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Abstract: Durability of concrete designed for radiation shielding structures is an important issue in
nuclear power plant safety. An investigation of the permeability of concrete containing heavyweight
aggregates and water-bearing aggregates was performed with respect to gaseous and liquid media.
Mix design was developed using Portland and slag cement, crushed magnetite and serpentine
aggregate. The use of slag cement in concrete containing magnetite and serpentine aggregates
resulted in the substantial improvement of the compressive strength in comparison with Portland
cement concrete. The application of slag cement was found to reduce the chloride ingress, regardless of
the special aggregate use. The coefficient of chloride migration was within the range 5 ÷ 8 × 10−12 m2/s
and 17 ÷ 25 × 10−12 m2/s for slag cement concrete and Portland cement concrete, respectively. At the
same time, the carbonation depth was increased twice for slag cement concrete in comparison to
Portland cement concrete. However, the maximum carbonation depth after one year of exposure
to 1% CO2 was only 14 mm for slag cement concrete, and 7 mm for reference concrete. The total
pore volume evaluated using mercury intrusion porosimetry was influenced by the type of special
aggregate used. It was shown that concrete with various contents of magnetite aggregate and slag
cement achieved the smallest total pore volume. While serpentine coarse aggregate caused an increase
in total pore volume in comparison to concrete with magnetite aggregate.

Keywords: chloride permeability; carbonation; slag cement; radiation shielding concrete;
microstructure; MIP; mix design; Portland cement; magnetite

1. Introduction

Nuclear power is a sustainable and carbon-free source of electricity. Increased interest to build new
nuclear power plants has been observed due to growing environmental concerns related to fossil fuel
energy sources. Additionally, the total cost of using nuclear energy in energy and electricity plans and
policies is significantly lower than that of other energy sources, including renewable energy sources [1].
However, after the accident of the Fukushima Daiichi nuclear power plant in 2011, the public opinion
trends demonstrated a lower degree of trust in nuclear energy technologies and facilities. In response,
significant enhancements of key plant safety functions, in particular related to large-scale natural
disasters, were introduced [2]. Nuclear safety-related concrete structures are constantly required to
provide both structural and radiation shielding functions. For economic reasons the expected service
life of principal concrete structures should be at least 60 years. Therefore, the problem of adequate
long-term durability of concrete exposed to harsh environmental conditions becomes significant [3–5].

In [6], the environmental conditions were reviewed both for nuclear containment structures
and biological shielding structures. The durability design is largely based on a suitable selection of
concrete constituents and mix proportioning that is guided by the combined action of radiation,
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increased temperature and mechanical actions, also moisture transport and chemical factors.
Improvement of concrete shielding properties for the attenuation of photons and neutrons is obtained by
using selected heavyweight mineral aggregates and/or aggregates containing lightweight elements [7]
or boron minerals [8]. High-performance heavy density concrete mixes for gamma-ray shielding were
developed by Ouda [9] using different aggregates and mineral additions. The compressive strength
exceeding 60 MPa was considered as the principal indicator of high performance; the target strength
was achieved for concrete containing magnetite coarse aggregate and 10% of silica fume per cement
mass. Concrete mixes made with goethite and serpentine coarse aggregate along with silica fume,
fly ash and blast furnace slag addition did not satisfy such strength requirements even after 90 days of
curing. The influence of heavyweight concrete mix design on the resistance to thermal shock exposure
was revealed in [10] and allowed to verify the integrity of the shielding concrete over the different
temperature ranges.

The investigations conducted by Sakr and El-Hakim, Sakr, K., et al. [11] concerned the effect of
high temperature (250, 500, 750 and 950 ◦C) on the physical, mechanical and radiation properties of
heavyweight concrete. They showed that concrete with ilmenite aggregate was characterized by the
highest density and lowest absorption percent, and it also had higher values of mechanical properties
(compressive, tensile, bending and bonding strength) than gravel or barite concrete. Ilmenite concrete
was more resistant to elevated temperature and it showed the highest attenuation of transmitted gamma
rays as well. Yousef et al. [12] analyzed serpentine and hematite concretes exposed to temperatures
between 20 and 800 ◦C. They have found that concrete with hematite aggregate was characterized
by the best resistance for high-temperature effects. It did not lose more than 30% of its compressive
strength up to 500 ◦C, while reference concretes with gravel or dolomite aggregate failed completely at
500 ◦C. They revealed that serpentine and hematite aggregates were more thermally stable comparing
to dolomite aggregate in shielding concrete.

