are identified using improved GLPSO
hybrid algorithm while the values of other parameters are fixed to aggregated or typical values.

The organization of this paper is as follows. In Section 2, the initialization method of the
equivalent model of a PMSG wind farm is proposed. In Section 3, the trajectory sensitivity analysis
of time-varying and control system parameters is performed. In Section 4, parameters identification
method is formulated. In Section 5, simulation cases are conducted. Conclusions are summarized in
Section 6.

2. Initialization Method for the Equivalent Model of PMSG Wind Turbine

Suppose the steady state voltage magnitude, injected active and reactive power of common
interconnection point of wind farm is denoted by V0, P0 and Q0. Then current magnitude squared
injecting into the grid from wind farm is given by:

I2
0 =

P2
0 + Q2

0

V2
0

(1)

The active power loss on the coupling and filter inductor is given by:

Ploss1 = I2
0Rg (2)

where Rg is the resistance of coupling and filter inductor. The stator loss of PMSG is:

Ploss2 = i2qsRs (3)

where Rs is the PMSG stator resistance. iqs is the q-axis current of stator of PMSG.
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The electromagnetic power of PMSG is:

PEM = −Eiqs = −ωeψPMiqs (4)

where E is the electromotive force of PMSG. ωe is the electrical angular velocity of rotor. ψPM is
permanent magnet flux linkage of PMSG.

PEM can be rewritten as:
PEM = P0 + Ploss1 + Ploss2 (5)

Equations (3) and (4) are substituted into (5). Then Equation (6) can be obtained:

Rsi2qs +ωeψPMiqs + Ploss1 + P0 = 0 (6)

Generally, the optimal torque control is adopted. The reference of electro-magnetic torque is
generally set as:

Topt = −koptω
2
e (7)

where kopt is the optimal torque-speed coefficient, which can be obtained according to the power-speed
curve of PMSG wind turbine.

The electromagnetic torque of PMSG is given by:

Te = ψPMiqs (8)

In steady state, the electromagnetic torque is equal to that of the control command. That is:

Topt = Te (9)

Substituting (7) and (8) into (9), results in:

iqs = −
koptω2

e

ψPM
(10)

Equation (10) is substituted into (6). Then Equation (11) can be obtained:

Rs

(
kopt

ψPM

)2

ω4
e − koptω

3
e + P0 + Ploss1 = 0 (11)

When solving (11), resistance Rs can be neglected first. Thus, (12) can be obtained. Then, according
to (13), the estimation of steady state rotational electric angular speed of rotor ωe0 can be obtained.
Taking ωe0 as the initial value, the Newton-Raphson approach is adopted to compute the rotational
electric angular speed of rotor by solving Equation (11).

− koptω
3
e + P0 + Ploss1 = 0 (12)

ωe0 = 3

√
P0 + Ploss1

kopt
(13)

3. Control System and Time-Varying Parameters Trajectory Sensitivity

3.1. The Necessity of Trajectory Sensitivity Analysis

In the equivalent model, there are many parameters. If all parameters are identified, it will
inevitably consume a lot of computational time, and the identification results will be very dispersive.
As a consequence, the equivalent model is very difficult to apply. Therefore, only the key parameters
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that have strong impact on power system dynamics need to be identified. As direct current (DC)
capacitors, filter inductors and equivalent distribution network impedance are static components,
they can be fixed to nameplate or technical manuals values, and are not identified. The specific
aggregation methods can be found in [18]. Moreover, PMSG is a rotating element. After long-term
operation, its stator resistance, reactance and flux linkage may differ enormously from nameplate data
and should be taken as candidate parameters to be identified. Although the inertial time constant is
less time-varying, its value is usually not listed in the nameplate and technical manual. Therefore,
it is taken as a candidate parameter to be identified as well. Controller parameters are generally
regarded as commercial secrets by manufacturers. Their values cannot be found in nameplate and
technical manuals. Therefore, controller parameters should also be taken as candidate parameters to be
identified. However, low sensitivity parameters in candidate parameters to be identified are generally
difficult to identify accurately and can be fixed to typical values. Therefore, sensitivity analysis of
candidate identified parameters is carried out in this paper to discern the high sensitivity parameters.

The relationship between sensitivity analysis and parameter identification is that the former
guides the latter. That is, sensitivity analysis tells which parameters should be identified. If all the
candidate identification parameters are identified without sensitivity analysis, the convergence rate of
the program will be very slow, and the identification results will be very dispersive.

