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Abstract: In this paper, an improved fuel consumption and emissions control strategy based on
a mathematical and heuristic approach is presented to optimize Parallel Hybrid Electric Vehicles
(HEVs). The well-known Sequential Quadratic Programming mathematical method (SQP-Hessian
approach) presents some limitations to achieve fuel consumption and emissions control optimization,
as it is not able to find the global minimum, and it generally shows efficient results in local exploitation
searches. The usage of a combined Modified Artificial Bee Colony algorithm (MABC) with the
SQP approach is proposed in this work to obtain better optimal solutions and overcome these
limitations. The optimization is performed with boundary conditions, considering that the optimized
vehicle performance has to satisfy Partnership for a New Generation of Vehicles (PNGV) constraints.
The weighting factor of the vehicle’s performance parameters in the objective function is varied,
and optimization is carried out for two different driving cycles, namely Federal Test Procedure (FTP)
and Economic commission Europe—Extra Urban Driving Cycle (ECE-EUDC), using the MABC and
MABC with SQP approaches. The MABC with SQP approach shows better performance in terms of
fuel consumption and emissions than the pure heuristic approach for the considered vehicle with
similar boundary conditions. Moreover, it does not present significant penalties for final battery
charging and it offers an optimized size of the key vehicle’s components for different driving cycles.

Keywords: automotive system; SQP approach; dynamic optimization; parallel hybrid electric vehicle;
artificial bee colony; optimization algorithm

1. Introduction

Nowadays, the modern ways are initialized to minimize the impact on natural resources and
to increase the dependency over the non-renewable resources, due to the increasing fuel prices and
environmental issues [1]. The improvement in the automobile science helps to create the modern
ways for minimizing the usage of gasoline [2]. Many years of devoted research has culminated
in the improvement of Hybrid Electric Vehicle (HEV) technology. The increase in vehicle numbers
subsequently increases the pollution, which causes global warming [3]. In order to save the earth balance,
it is mandatory that automotive industries have to produce low-emission and better energy-efficient
vehicles. HEV performance with reduced emissions and improved fuel efficiency seems to be promising
as one kind of an alternative technology [4]. In hybrid cars, the battery in the vehicle acts as an
additional energy source to supplement the main engine, so that the vehicle operates at its maximum
possible efficiency [5]. The battery in the vehicle acts as an additional electrical form of energy source to
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supplement the main engine, such that the vehicle operating efficiency is shifted towards its maximum
possible efficiency and the vehicle operation range is extended. Also, the control strategy [6] for the
vehicle has to be properly adapted. The emission reduction and increment in fuel economy are the
most difficult goals in the automotive industry. The cooperative agreements, legislative efforts and
society causes the major constraints in the automotive industry. The aforementioned requirements
are solved by using the capacity of the HEV as well as these HEV are considered as alternative
for the conventional vehicles. Hence, the minimum fuel optimal control issue is solved by using
the novel control strategy in parallel HEV. The major contributions of this research are indicated as
follows. This paper studies the optimization of parameters of an electric assist control strategy for
a parallel HEV. From this study, a Sequential Quadratic Programming (SQP) mathematical method
for a parallel HEV has been developed with a Modified Artificial Bee Colony algorithm (MABC) to
minimize the instantaneous fuel consumption of the vehicle. The developed control method mainly
concentrates on the fuel consumption minimization along with the improvement in power demand
and drivability. Furthermore, the hybrid combination of MABC with SQP is used to optimize the size
of the components. Results show that the MABC with SQP approach shows better performance in
terms of fuel consumption and emission than the pure heuristic approach for the considered vehicle
with similar boundary conditions.

This research paper can be summarized as follows. It presents a literature review of recent
techniques for optimization of HEV in Section 2, the proposed method with control parameters
configurations is described in Section 3, simulation results are provided in Section 4, and the main
conclusions of the research are drawn in Section 5.

2. Literature Review

In the literature, several associated works are available which are based on optimization of HEVs.
Certain critical works are assessed here to justify the contribution of this work.