The influence of the cement type, in this largely slag cement, on the durability of concrete
has been the subject of many studies and scientific publications, Al-Amoudi, O.S.B., et al. [13–25].
The research concerning the permeability of slag cement concrete was conducted for both chloride
ion migration [18,19] and carbonation [20–22]. Slag cement plays a positive role in improving
the durability of concrete, where chloride ion may cause serious deterioration to the reinforced
concrete structures, Feng, N.-Q., et al. [17]. The carbonation depths and consequently the carbonation
coefficients increase with increasing slag content [16,23,24]. This dependency was expected, because of
the slag pore solutions is low and since CO2 preferentially reacts with Portlandite, the pH is rapidly
reduced, Gruyaert, E., et al. [23]. It is also known that the gas permeability of the concrete increases
with increasing slag content [25] and the carbonation reaction in slag cement concrete leads to a
coarsening of the pore structure allowing carbon dioxide to penetrate more easily in the concrete,
Gruyaert, E., et al. [23].

All the above publications relate to concrete made with ordinary aggregate. Only a few
publications concerning the permeability of shielding concrete with heavyweight mineral aggregates
and/or aggregates containing lightweight elements or boron minerals can be found in the literature,
Glinicki, M.A. [26–29]. The containment structures are designed to restrict the spread of radiation
and radioactive contamination to the environment. Therefore, the permeability of concrete should
be included as one of the important mix design criteria [26]. The air permeability and diffusion of
moisture in heavyweight concrete containing barite and magnetite aggregate were studied by Kubissa
et al. [27]. On the basis of the air permeability index the quality of concrete varied from “very good” to
“good”, depending on concrete mix design. The gas permeation properties of concrete were found
strongly influenced by the degree of saturation of capillary pores. A similar relationship was found by
Zhang et al. [28]. A linear relationship between the air permeability index and the relative humidity in
pores was obtained in [29] and the effects of heavyweight and hydrogen-bearing aggregates on air
permeability index were revealed.
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Binici [30] investigated the heavyweight concrete durability, including among others the resistance
to chloride ions. He found that the resistance to the chloride penetration was significantly higher for
concrete incorporating barite, both coarse and fine aggregate in comparison to reference concrete with
limestone aggregate. The relationship between temperature and carbonation of concrete was found
by Zhang et al. [31]. They revealed that the higher the temperature was, the larger the carbonation
depth was noticed. At temperatures less than 300 ◦C, the rate of increase in the carbonation depth was
relatively low, but above 450 ◦C, the carbonation depth increased sharply. At a temperature higher
than 600 ◦C, the carbonation depth of ordinary concrete determined after 28 days increased more than
three times (from 7 mm to 23 mm).

The aim of this investigation is to evaluate the impermeability of concrete containing special
aggregates with respect to gaseous and liquid media. On the basis of characterization of concrete
microstructure, its mechanical and physical properties and its suitability for application in structural
elements of nuclear power plants are evaluated.

2. Materials and Methods

Blast furnace slag cement (CEM III/A 42.5N LH/HSR/NA) was investigated in the research. As a
reference, also low heat, sulfate resistant and low alkali Portland cement CEM I 42.5N (OPC) was used.
The specific surface was 4700 and 3800 cm2/g, respectively. CEM III was characterized by density
2.99 g/cm3 and CEM I by 3.15 g/cm3. The water demand was 34% for CEM III and 28% for CEM
I. Compressive and flexural strength after 28 days was 58.2 and 9.5 MPa and 52.6 and 8.1 MPa for
CEM III and CEM I, respectively. The basic cement properties and the detailed chemical and physical
properties of cement are given in [32].

The testing program covered concrete mixes with variable magnetite and serpentinite coarse
aggregate. Amphibolite coarse aggregate was used as a reference in the concrete mix. A detailed
composition of concrete mixes is presented in Table 1, and the properties of the fresh mix are presented
in Table 2. As fine aggregate, in all mixes, a siliceous sand of 0–2 mm was used. The content of sand was
20%, except its content in reference concrete (30%). The magnetite to serpentine aggregate ratio was
1:2 (S-MS_2/1 and P-MS_2/1) or 2:1 (S-MS_1/2 and P-MS_1/2). The cement content was constant and
amounted to 350 kg/m3 and water to cement ratio 0.48. Water reducer based on modified phosphonate
and high-range water reducer based on polycarboxylate and modified phosphonate were used.