3.2. Algorithm of Trajectory Sensitivity Analysis

The computing method of trajectory sensitivity and its average value in theory is shown in
Appendix A. However, the trajectory sensitivity and its average value are very hard to compute
analytically according to Equation (A1)–(A3) in Appendix A. However, the numerical solution can be
obtained using simulation software. The algorithm is as follows.

(1) Firstly, a simulation example is built to set the candidate identification parameters to the nameplate
or technical manuals values. If they cannot be found on the nameplate and technical manual,
they are set as the typical values.

(2) Then, the power flow is computed. After that, the transient analysis and computation are
conducted. As a result, P0(t) and Q0(t) are recorded.

(3) Increase the value of kth candidate identification parameter by 5% based on the value set in Step
(1). Repeat step (2) to get Pk(t) and Qk(t).

(4) The trajectory sensitivity of the kth candidate identification parameter are computed as

Sk
p(t) =

Pk(t) − P0(t)
5%P0(t)

(14)

Sk
q(t) =

Qk(t)−Q0(t)
5%Q0(t)

(15)

(5) The average trajectory sensitivities of the kth candidate identification parameter for active as well
as reactive power are computed as

S
k
p =

1
N

N∑
t=1

∣∣∣Sk
p(t)

∣∣∣ (16)

S
k
q =

1
N

N∑
t=1

∣∣∣Sk
q(t)

∣∣∣ (17)

where N is the number of sample data.
(6) Repeat Steps (2)–(5) to compute the trajectory sensitivity and average trajectory sensitivity of all

candidate identification parameters.
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3.3. A Case of Trajectory Sensitivity Analysis

The trajectory sensitivity of the candidate identification parameters of the equivalent model is
investigated using the simulation system shown in Figure 1. A round-rotor PMSG wind turbine with
rated active power of 1.5 MW is connected to the 575 V bus. The parameters of physical and control
system of the PMSG wind turbine are shown in Tables 1 and 2, respectively. Doctor Jiayang Ruan, who
is the author of many published papers on wind power generation, developed the detailed PMSG
wind turbine model according to Ref. [25] which can be downloaded from Ref. [26]. We modify it to
the phasor model using MATLAB/SIMULINK.
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Table 1. Physical Parameters of 1.5-MW PMSG wind turbine.

Parameters Values Parameters Values

Stator resistance (p.u.) 0.0272 Rated capacity of T2 (MVA) 2

Stator resistance (p.u.) 0.5131 T2 resistance (p.u.) 0.0015

Flux linkage (p.u.) 1.1884 Leakage reactance of T2 (p.u.) 0.0415

Inertial constant (s) 1.4393 Rated power factor of PMSG wind turbine 1.0

Rated capacity of MSC (p.u.) 1.0 Rated capacity of GSC (p.u.) 1.2

DC Bus Voltage (V) 1150 Filter resistance (p.u.) 0.03

DC capacitor (F) 0.01 Filter resistance (p.u.) 0.3

Table 2. Controller parameters of 1.5-MW PMSG wind turbine.

Parameters Values Parameters Values

MSC current controller Kp1(p.u.) 0.1361 GSC lower limit of reference current (p.u.) −1.2

MSC current controller Ki1(p.u.) 2.7221 Upper limit reference torque (p.u.) 1.1

DC voltage controller Kp2(p.u.) 8 Lower limit reference torque (p.u.) −1.1

DC current controller Ki2(p.u.) 400 Pitch angle controller Kp(p.u.) 200

GSC current controller Kp3(p.u.) 0.83 Maximum pitch angle (◦) 27

GSC current controller Ki3(p.u.) 5 Maximum pitch angle change rate (◦/s) 10

GSC upper limit of current (p.u.) 1.2 Minimal pitch angle change rate (◦/s) −10

A three-phase short circuit fault with 8 and 1 ohms transition resistance, 4 cycles duration are
respectively set to the midpoint of line L1. The simulation time lasts for 0.2 s. The voltage magnitude
of bus B0 dips about 30% when the transition resistance is set to 8 ohm and 80% when the transition
resistance is set to 1 ohm. The candidate identification parameters are increased by 5% in turn according
to the values in Tables 1 and 2.