Enang et al. [7] presents comprehensive, quasi-static longitudinal modeling and parallel HEV
validation. Further research was carried out over the New European Driving Cycle (NEDC) using the
validated model for investigating the impact of an early gear upshift on cumulative fuel consumption.
In this work, without any change in the final battery charging state, better real-time fuel saving is
achieved. In spite of the fuel saving potential of this control strategy, the technique employed is unable
to guarantee cost function (fuel consumption) optimality. It also cannot satisfy itself in real time,
in the end.

Zhang et al. [1] have thoroughly analyzed the various HEV energy management strategies
based on bibliometric and propose that driving cycle recognition would help with better energy
management of HEVs. For most common types of energy management strategies, which are used
in depth in HEVs, the statistical analysis is carried out, with essential characteristics containing pros
and cons. Interconnections and scope for change between the different energy management strategies
are also exposed from the control point of view. But, this study has not given any basic design as an
illustration and relevance for an optimized vehicle design and output for different energy management
strategies. Similarly, Shankar has analyzed the design of parallel hybrid electric vehicles for Indian
road conditions [8].

Long, and Nhan [9] used the Pheromone-Based Bees Algorithm (PBA) to optimize the size of key
component and controlling strategy of parallel HEV. The developed PBA modifies the parameters
of control strategy and size of key component for minimizing the emission and Fuel Consumption
(FC), while vehicle efficiency meets PNGV constraints. In this analysis, MATLAB software has been
employed as a simulation tool, and driving cycles Federal Test Procedure (FTP) and European Driving
Cycle (ECE-EUDC) are utilized to evaluate FC, emissions, and dynamic performances [10]. However,
in this paper, the effect and change in weightage of objective function parameters and its effect on
vehicle design and change in its performance are not discussed [11].
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Namwook described the global optimality of HEV fuel optimization from a mathematical point
of view [12]. This work analyzes the optimality of the Equivalent Consumption Minimization
Strategy (ECMS) and the optimal-control-theoretical Pontryagins Minimum Principle (PMP) concept.
The control algorithm used in the fuel economy of the hybrid vehicle is found to be very similar in
a static simulation for a power-split hybrid vehicle, usually within 1% of the fuel economy through
global optimal control based on Dynamic Programming (DP). But, the emission levels of the vehicle are
not taken into account and are not compared against any global standards to prove that the optimized
vehicle, after adopting PMP, is within the practical required limits.

Although these algorithms tend to obtain the minimum solution in a reduced time, the solutions
generally tend to be local optimum solutions rather than reaching the global optimum for most generic
problems. Also, there were some optimization approaches proposed earlier, which mainly concentrate
on reducing the fuel emissions, whereas the exhaust gas emissions were not controlled. Wu presents
a parallel HEV optimization methodology with Particle Swarm Optimization (PSO) for enhancing
vehicle performance [13]. Neubauer has presented a paper which concentrates on vehicle efficiency
variation through deriving an adapted driving cycle based on driver aggression [14,15].

Montazeri-Gh and Poursamad [16] concentrated on the methodological technique for optimizing
the sizing and control technique parameters of HEV components. In this study, a Genetic Algorithm
(GA)-based multi-objective optimization problem is formulated. The FC’s weighted sum and three
main emissions are reduced by using the objective function. The PNGV performance criteria are used
as constraints. Optimization takes place with three different driving cycles. The result shows that,
with less simulation time, better objective values are achieved compared with the traditional approach.
However, the current GA’s for the multi-parameter optimization are generally found to be slow at
converging, and hence it is possible to get entrapped into local optimal solutions.

A performance comparison is made between PSO- and Advanced Vehicle Simulator
(ADVISOR) [17] based approaches, and the results show that PSO gives preferable parameters
effectively without sacrificing dynamic performance of the vehicle [18]. However, it is also described
that the PSO is leaning toward premature and fast convergence in sub-optimal points, as well as
sluggish convergence in a narrowed search area [13]. Zhang has developed an adaptive energy
management strategy based on the identification of driver trends [1].