Specimens 150 × 150 × 150 mm were used to test compressive strength and cylinders ø = 100 and
h = 200 mm for chloride ion migration and as well as for porosity accessible for water. Specimens
100 × 100 × 100 mm were cast for CO2 ingress and microstructure analysis. The specimens were
conditioned in a climatic chamber at temperature of 20 ± 2 ◦C and relative humidity of 95% up to
28 days and next in RH = 55 ± 5% (room conditions) up to day of measurement.

The compressive strength was determined on three 150× 150× 150 mm specimens for each concrete
mix after 7, 28 and 90 days of curing following the standard procedure PN-EN 12390-3:2019 [33].

The chloride ions penetration was tested according to Nordtest Method NT Build 492 [34] using
the rapid chloride ion migration test. The value of non-steady-state chloride migration coefficient,
Dnssm, was determined for a non-steady flux of chloride ions under the action of the external electrical
field after 56 and 112 days of curing the concrete specimens and calculated from the Fick’s second
law. A description of the applied test method is presented in [3]. Each result concerning compressive
strength and well as the chloride migration coefficient is an average of three measurements.

The carbonation of concrete was investigated at a constant concentration of carbon dioxide (1%),
at 22 ◦C and 60% relative humidity. The depth of carbonation was tested on one beam from each
concrete mix on the freshly split surface with phenolphthalein solution after 0, 28, 56, 90, 180 and
360 days of exposure, according to PN-EN 13295:2005 [35]. The carbonation depth was determined on
the average of 20 measurements tested after a prescribed exposure time.
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Table 1. Concrete mix design, kg/m3.

Constituents S-A S-M S-MS_1/2 S-MS_2/1 P-A P-M P-MS_1/2 P-MS_2/1

Cement
CEM III/A LH/HSR/NA CEM I LH/HSR/NA

350 350

Water 168 168

Siliceous sand 0–2 mm 556 371 371 371 556 371 371 371

Amphibolite
aggregate

2–8 mm 912 0 0 0 912 0 0 0

8–16 mm 507 0 0 0 507 0 0 0

Serpentine
aggregate

0–2 mm 0 0 0 0 0 0 0 0

2–8 mm 0 0 485 485 0 0 485 485

8–16 mm 0 0 0 485 0 0 0 485

Magnetite
aggregate

0–5 mm 0 839 772 895 0 839 772 895

0–16 mm 0 1846 1018 0 0 1846 1018 0

WR * (% of c. mass) 0.58 1.02 1.49 2.18 0.39 0.67 1.51 0.97

HRWR ** 0 0 0 0 0 0 0 0.31

* Water reducer, ** High-range water reducer.

Table 2. Properties of fresh mix.

Properties S-A S-M S-MS_1/2 S-MS_2/1 P-A P-M P-MS_1/2 P-MS_2/1

Slump,
mm 80 200 80 80 70 80 100 60

Bulk density, kg/m3 2440 3579 3145 2781 2459 3500 3084 2735

Analysis of the concrete microstructure was performed on thin sections cut from concrete prisms.
For this purpose, the fluorescent epoxy impregnated thin sections were prepared according to [24].
The concrete specimens were cut in smaller pieces (40 × 50 mm), which were then vacuum impregnated
with a low viscous resin together with yellow fluorescent dye. The thin section subjected to further
microscopic analysis was characterized by thicknesses of 20 ± 2 µm. Thin section analysis was
performed using the optical polarizing microscope Olympus BX51 with a digital camera. The polarized
light (PPL), crossed polarized light (XPL), and also with lambda plate and UV light were applied for
thin sections analysis.

A mercury intrusion porosity (MIP) test was also executed to evaluate the differences in pore
content and pore size distribution. MIP measurements were carried out using cores with diameter
9 mm and length 25 mm drilled from concrete specimens. Drilled specimens were crushed and then a
cement mortar was separated to further measurements. All investigated specimens were characterized
by the same volume and were smaller than 2 cm3, limited by the volume of the measurement container.
The analyzed specimens were dried until a constant weight at 35 ◦C and then they were kept in tightly
closed containers to avoid a humidity exchange with the environment. Quantachrome POREMASTER
60 mercury porosimeter, which was able to detect the pores up to 5 nm with the maximum pressure of
414 MPa, was used. The accuracy of measurement was 0.001 PSI, which corresponds to 5 nm resolution.
The volume of intruded mercury was measured with accuracy 0.0001 cm3/g. A cement matrix without
aggregate was separated from three cores from each concrete after 120 days of water curing.