The average trajectory sensitivity of each candidate identification parameter for 8-ohm transition
resistance is shown in Table 3. Clearly, the average trajectory sensitivity of stator reactance Ld, Lq,
inertia time constant Tj, proportional and integral magnifications of MSC control loop Kp1 and Ki1

are all 0. Therefore, they are difficult to identify. As a result, Tj Kp1 and Ki1 can be fixed as typical
values while Ld and Lq can be fixed as the values on nameplate or technical manuals. The trajectory
sensitivities of active and reactive power for other candidate identification parameters are shown in
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Figures 2 and 3, respectively. It can be seen from the first figure in Figures 2a and 3a that, when the
trajectory sensitivity of active (reactive) power for stator resistance Rs is negative, that for permanent
magnet flux linkage ψPM is positive. Moreover, when the trajectory sensitivity of active (reactive)
power for Rs is at the trough, that for the permanent magnet flux linkage ψPM is at the peak. That is,
the phase of trajectory sensitivity of active and reactive power for the stator resistance Rs is opposite to
the flux linkage ψPM. This is because the stator resistance is an energy consuming element, while the
permanent magnet is the key element of energy conversion. Their characteristics are different. Since
the phase of trajectory sensitivity of both active and reactive power for resistance and flux linkage are
opposite, increasing the value of one parameter versus decreasing the value of the other parameter
can lead to the same output active and reactive power changes. Therefore, it is difficult to accurately
identify the two parameters at the same time. Further research shows that when the resistance and
flux are involved in parameter identification process at the same time, their identification results are
very dispersive and far away from their true values. That is, there exists the problem of parameter
identifiability. Therefore, the feasible scheme is to fix the stator resistance as the value on the nameplate
and make it not participate in identification.

Table 3. Average trajectory sensitivity of parameters when voltage dips about 30%.

Parameters Active Power Reactive Power Parameters Active Power Reactive Power

Rs 0.0157 0.0302 Ki1 0.0000 0.0000

LdLq 0.0000 0.0000 Kp2 0.0024 0.0045

Tj 0.0000 0.0000 Ki2 0.0009 0.0018

ψPM 0.0286 0.0560 Kp3 0.0035 0.1444

Kp1 0.0000 0.0000 Ki3 0.0012 0.0239
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Figure 2. Trajectory sensitivity of active power when voltage dips about 30%: (a) Trajectory sensitivity
of active power for Rs and ψPM; (b) Trajectory sensitivity of active power for Kp2, Ki2, Kp3 and Ki3.
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Figure 3. Trajectory sensitivity of reactive power when voltage dips about 30%: (a)Trajectory sensitivity
of reactive power for Rs and ψPM; (b) Trajectory sensitivity of active power for Kp2, Ki2, Kp3 and Ki3.

The average trajectory sensitivity of each candidate identification parameter for 1-ohm transition
resistance is shown in Table 4. Clearly, the average trajectory sensitivity of stator reactance, inertia time
constant, proportional and integral amplification constants of MSC control loop are still 0. Moreover,
the average trajectory sensitivity of Rs, ψPM, Kp2, Ki2, Kp3 and Ki3 decrease dramatically compared to
the 8-ohm transition resistance scenario. This is because the current limit unit of GSC control loop is
activated when voltage magnitude drops too much.

Table 4. Average trajectory sensitivity of parameters when voltage dips about 80%.

Parameters Active Power Reactive Power Parameters Active Power Reactive Power

Rs 0.0047 0.0177 Ki1 0.0000 0.0000

Ld Lq 0.0000 0.0000 Kp2 3.15 × 10−5 0.00036

Tj 0.0000 0.0000 Ki2 2.47 × 10−5 2.76 × 10−5

ψPM 0.0071 0.0150 Kp3 0.0024 0.0650

Kp1 0.0000 0.0000 Ki3 0.00053 0.0092

4. Parameters Identification for Equivalent Model of PMSG Wind Farm

4.1. Model of Parameters Estimation

The model of parameters identification is shown in (18). The meanings of P(θ, t), Peq(θ, t), Q(θ, t),
Qeq(θ, t), θmin, θ and θmax are similar to [22].

min
∫ t2

t1

[∣∣∣P(θ, t) − Peq(θ, t)
∣∣∣2 + ∣∣∣Q(θ, t) −Qeq(θ, t)

∣∣∣2]dt

s.t. θmin ≤ θ ≤ θmax, Igmin ≤ Ig ≤ Igmax, Immin ≤ Im ≤ Immax

(18)

Ig, Igmin and Igmax are the currents of the limiting unit in the controller of GSC, its minimum and
maximum respectively. Im, Immin and Immax are the currents of the limiting unit in the controller of
MSC, its minimum and maximum respectively. In this paper, only ψPM, Kp2, Ki2, Kp3, Ki3 are identified
using PMU data.