Long [19] focuses on improving fuel economy only. However, in the engine operation map, the
fuel-efficient operating points and emission-efficient operating points lie in different parts. They have
shown the improvement in fuel economy but have not discussed about the corresponding change
in emission.

A significant similarity of the above studies is that the optimal design approach is either for
the component sizing or the HEV control strategy, with other parameters being kept unchanged.
Additionally, even if both cases are considered, the evaluation is not shown for different driving cycles
with modified weighting factors to emission and fuel consumption parameters in the objective function.
Also, either a heuristic or a mathematical approach is used.

Also, a work published by Gowrishankar [20] shows that the MABC approach is better than the
Basic Artificial Bee Colony (BABC) approach, in which only the heuristic approaches are compared
and there is no comparison provided against any other approaches for the vehicle optimization [20].

However, practically in a vehicle, both the component size and the control strategy influence each
other in achieving the vehicle performances. Hence, it becomes imperative to simultaneously optimize
component sizes and control strategy parameters. Thus, the key challenge here is to study the effects of
change in the weighting factor of fuel usage and emission parameters in objective function. This would
help to understand their effects on component size, for different driving cycles, in order to reach a
better optimal design for a vehicle, along with adaptation of a proper control strategy. The results
show that the proposed MABC with SQP-Hessian approach is a stronger algorithm compared to the
pure heuristic MABC approach in achieving better optimization results, with the similar boundary
conditions, while still satisfying the PNGV constraints like acceleration and vehicle grade requirements.
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3. Parallel HEV Configuration and Control Parameter Optimization Targets

In this paper, a parallel hybrid electric vehicle is considered for optimization. In parallel HEV,
the wheels can be driven directly, either electrically or by engine. In some driving modes, both of
them could even be used simultaneously [11]. This is one of the most common types of hybrid electric
vehicle used in the market due to its unique advantages like higher efficiency for long driving and
higher flexibility in switching among Internal Combustion Engine (ICE) and electric motor. The block
diagram for a parallel HEV is shown below in Figure 1.
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Figure 1. Parallel hybrid electric vehicle (HEV) block diagram.

The key components of the vehicle size, which would be considered for optimization, would be
internal combustion engine, electric motor, and battery. The key objective function of this research is to
minimize the Fuel Consumption (FC), Carbon Monoxide (CO), Nitrous Oxide (NOX), and Hydrocarbons
(HC), so as to obtain maximum vehicle performance, subject to Partnership for a New Generation of
Vehicles (PNGV) constraint limits. The objective function is as follows in Equation (1):

Min F(y) = d1FC + d2CO + d3NOX + d1HC (1)

y ∈ Y, where ‘Y’ is the feasible solution search space. ‘y’ is a variable vector that contains a vehicle
component size and parameters of control strategy, and ‘d1’ to ‘d4’ are termed as weighting factors of
different parameters considered in the objective function, which can vary between 0 and 1, indicating
degree of weightage of the parameter optimized and to investigate the effect of different parameters on
the optimization results. Subjected to v(y) > 0 for y = 1 to 8, the PNGV constraint limits as defined by
the US Consortium are as stated below in Equations (2)–(9):

Acceleration time is ≤12 s for 0–60 mph (2)

Acceleration time is ≤5.3 s for 40–60 mph (3)

Acceleration time is ≤23.4 s for 0–85 mph (4)

Gradeability is ≥6.5% at 55 mph for 1200 s (5)

Maximum speed is ≥85.1 mph (6)

Maximum acceleration is >16.4 ft/s2 (7)

Distance is >140 ft in 5 s (8)

Delta State of Charge (∆SOC) is ≤0.5% (9)

Also, subjected to the following operating conditions:
a. Engine power is

Peng > 0 (10)
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b. The power output of the engine is restricted to the max power rating of the engine

Peng < Peng_max_power (11)

c. For the charge-sustaining control system response, the State of Charge (SOC) of the battery
should be always within:

SOClow < SOCbattery < SOChigh, (12)

the defined minimum and maximum limits.
In this work, an analysis has been performed on HEV with two different driving cycles, by varying

the values of weighting factors in Equation (1), to analyze their effect on vehicle performances.
The control strategy is considered as an important role on the performance and fuel economy of
a vehicle. This research paper uses the Electric Assist Control Strategy (EACS). This is a type of
charge-sustaining strategy, which means that the battery charge is always maintained between low
and high State of Charge (SOC) levels [4]. The primary energy source is the ICE in this technique and
the secondary source is electric motor. EACS uses the electric motor at low speeds, where either the
ICE does not operate efficiently or where the power required goes beyond the maximum deliverable
torque of the engine. If the State of Charge (SOC) of battery is low, the engine supports the battery
charging through the electric motor.