Two cores from each concrete mix (100 ± 2 mm diameters and 50 ± 2 mm height) were used to
assess the open porosity according to NF P18-459: 2010 [36]. They were vacuumed, saturated with tap
water and weighed in three water saturation states: fully saturated and weighted with hydrostatic
balance, fully saturated and weighted with an analytical balance, and dried to constant mass at 105 ◦C.
Based on the obtained results, the porosity available for water was determined.
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3. Results

3.1. Compressive Strength

The results of the 7, 28 and 90 days of compressive strength for concrete made with various coarse
aggregates and both CEM I and CEM III are presented in Figure 1.
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The highest value of compressive strength tested after 7, 28 and 90 days for concrete made with
CEM I achieved reference concrete made with amphibolite aggregate, 51, 71 and 85 MPa, respectively.
In concretes containing CEM I and special aggregate, the highest compressive strength, regardless of
curing time, was achieved for concrete with magnetite aggregate: 45, 62 and 80 MPa after 7, 28 and
90 days. Concretes made with serpentine aggregate were characterized by lower values of compressive
strength, although very close to the previous one. The change in magnetite and serpentine content
(P-MS_1/2 and P-MS_2/1) did not affect the compressive strength values significantly. All concretes
made with CEM I belonged to the strength class C55/67 (after 90 days).

In concrete containing CEM III cement, the beneficial influence of a special aggregate type
on compressive strength was visible. The highest values of compressive strength were achieved
by concretes containing a mixture of magnetite and serpentine aggregate, S-MS_1/2 and S-MS_2/1.
After 90 days of curing, they were characterized by 85 and 91 MPa. A similar value was achieved by
reference concrete, 87 MPa, which placed them in the compressive strength class C70/85. Slightly lower
values of compressive strength were achieved for concretes made with pure magnetite aggregate,
S-M—81 MPa (the compressive strength class C60/75).

3.2. The Nonsteady Chloride Migration Coefficient

After 56 and 120 days of curing, the nonsteady chloride migration coefficient Dnssm, was investigated,
(Figure 2). Four classes of the concrete resistance to chloride ions penetration were applied,
Glinicki, M.A., et al. [3]: very good (Dnssm < 2 × 10−12 m2/s), good (2 ÷ 8 × 10−12 m2/s), acceptable
(8 ÷ 16 × 10−12 m2/s) and unacceptable (Dnssm > 16 × 10−12 m2/s).
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Figure 2. Influence of cement type on the chloride ions migration coefficient specified after: (a) 56 and
(b) 120 days of curing.

In all analyzed series, the influence of CEM III in comparison to CEM I on the chloride ions
migration coefficient was clearly visible. A significant increase in the resistance of concrete to the
penetration of chloride ions was observed, after 56 days as well as after 120 days of curing. The use
of slag cement was found to reduce the chloride migration coefficient after 120 days for even two
categories of chloride ions migration resistance.

The reference concrete contained slag cement achieved the lowest values of Dnssm, 3.8 × 10−12 m2/s
after 56 days and 1.7 × 10−12 m2/s after 120 days which classifies it into good and very good classes
of the concrete resistance to chloride ions penetration. Concrete S-MS_2/1 achieved the lowest
value of Dnssm in the group of concretes with slag cement and special aggregate. The nonsteady
chloride migration coefficient was relatively stable and achieved 5.8 × 10−12 m2/s after 56 days and
5.4 × 10−12 m2/s after 120 days (good class). After 120 days of curing, concretes with magnetite (S-M)
and magnetite/serpentine with a ratio of 2:1 (S-MS_1/2) were characterized by similar values of Dnssm

and revealed good resistance to chloride ingress, respectively 7.0 × 10−12 m2/s and 7.7 × 10−12 m2/s.
In concretes containing Portland cement, differences between 56 and 120 days of curing are

relevant for the chloride migration coefficient. After 56 days, all concrete containing special aggregate
were characterized by high Dnssm coefficient, from 21.3 to 31.2 × 10−12 m2/s, and after 120 days from
17.0 to 25.1 × 10−12 m2/s. All the above concretes were assigned to class unacceptable, however among
them, concrete with magnetite aggregate showed the best resistance to chloride ions penetration,
and concrete with serpentine aggregate the worst. The chloride ion migration coefficient increased
with increasing the content of serpentine aggregate. Reference concrete with amphibolite aggregate
both after 56 and 120 days achieved acceptable class, respectively 13.5 and 9.1 × 10−12 m2/s.