4.2. Parameters Identification Algorithm

In [27], a novel GLPSO hybrid algorithm with cascade structure using a single exemplary is
proposed. However, in GLPSO hybrid algorithm, the inertia weight coefficient ω, acceleration
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coefficient c and crossover and mutation probabilities Pc and Pm are all constant. In view of this
deficiency, the improved GA (IGA) and improved PSO (IPSO), which are derived from standard GA
and PSO, are combined with GLPSO to further accelerate the convergence rate in this paper. The
procedures of the improved GLPSO hybrid algorithm are shown in Figure 4. It includes the following
5 parts.

Energies 2020, 13, x FOR PEER REVIEW 9 of 18 

 

 
Figure 4. Flowchart of improved GLPSO algorithm. 

5. Text Case 

5.1. Configurations of Case 

As shown in Figure 5, the detailed model of WECC benchmark system is used to test the 
capability of the proposed method. The physical and control system parameters of each PMSG wind 
turbine and the step up transformer are shown in Table 1 and 2 respectively. The system base capacity 
is chosen to be B eq = 30S S= MVA when all PMSG wind turbines are online. A three-phase short-
circuit fault with 8 Ω  transition resistance lasting for 4 cycles is set at the middle L1. The simulation 
time last for 0.2 s. Population size and maximum iteration of GLPSO is set to 50 and 15 respectively. 
The parameters identification interval is shown in Table 5. 

Figure 4. Flowchart of improved GLPSO algorithm.

(1) The exemplar, velocity and location for each particle as well as population size, maximimal
iterations and other parameters are initialized. The fitness value of each exemplar and particle is
computed and the best particle is saved.

(2) The optimization parameters of IGA are updated according to (19), (20) [18]:

Pi
c = Pi−1

c +
0.5− Pc0

N
(19)

where Pi
c is crossover probability at the ith iteration. Pc0 is the initial crossover probability. N is maximal

number of iterations.
The recommended value range of mutation probability Pm is 0.001–0.1. The Pm is adjusted

according to (20) [14].  Pi
m = Pi−1

m +
0.001−P0

m
N ifτ = 0

Pi
m = P0

m ifτ = 1
(20)

where τ is a binary denoting whether reseting Pi
m to the initial value P0

m.
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(3) Each exemplar is updated using IGA operation with the genetic materials gbest and pbest. Then,
the objective function is computedfor each exemplar. After that, the optimal value and corresponding
exemplar are saved.

(4) After IGA operation, the inertia weight coefficient ω, acceleration coefficient c are updated
as follows.

ω = ωmax − (ωmax −ωmin) ×
( i

N

)2
(21)

c = (cmax − cmin) ×
N − i

N
+ cmin (22)

where ωmax and ωmin are the upper and lower bound of ω. cmax and cmin are the upper and lower
bound of c.

(5) The IPSO method is adopted to update all the particles using the new exemplar. The gbest
and pbest as well as objective function of every particle are computed. Then the optimal fitness value
and corresponding particle is saved. If the end conditions are satisfied, the program is terminated.
Otherwise, go to Step 2. The new iteration cycle starts.

5. Text Case

5.1. Configurations of Case

As shown in Figure 5, the detailed model of WECC benchmark system is used to test the capability
of the proposed method. The physical and control system parameters of each PMSG wind turbine and
the step up transformer are shown in Tables 1 and 2 respectively. The system base capacity is chosen to
be SB = Seq= 30 MVA when all PMSG wind turbines are online. A three-phase short-circuit fault with
8 Ω transition resistance lasting for 4 cycles is set at the middle L1. The simulation time last for 0.2 s.
Population size and maximum iteration of GLPSO is set to 50 and 15 respectively. The parameters
identification interval is shown in Table 5.Energies 2020, 13, x FOR PEER REVIEW 10 of 18 
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Table 5. Identification intervals of parameters.