3.1. Driving Cycles

The FTP and ECE-EUDC transient cycles are considered as the base driving cycles for the analysis.
These vehicle driving cycles are considered due to the fact that the vehicle under study is a light-duty
passenger car and they cover the majority part of the different driving conditions that a vehicle would
face during its usage [21]. The corresponding driving cycle details are as shown in Figures 2 and 3.
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The ECE-EUDC (also called NEDC) driving cycle has four repeating ECE segments without
interruption, followed by a single EUDC segment. The Federal Test Procedure (FTP) is similar to the
UDDS plus the first 505 s of an extra UDDS cycle. UDDS stands for Urban Dynamometer Driving
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Schedule, and represents city driving conditions of a passenger car vehicle. It consists of a city route
with 17 stops for a distance of 7.5 miles. The average and the maximum speeds are 19.6 miles per hour
and 56.7 miles per hour. The idle time and the total cycle time are 259 and 1369 s, respectively.

3.2. Control Strategy

To obtain the minimum fuel consumption and emission targets during vehicle optimization [6],
the control strategy is used to identify the ideal operating point of the vehicle’s engine and motor.
The flexibility of this strategy lies in allowing a vehicle to adjust its controls by considering the driving
location or limits for local control of vehicle, real-time adjustment to driving cycles, and incorporating
the temperature effects on fuel use, engine-out emissions, and catalyst behavior. In this analysis,
the parallel EACS has been utilized [22]: the EACS uses the motor for additional power, when needed
by the vehicle, and maintains the charge in the batteries. This strategy uses the electric motor in
different ways:

1. The motor is utilized in all driving torque, when the vehicle is operated in certain minimum speed.
2. The motor is utilized for torque assist at the operating speed of engine, when the required torque

is greater than max torque which is delivered by the engine.
3. Through regenerative braking, the motor charges the batteries.
4. The motor will be used to produce the required torque when the engine runs inefficiently for a

required engine torque at the given speed. Also, the engine shuts off at this condition.
5. When there is low-battery SOC condition, the motor will charge the battery through the excess

torque provided by the engine.

3.3. Vehicle Configuration for Optimization

The vehicle considered for the optimization is a parallel hybrid electric vehicle, with a gasoline
engine and battery as sources of power for vehicle driving [2]. The key parameters of the vehicle
considered are as depicted in Table 1. The optimization is performed using the MATLAB simulation
tool [23]. In this analysis, the key input parameters considered are fuel converter scaling factor for
torque range, motor/controller torque scaling range, number of battery modules, and a set of control
strategy parameters, as shown in Table 2 below.

The mentioned parameters are given as input to the MABC and combined MABC-SQP algorithm
and the resultant optimized outputs in terms of fuel consumption and emissions are obtained.
The approaches are discussed in detail below.

Table 1. Vehicle Parameters.

Vehicle Parameters Description

Type of the Engine SI Engine Geo 1.0 L (41 kW)
Mass (m) of the Vehicle 592 kg

Power train Parallel Hybrid
Efficiency of the motor 92%

Motor AC Induction motor Westinghouse, 75 kW
Fuel converter efficiency 34%

Transmission 5-Speed Manual Transmission
Radius of the Wheel, Rw 0.282 m
Coefficient of drag, Cd 0.335

Frontal area, Af 2.0 m2
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Table 2. Optimization Parameter definition.