3.3. Depth of Carbonation

The results of the carbonation depth of concrete measured until 360 days are presented in Figure 3.
As it was expected, the depth of carbonation increased, along with the age of exposure. None of the
tested concretes except reference one with Portland cement and amphibolite aggregate (P-A) did not
show a tendency to achieving the maximum depth of carbonation. The effect of cement type on the
carbonation of concrete was clearly visible. The lowest value of the carbonation depth was achieved
by concrete with Portland cement, and the highest results for carbonation depth were observed in
concretes containing the slag cement. Among the concretes with slag cement and special aggregate,
the highest depth of carbonation was achieved by concrete S-M with magnetite aggregate, 13.5 mm
after one year of exposure in 1% CO2. Similar but slightly lower results were achieved by concrete with
magnetite + serpentine S-MS_1/2—13.4 mm. In concrete with slag cement, the increase of serpentine
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aggregate caused an increase in carbonation depth, while in concrete with Portland cement the trend
was opposite, the more serpentine aggregate the smaller the carbonation depth.Energies 2020, 13, x FOR PEER REVIEW 7 of 16 
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It is also worth noting that the progress of carbonation in concretes with slag cement and special
aggregates occurred much faster than in the case of concrete with Portland cement. After 28 days of
exposure in carbon dioxide the values of the carbonation depth were three times higher for concrete
made with magnetite aggregate and more than twenty times higher for concrete made with serpentine
aggregate compared to those with Portland cement.

3.4. Concrete Microstructure

All concretes were analyzed on thin sections in transmitted light to evaluate their microstructure.
Digital images of thin sections (25 × 45 mm) consisting of aggregate grains and surrounding cement
matrix with air voids filled by resin are presented in Figure 4. The separate images (1.5 × 2 mm) were
automatically acquired and assembled into one image, which was then subjected to further analysis.
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Uniform distribution of the coarse aggregate was visible in all concretes containing slag cement
and special aggregates. Concrete made with magnetite aggregate only was characterized by a higher
content of smaller air voids (max. 0.5 mm) than other concretes. Figure 4 shows the dependence,
the more serpentine aggregate and the less magnetite aggregate in concrete with slag cement, the lower
content of smaller air voids and the higher content of the individual, larger entrapped air.

The microscopic analysis of thin sections revealed that the zone around the serpentine aggregate
differed from the zones surrounding the other aggregates (Figures 4 and 5). The zones of increased
porosity were clearly visible on thin sections observed in plane-polarized light (PPL) as well as in UV
light. Detailed microscopic analysis showed that the porous zone around the serpentinite aggregate
was higher than in the magnetite or amphibolite aggregate. The cement type slightly affects the zone
of discontinuity in concrete with serpentine aggregate. The width of that zone was from about 50 to
80 µm in concrete with Portland cement and from about 50 to 100 µm in concrete with slag cement.
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3.5. Porosity

3.5.1. Mercury Intrusion Porosity Tests

Results of MIP measurement on cement paste taken from analyzed concretes with two types
of cement are presented in Figures 6 and 7. The total volume of pores was similar, within the
range 0.023–0.030 cm3/g for concrete with slag cement and 0.024–0.047 cm3/g for concrete with
Portland cement.
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Figure 6. Total pore volume by mercury intrusion porosity (MIP) measurement: (a) Portland cement,
(b) slag cement.

The total pore volume for concrete made with slag cement and various magnetite aggregate
content was similar, regardless of the amount of this aggregate. It was 0.022 cm3/g for concrete with
magnetite aggregate (S-M), 0.023 cm3/g for magnetite/serpentinite ratio 1:2 (S-MS_1/2) and 0.029 cm3/g
for magnetite/serpentinite ratio 2:1 (S-MS_2/1). The content of total pore volume for reference concrete
(B19) was 0.030 cm3/g (Figure 6b).