ψPM Kp2 Ki2 Kp3 Ki3

[0.594–2.377] [1.600–40.000] [80.000–2000.000] [0.166–4.150] [1.000–25.000]
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5.2. Text Results

5.2.1. Convergence Rate and Searching Capability of Improved GLPSO

Set wind speed according to Table 5 in [22]. The value of objective function for 3 methods are
shown in Figure 6. Clearly, the global searching capability of improved GLPSO is much higher than
canonical PSO and GA. The reason is that the capability and convergence rate of GLPSO is much
higher than PSO and GA, as well as the optimization coefficients are updated adaptively.
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5.2.2. Dispersion of Identified Parameters

The results of identified parameters under various wind speeds and wake effect scenarios are
shown in Table 6. Clearly, the dispersion of Kp2, Kp3 is low. Other parameters have a certain degree of
dispersion. Assume that the wind turbines 5, 9, 13, and 17 in Figure 5 are offline. The system base
capacity is chosen to be SB = Seq= 30× 0.8 MVA. As shown in Table 7, the dispersion of Kp2 and Kp3 is
still low. As shown in Table 5 in [22], the wake effect is considered by setting wind speeds of each
PMSG wind turbine different from each other. As shown in the last row in Tables 6 and 7, the precision
of parameter identification results for wake effect is slightly lower than other scenarios due to the large
difference of operating states of each PMSG wind turbine. However, it is still satisfactory.

Table 6. Parameter identification results 100% online.

Wind Speed ψPM Kp2 Ki2 Kp3 Ki3

7 m/s 1.5773 8.4326 358.5877 0.7698 3.7783

8 m/s 1.5580 8.1466 382.4388 0.7955 3.8919

9 m/s 1.7754 8.1307 417.8176 0.8106 4.8668

10 m/s 1.3471 7.9733 400.4220 0.8156 4.7120

11 m/s 1.4920 8.2924 364.5235 0.8159 5.6793

12 m/s 1.3722 7.9720 397.1256 0.8235 5.4453

Wake Effect 1.4550 7.7923 313.3526 0.7967 3.9189
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Table 7. Results of parameters estimation 80% online.

Wind Speed ψPM Kp2 Ki2 Kp3 Ki3

7 m/s 1.5561 8.6378 257.2373 0.7594 4.3353

8 m/s 1.5625 8.3687 355.7341 0.7863 3.5676

9 m/s 1.7915 8.3210 395.7704 0.7889 3.8645

10 m/s 1.7601 8.2780 352.3386 0.8017 4.5689

11 m/s 1.5934 8.2248 432.2732 0.8155 5.5417

12 m/s 1.5880 8.1397 400.2451 0.8293 4.9157

Wake Effect 1.4849 7.7995 295.8272 0.8259 3.5769

5.2.3. Verification of Descriptive Capability

The fitting curves when the wind speed of each turbine is set to 8 m/s, 9 m/s, 10 m/s, and 11 m/s
are shown in Figure 7. Clearly, the output active and reactive power of the equivalent model overlaps
those of wind farm respectively. Therefore, the equivalent model can describe dynamic characteristics
of the wind farm after disturbance with very high precision.

5.2.4. Verification of Generalization Capability

Equivalent model identified with 9 m/s wind speed is utilized to describe wind farm with 7 m/s,
12 m/s wind speed, under wake effect and 20% wind turbines are off line respectively. As shown in
Figure 8, the deviation of output active and reactive power curves of the equivalent model from those
of wind farm is very small, although the wind speeds differ much. As shown in Table 8, the goodness of
fit [18] are very close to 100%. It concludes that the generalization capability of the proposed equivalent
model and parameters identification strategy is high enough.
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Figure 7. Descriptive capability of equivalent model: (a) comparison response for wind speed is 8 m/s;
(b) comparison response for wind speed is 9 m/s; (c) comparison response for wind speed is 10 m/s;
and (d) comparison response for wind speed is 11 m/s.
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Figure 8. Generalization ability of equivalent model: (a) comparison response for wind speed is 7 m/s;
(b) comparison response for wind speed is 12 m/s; and (c) comparison response considering wake effect.
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Table 8. Comparisons of fitting curves.

100% Online Active Power Reactive Power 80% Online Active Power Reactive Power

7 m/s 99.99% 99.75% 7 m/s 99.99% 99.59%
12 m/s 99.99% 99.98% 12 m/s 99.99% 99.98%

Wake Effect 99.94% 99.95% Wake effect 99.93% 99.94%

5.2.5. Unknown Wind Speed Scene

The results of parameters identification when wind speed is unknown are shown in Table 9.
Clearly, they are consistent with those in Tables 6 and 7. It is worth pointing out that the identification
results of ψPM in Tables 6, 7 and 9 deviate a lot from the true value 1.1884. When the three-phase
short-circuit transition resistance is set to 1 ohm, we have carried out the program of parameters
identification many times. It is found that although other parameters cannot be identified precisely,
Kp3 and ψPM can be identified precisely. For all the programs, the mismatch between the identification
results for ψPM and the true value 1.1884 are less than 5%. Further, the transient process time of power
system is very short, generally within 10 s. The dynamic characteristics of PMSG wind farm depend on
the regulating speed of GSC converter, which is generally in millisecond. As shown in Figures 7 and 8,
the transient process of PMSG wind farm is very short, far less than 0.2 s. In such a short period of
time, the wind speed can be regarded as a constant value. The proposed method has good robustness
and adaptability for the randomness of wind speed.