Parameter Definition

Input Variables

CS_hi_soc Highest battery State of Charge (SOC) value desired
CS_lo_soc Lowest battery State of Charge value desired

CS_EL_Speed_lo At low SOC, vehicle speed below which vehicle runs as pure electric
CS_EL_Speed_hi At high SOC, vehicle speed below which vehicle runs as pure electric

CS_off_trq_frac Minimum torque threshold at which the engine will SHUT OFF when commanded
at lower torque

CS_min_trq_frac Minimum torque threshold at which motor acts as a generator and the engine
operates at low threshold torque

CS_charge_torque An alternator like torque loading on the engine in order to recharge the battery pack
ESS_module_number Number of battery modules in a pack

FC_torque_scale Scaling factor for torque range of ICE
MC_torque_scale Torque scaling factor of Electric Motor

Output Variables

FC (mpg) Fuel Consumption of the vehicle in mpg
HC (g/mile) HC emission of the vehicle in grams/mile
CO (g/mile) CO emission of the vehicle in grams/mile

NOx (g/mile) NOx emission of the vehicle in grams/mile

3.4. Details on SQP-Hessian Approach

A bisection-based Sequential Quadratic Programming (SQP) method is used to determine the
required component sizes, fuel usage, and emission performance based on the performance criteria
specified as a part of the analytical approach. For the given minimization problem, an approximation
of the Lagrangian function Hessian using a quasi-Newton updating method is made at each big
iteration. Given for a general minimization problem description in a general problem, the main idea is
to formulate a QP sub-problem based on a quadratic approximation of the Lagrangian function.

L(x, λ) = f (x) +
∑m

i=1
λi.gi(x) (13)

where f (x) is the main objective function, gi(x) are the inequality constraints, λi is Lagrange multipliers
under the non-negativity constraint, and m is the total number of restrictions. Implementation of SQP
consists of four main stages, as outlined below.

Updating the Hessian Matrix. The definite positive quasi-Newton approximation of the
Lagrangian Hessian equation, H, is calculated in each major iteration, where λi, i = 1, . . . , m,
is an estimate of the Lagrange multipliers.

Hk + 1 = Hk +
qk∗qT

k

qT
k ∗ sk

−

Hk ∗sk ∗sT
k ∗HT

k

sT
k ∗Hk ∗ sk

(14)

where
sk = xk+1 − xk (15)

qk =

∇ f (xk + 1) +
m∑

i = 1i

.∇gi(xk + 1)

 +
∇ f (xk) +

m∑
i=1 i

.∇gi(xk)

 (16)

Quadratic Programming (QP) Solution. The solution for the QP is computed using 2 steps:

1. Generation of feasible points.
2. Detection of the feasible point in which the convergence takes place with number of

iterative sequences.

A search path generated by a linear summation of any combination of the Zk columns is guaranteed
to remain at the limits of the active constraints. The matrix Zk is generated from the last m−l columns
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of the QP decomposition of the matrix of AT
k , where the amount of active constraints is represented as l

and l < m. That is, Zk is given by
Zk = Q[:,l+1:m], (17)

where

QTAT
k =

[
R
0

]
(18)

If Zk is found, a direction of new search d̂k is sought that minimizes q(d), where d̂k is in the null
space of the active constraints.

Initialization. The algorithm calls for a feasible starting point. If the current point of the SQP
approach is not feasible, the Linear Programming (LP) problem can be solved as is shown below:

min γ, such that:
y ∈ R, x IeRn

Aix = bi, i = 1, . . . ., m.
Aix− γ ≤ bi, i = me + 1, . . . ., m.

(19)

The notation Ai indicates the ith row of the matrix ‘A’, and b is the coefficient vector.
Line Search and Merit Function. The QP sub-problem solution generates a vector, dk, that is used

to create a new iterate:
xk + 1 = xk + αdk. (20)

The phase length parameter αk is set to cause an appropriate decrease in a merit function. Powell
(1978) recommends setting the penalty parameter as:

ri = (rk+1)i = maxi
{
(rk)i + λi

2

}
, i = 1, . . . ., m. (21)

This allows for a positive involvement from constraints which are inactive in the QP solution, but
which have been active recently.