A much more pronounced effect of the aggregate on the total pore volume content was visible in
concretes containing Portland cement. The lowest value of the total pore volume achieved concrete with
magnetite aggregate (P-M) 0.024 cm3/g, lower than reference concrete (P-A) 0.029 cm3/g, subsequently
concrete with magnetite/serpentine in ratio 1 to 2 (P-MS_1/2) and 2 to 1 (P-MS_2/1), respectively
0.039 cm3/g and 0.045 cm3/g (Figure 6a).
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Pore size distribution analyzed revealed the largest number of pores within the range below
300 nm. It influenced the total pore volume (Figure 7). Concretes containing slag cement (S-M,
S-MS_1/2, S-MS_2/1) were characterized by the lowest volume of capillary pores >300 nm (Figure 7b).
The volume was in the range of 0.005–0.007 cm3/g, which constituted 30–45% less than the volume of
capillary pores for reference concrete (S-A). Concretes with Portland cement were characterized by the
highest volume of capillary pores (>300 nm) with range 0.007–0.011 cm3/g (P-M, P-MS_1/2, P-MS_2/1),
which was 20–110% more than reference concrete (P-A) with amphibolite aggregate (Figure 7a).

Regardless of the cement type, the increase in magnetite aggregate content in concrete influenced
the decrease in the total pore volume. A decrease in the total pore volume measured by MIP was
observed with an increase in the volume of magnetite aggregate.

3.5.2. Porosity Accessible to Water

The results of the porosity accessible to water are presented in Figure 8. The lowest values of
porosity were achieved by the reference concrete, with Portland cement 11.0% and with slag cement
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11.4%. Use of special aggregates, both magnetite and serpentine increased open porosity for all cement
types compared to reference concrete with amphibolite aggregate. The values of the porosity accessible
to water were similar for concrete made with Portland cement and special aggregate, about 12.5 ± 0.3%.
However, they differed when slag cement was used. In this group of concretes, the lowest value of
porosity achieved concrete S-MS_1/2, with a magnetite/serpentine ratio of 1:2—12.8%, and the highest
concrete S-MS_2/1 with a magnetite to serpentine ratio of 2:1—14.4%.
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4. Discussion

All obtained results regarding the permeability of the analyzed concretes: chloride migration,
carbonation, pore size distribution and porosity accessible for water, as well as the results of compressive
strength and microstructure are compatible with each other and complementary.

It is known from the literature that hydration of slag cement is slower than ordinary Portland
cement. Concrete made with CEM III/A cement is characterized by delayed setting, Lura, P., et al. [37].
The research conducted by Hager et al. [38] revealed that slag cement influenced the compressive
strength of 90-day concrete. In their research concrete with slag cement was characterized by higher
compressive strength on average by 10 MPa for both basalt and river bed aggregate concrete in
comparison to Portland cement. Kubissa et al. [27] investigated magnetite aggregate and blended
cement with ground granulated blast furnace slag. They showed that the use of CEM II/B-S cement
resulted in a significant increase in concrete compressive strength at the age of about 2 years, up to
45%. The influence of slag cement on the long-term compressive strength of the investigated concretes
confirmed partly earlier results. The influence of CEM III/A cement in reference concrete with
amphibolite aggregate was negligible. The 90 days compressive strength for reference concrete was
similar, 85 MPa for Portland cement and 87 MPa for slag cement. After the same maturity period,
the values of compressive strength for concrete made with only magnetite, regardless of the cement
used, were lower than reference concrete but similar. It was 80.2 and 80.8 MPa for magnetite concrete
with Portland and slag cement. However, the effect of the type of cement on the compressive strength of
concrete containing a mixture of magnetite and serpentine aggregate was visible. Higher compressive
strength determined after 90 days of curing were obtained when using slag cement, 84.6 MPa for
S-MS_1/2 and 90.6 MPa for S-MS_2/1. When using Portland cement, concretes containing magnetite
and serpentine in proportions of 1:2 and 2:1 were characterized by similar compressive strength,
71.9 and 70.7 MPa.