Table 9. Identification results when wind speed is unknown.

Parameters ψPM Kp2 Ki2 Kp3 Ki3

Wake Effect 1.5523 7.8411 279.2768 0.8237 3.9126

6. Conclusions

We show that the sensitivity of inertia time constant Tj, stator reactance Ld, Lq and proportional
and integral amplification constant of current controller of MSC Kp1, Ki1 are very small after trajectory
sensitivity analysis. Moreover, the phase of trajectory sensitivity for stator resistance Rs is opposite to
permanent magnet flux linkage ψPM. Simulation results using the WECC benchmark system indicate
that the capability of the proposed improved GLPSO hybrid algorithm are much higher canonical PSO
and GA. Further, the approach proposed is preferable to those in [20,24]. Because in [20] the parameters
of PMSG wind farm are identified with load parameters. Since the sensitivity for parameters of
load are much higher than parameters of a PMSG wind turbine, it is very difficult to identify the
parameters of a PMSG wind turbine precisely if they are identified at the same time. Furthermore,
the permanent magnet flux linkage of PMSG is not identified in [20], which has a significant impact on
power system dynamics. Moreover, since the approach in [24] belongs to the aggregation method,
detailed information of the whole wind farm is necessary. Furthermore, the method in [24] cannot be
applicable after long-term operation of wind farm since the parameters of each PMSG wind turbine
may deviate greatly from the values on the nameplate. Therefore, the proposed method is preferable
to the on in [24] as well.
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Appendix A

Trajectory Sensitivity Analysis

In this paper, the analysis method of trajectory sensitivity and average trajectory sensitivity in
reference [13] is adopted. The dynamics of power system is given by:{ dx

dt = f(x, y, u,θ)
y = g(x, u,θ)

(A1)

where state variables, stator and rotor flux linkage and rotor speed for example are denoted by x. The
input variables, wind speed, voltage of common interconnection point for example are denoted by
u. Vector y represents output variables, such as output active power, reactive power, etc. Vector θ
represents parameters, such as equivalent distribution network impedance, stator and rotor impedance,
excitation reactance, etc. The trajectory sensitivity of parameters reflects the change degree of output
variables when the parameters change. In a certain operating state, the trajectory sensitivity of the
output y j(t) relative to the parameter θi is defined as

Sy j/θi(t) =
∂y j(t)/y j(t)

∂θi/θi
= lim

∆θi→0

y j(θr,θi0+∆θi,t)−y j0(θr,θi0,t)

y j0(θr,θi0,t)

∆θi/θi0
(A2)

where y j0 is the output when ith parameter value is set to θi0. ∆θi is the increment on θi. θr are the
parameters in the model except θi.

The average trajectory sensitivity is defined as

Sy j/θi =
1

t2 − t1

∫ t2

t1

∣∣∣∣Sy j(t)/θi
(t)

∣∣∣∣dt (A3)

where t1 and t2 are the time before and after the disturbance, which can be reasonably selected according
to the output curve samples data.

References

1. Mohammadpour, H.A.; Santi, E. SSR damping controller design and optimal placement in rotor-side and
grid-side converters of series-compensated DFIG-based wind farm. IEEE Trans. Sustain. Energy 2015, 6,
388–399. [CrossRef]

2. Ullah, N.R.; Thiringe, T.; Karlsson, D. Voltage and transient stability support by wind farms complying with
the E.ON Netz grid code. IEEE Trans. Power Syst. 2007, 22, 1647–1656. [CrossRef]

3. Kunjumuhammed, L.P.; Pal, B.C.; Gupta, R.; Dyke, K.J. Stability Analysis of a PMSG-Based Large Offshore
Wind Farm Connected to a VSC-HVDC. IEEE Trans. Energy Convers. 2017, 32, 1166–1176. [CrossRef]

4. Song, R.; Guo, J.; Li, B.; Zhou, P.; Du, N.; Yang, D. Mechanism and characteristics of subsynchronous
oscillation in direct-drive wind power generation system based on input-admittance analysis. Proc. CSEE
2017, 37, 4662–4670. [CrossRef]

5. Zhou, P.P.; Li, G.F.; Song, R.H.; Yang, D.Y. Subsynchronous oscillation characteristics and interactions of direct
drive permanent magnet synchronous generator and static var generator. Proc. CSEE 2018, 38, 4369–4378.
[CrossRef]

6. Xie, X.R.; Liu, H.K.; He, J.B.; Zhang, C.Y.; Qiao, Y. Mechanism and characteristics of subsynchronous
oscillation caused by the interaction between full-converter wind turbines and AC systems. Proc. CSEE 2016,
36, 2366–2372. [CrossRef]

http://dx.doi.org/10.1109/TSTE.2014.2380782
http://dx.doi.org/10.1109/TPWRS.2007.907523
http://dx.doi.org/10.1109/TEC.2017.2705801
http://dx.doi.org/10.13334/j.0258-8013.pcsee.162564
http://dx.doi.org/10.13334/j.0258-8013.pcsee.171917
http://dx.doi.org/10.13334/j.0258-8013.pcsee.2016.09.007


Energies 2020, 13, 4607 17 of 17

7. Ruan, J.-Y.; Lu, Z.-X.; Qiao, Y.; Min, Y. Analysis on Applicability Problems of the Aggregation-Based
Representation of Wind Farms Considering DFIGs’ LVRT Behaviors. IEEE Trans. Power Syst. 2016, 31,
4953–4965. [CrossRef]

8. Wang, P.; Zhang, Z.; Huang, Q.; Wang, N.; Zhang, X.; Lee, W.-J. Improved Wind Farm Aggregated Modeling
Method for Large-Scale Power System Stability Studies. IEEE Trans. Power Syst. 2018, 33, 6332–6342.
[CrossRef]

9. Jalili-Marandi, V.; Pak, L.-F.; Dinavahi, V. Real-Time Simulation of Grid-Connected Wind Farms Using
Physical Aggregation. IEEE Trans. Ind. Electron. 2009, 57, 3010–3021. [CrossRef]

10. Fernández, L.M.; Jurado, F.; Sáenz, J.R.; Fernández-Ramírez, L.M. Aggregated dynamic model for wind
farms with doubly fed induction generator wind turbines. Renew. Energy 2008, 33, 129–140. [CrossRef]

11. Li, W.; Chao, P.; Liang, X.; Ma, J.; Xu, D.G.; Jin, X. A Practical Equivalent Method for DFIG Wind Farms. IEEE
Trans. Sustain. Energy 2018, 9, 610–620. [CrossRef]

12. Ali, M.; Ilie, I.-S.; Milanovic, J.V.; Chicco, G. Wind Farm Model Aggregation Using Probabilistic Clustering.
IEEE Trans. Power Syst. 2013, 28, 309–316. [CrossRef]

13. Zou, J.; Peng, C.; Xu, H.; Yan, Y. A Fuzzy Clustering Algorithm-Based Dynamic Equivalent Modeling Method
for Wind Farm With DFIG. IEEE Trans. Energy Convers. 2015, 30, 1329–1337. [CrossRef]

14. Zhang, Y.; Muljadi, E.; Kosterev, D.; Singh, M. Wind Power Plant Model Validation Using Synchrophasor
Measurements at the Point of Interconnection. IEEE Trans. Sustain. Energy 2014, 6, 984–992. [CrossRef]

15. Brochu, J.; LaRose, C.; Gagnon, R. Validation of Single- and Multiple-Machine Equivalents for Modeling
Wind Power Plants. IEEE Trans. Energy Convers. 2010, 26, 532–541. [CrossRef]

16. Lin, J.; Cheng, L. Model Parameters Identification Method for Wind Farms Based on Wide-Area Trajectory
Sensitivities. Int. J. Emerg. Electr. Power Syst. 2010, 11, 1–19. [CrossRef]

17. Cheng, X.; Lee, W.-J.; Sahni, M.; Cheng, Y.; Lee, L.K. Dynamic Equivalent Model Development to Improve
the Operation Efficiency of Wind Farm. IEEE Trans. Ind. Appl. 2016, 52, 2759–2767. [CrossRef]

18. Wang, Y.; Lu, C.; Zhu, L.; Zhang, G.; Li, X.; Chen, Y. Comprehensive modeling and parameter identification
of wind farms based on wide-area measurement systems. J. Mod. Power Syst. Clean Energy 2016, 4, 383–393.
[CrossRef]