The influence of special aggregate on concrete compressive strength was investigated by [39,40].
Horszczaruk et al. [39] revealed that the use of magnetite aggregate instead of gravel and river sand
improved mechanical properties, compressive (about 10 MPa) and splitting (about 1.2 MPa) strength
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of concrete made with CEM I and 10% of silica fume. Petrounias et al. [40] analyzed three groups
of aggregate: serpentine, diabase–gabbro and albitite. The compressive strength of concrete with
CEM II 32.5N cement showed the lowest value for concrete with serpentine aggregate. The conducted
research showed that concrete made with magnetite aggregate achieved higher compressive strength
after 90 days in comparison to concrete made with serpentine aggregate. The difference was small
and amounted to 5 MPa for concrete with Portland cement and 3 MPa for concrete with slag cement.
The obtained results of compressive strength with serpentine aggregate significantly exceed the values
given in the report, Almenas, K., et al. [41]. In the Lithuanian NPP, at Ignalina, compressive strength of
serpentine concrete which was used as the shielding concrete achieved 40 ÷ 62.5 MPa.

Plotting the porosity accessible to water versus the compressive strength of concrete reveals
some degree of correlation for two types of cement. The tendency to slightly decrease the porosity
available for water with the increase in the compressive strength of concrete with Portland cement and
a much stronger relationship for slag cement was demonstrated. A similar relationship between the
compressive strength and the water absorption at 28 days of concrete made with CEM I, CEM II/B-S
and CEM III/A cements achieved Giergiczny et al. [42].

The relationship of the porosity accessible to water and both, the depth of carbonation and
nonsteady chloride migration coefficient is presented in Figures 9 and 10. As in the case of compressive
strength, the relationship of the porosity accessible for water and the resistance of concrete to carbonation
is definitely more pronounced for concretes with slag cement. Higher CO2 penetration depth values
corresponded to a higher available porosity accessible for water values for concrete containing slag
cement. This relationship is confirmed in the literature, Hager, I., et al. [38,43]. Concrete with slag
cement was characterized by lower Cembureau permeability [44] for natural aggregate both crushed
and uncrushed (gravel) in comparison to Portland cement, Hager, I., et al. [38]. The application of
heavyweight and hydrous aggregates in concrete was investigated by Jaskulski et al. [43]. They revealed
that concretes with magnetite and serpentine aggregate achieved an open porosity value from 12.2 to
13.3%. The increase in the open porosity was 1.2–2.3% in comparison with concrete containing
amphibolite aggregate.
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The total pore volume evaluated using mercury intrusion porosimetry was influenced by the
content of magnetite aggregate in concrete containing slag cement. In Figure 11, the relationship
between the relative content of magnetite aggregate and the total pore volume is presented. The total
pore volume is linearly decreasing with increasing content of magnetite aggregate and a simultaneous
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decrease in the content of serpentine aggregate. The porosity is systematically lower for slag cement
concrete. Such results demonstrate the beneficial effects of using slag cement and various content of
crushed magnetite aggregate in radiation shielding concrete of low permeability.
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5. Conclusions

The following conclusions can be drawn:

• Use of slag cement CEM III/A in concrete containing magnetite and serpentine aggregates resulted
in the substantial improvement of the compressive strength in comparison with Portland cement
concrete. The attained strength class was C70/85 and C55/67, respectively.

• The application of slag cement was found to reduce the chloride ingress, regardless of the special
aggregate use. In regard to Portland cement concrete, the coefficient of chloride migration Dnssm

decreased from 17 ÷ 25 × 10−12 m2/s to 5 ÷ 8 × 10−12 m2/s at the age of 120 days.
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• The effect of cement type on the concrete carbonation depth was clearly demonstrated: the lowest
carbonation depth (4.5 ÷ 7.0 mm) was achieved for Portland cement concrete and the highest
(11.0 ÷ 13.9 mm) for slag cement concrete.

• The type of cement did not influence the uniformity of coarse aggregate distribution and
microstructural homogeneity of hardened cement paste in concrete containing special aggregates.

• The total pore volume evaluated using mercury intrusion porosimetry was influenced by the type
of special aggregate. A linearly decreasing relationship was found between the relative content of
magnetite aggregate and the total pore volume in concrete containing slag cement. The smallest
total pore volume (0.024 cm3/g) was found for concrete with the highest content of magnetite
aggregate and both cement types. Serpentine coarse aggregates caused an increase in total pore
volume in comparison to concrete with magnetite aggregate.

• The use of magnetite and serpentine aggregates resulted in an increase in the concrete porosity
accessible to water by 1 to 3%, in concrete with Portland and slag cement, respectively.
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