19. Kunjumuhammed, L.P.; Pal, B.C.; Oates, C.; Dyke, K.J. The Adequacy of the Present Practice in Dynamic
Aggregated Modeling of Wind Farm Systems. IEEE Trans. Sustain. Energy 2016, 8, 23–32. [CrossRef]

20. Kim, D.-E.; El-Sharkawi, M.A. Dynamic Equivalent Model of Wind Power Plant Using Parameter
Identification. IEEE Trans. Energy Convers. 2015, 31, 37–45. [CrossRef]

21. Zhou, Y.; Zhao, L.; Lee, W.-J. Robustness Analysis of Dynamic Equivalent Model of DFIG Wind Farm for
Stability Study. IEEE Trans. Ind. Appl. 2018, 54, 5682–5690. [CrossRef]

22. Zhang, J.; Cui, M.; He, Y. Robustness and adaptability analysis for equivalent model of doubly fed induction
generator wind farm using measured data. Appl. Energy 2020, 261, 1–12. [CrossRef]

23. Pan, X.; Feng, X.; Ju, P. Generalized load modeling of distribution network integrated with direct-drive
permanent-magnet wind farms. Autom. Power Syst. 2017, 41, 62–68. [CrossRef]

24. Zhou, P.P.; Li, G.F.; Sun, H.D.; Song, R.H.; Du, N. Equivalent Modeling Method of PMSG Wind Farm Based
on Frequency Domain Impedance Analysis. Proc. CSEE 2020, in press.

25. Xia, A.J.; Qiao, Y.; Lu, Z.X.; Ruan, J.Y. Effects of aggregated PMSG wind farm model error on transient
stability analysis of power systems. Power Syst. Technol. 2016, 40, 341–347. [CrossRef]

26. Permanent Magnet Synchronous Generator (PMSG) Based Wind Power Generation System.
Available online: https://www.mathworks.com/matlabcentral/fileexchange/36116-pmsg-based-wind-power-
generation-system (accessed on 10 April 2012).

27. Gong, Y.J.; Li, J.-J.; Zhou, Y.; Li, Y.; Chung, H.S.-H.; Shi, Y.-H.; Zhang, J. Genetic Learning Particle Swarm
Optimization. IEEE Trans. Cybern. 2015, 46, 2277–2290. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2016.2539251
http://dx.doi.org/10.1109/TPWRS.2018.2828411
http://dx.doi.org/10.1109/TIE.2009.2037644
http://dx.doi.org/10.1016/j.renene.2007.01.010
http://dx.doi.org/10.1109/TSTE.2017.2749761
http://dx.doi.org/10.1109/TPWRS.2012.2204282
http://dx.doi.org/10.1109/TEC.2015.2431258
http://dx.doi.org/10.1109/TSTE.2014.2343794
http://dx.doi.org/10.1109/TEC.2010.2087337
http://dx.doi.org/10.2202/1553-779X.2608
http://dx.doi.org/10.1109/TIA.2016.2537778
http://dx.doi.org/10.1007/s40565-016-0208-5
http://dx.doi.org/10.1109/TSTE.2016.2563162
http://dx.doi.org/10.1109/TEC.2015.2470562
http://dx.doi.org/10.1109/TIA.2018.2858738
http://dx.doi.org/10.1016/j.apenergy.2019.114362
http://dx.doi.org/10.7500/AEPS20160627003
http://dx.doi.org/10.13335/j.1000-3673.pst.2016.02.002
https://www.mathworks.com/matlabcentral/fileexchange/36116-pmsg-based-wind-power-generation-system
https://www.mathworks.com/matlabcentral/fileexchange/36116-pmsg-based-wind-power-generation-system
http://dx.doi.org/10.1109/TCYB.2015.2475174
http://www.ncbi.nlm.nih.gov/pubmed/26394440
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Initialization Method for the Equivalent Model of PMSG Wind Turbine 
	Control System and Time-Varying Parameters Trajectory Sensitivity 
	The Necessity of Trajectory Sensitivity Analysis 
	Algorithm of Trajectory Sensitivity Analysis 
	A Case of Trajectory Sensitivity Analysis 

	Parameters Identification for Equivalent Model of PMSG Wind Farm 
	Model of Parameters Estimation 
	Parameters Identification Algorithm 

	Text Case 
	Configurations of Case 
	Text Results 
	Convergence Rate and Searching Capability of Improved GLPSO 
	Dispersion of Identified Parameters 
	Verification of Descriptive Capability 
	Verification of Generalization Capability 
	Unknown Wind Speed Scene 


	Conclusions 
	
	References