Ri = ||∇f(x)||/||∇gi(x)|| (22)

where || || represents the Euclidean norm. It means greater contributions from constraints with
lower gradients to the penalty parameter, which would be the case for active constraints at the point
of solution.

3.5. Heuristic Approach

Numerous sources describe different evolutionary approaches to the problem. These are used
due to the fact that in most cases, for the problem, it is very hard to get a solution, and therefore,
in many cases, it is unsolvable. Some of the heuristic approaches available in the literature include
Particle Swarm Optimization (PSO), Genetic Algorithm (GA) [5,24] and Genetic Programming (GP),
and Artificial Bee Colony (ABC) [25].

PSO has a general disadvantage that it will fall into local optimal solution in high-dimension space
and very low convergence rate during iteration or premature convergence [26]. With GA, choosing the
right number of the population size and number of generations is also tough. Also, GA is a type of
non-deterministic algorithm and in most of the cases, it provides a sub-optimal solution and may not
be best suitable for multi-constrained optimization problems. With GP, the generation of mathematical
formulations may be too difficult to interpret, as its combination of multiple elementary functions
often results in extremely complex models. Another major issue is the selection of suitable parameter
settings to control the algorithm run. Also, the time required for GP to converge to the global optimum
is dependent on the parameters that govern the evolution process. One of the most popular heuristic
algorithms used for multi-constrained optimization with a multi-input and multi-output system is
Artificial Bee Colony optimization (ABC). Some of the advantages of ABC over other algorithms
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include simplicity, flexibility, robustness, ability to explore local solutions, ease of implementation,
and ability to handle the objective cost. Hence, this algorithm is used for the problem optimization and
the details of the ABC algorithm are given below.

Modified Artificial Bee Colony (MABC)-Based Optimisation

The heuristic approach used for the optimization is the Modified Artificial Bee Colony (MABC)
algorithm. In the MABC algorithm, a new search equation described by the global best guided ABC
inspired by PSO [27] has been utilized.

MABC overcomes the drawbacks of ABC and considers the global best information from the
below equation.

vi,j = xi,j + Φi,j(xi,j − xk,j) + Ψi,j(yj − xi,j) (23)

where vi,j is the new neighboring food source, yj is the jth element of the global best solution, Ψi,j is
a uniform random number in the range of 0 to 1.5, Φi,j is a random number in the range [−1, 1],
and j ∈ {1, 2, . . . , n} is a randomly chosen index.

The major steps of the MABC algorithm are outlined as follows:
Initialize all parameters,
Repeat while Termination criterions are not met.

Step 1. New food sources are computed in the Employee bee phase.
Step 2. Location of the food sources is updated based on their amount of nectar in the Onlooker
Bee phase.
Step 3. Search the new food sources in place of rejected food sources in the Scout bee phase.
Step 4. Remember the best food source identified so far.
Step 5. End.

The output of the algorithm would be the best solution identified so far. The Modified ABC [25] is
good at exploration but has a disadvantage of exploitation problems, which causes the algorithm to
get trapped to local optima and it may not achieve the global optimal solution [23].

4. Simulation and Analysis

Wipke et al. [17] developed a National Renewable Energy Laboratory (NREL) MATLAB-based
vehicle simulator called the ADVISOR tool for setting vehicle parameters for acceleration and grade
tests with the required conditions. This tool provides the results for those tests and in addition to
this, vehicle Fuel Consumption (FC) and emission parameters are also derived: HC, CO, and NOX.
Gowrishankar and Nirmal [20] show how to fix the zero delta SOC correction technique with the
tolerance limit, which is a very important step in PNGV constraints. This work analyzes the ECE-EUDC
and FTP driving cycles.

The analysis is done with four different cases for two driving cycles, ECE-EUDC and FTP. Case 1
denotes results for the MABC algorithm with the FTP driving cycle, while Case 2 denotes the results
for the same FTP driving cycle for the MABC-SQP algorithm. Whereas, Case 3 evaluates the MABC
algorithm for the ECE-EUDC driving cycle and Case 4 explains the process of the ECE-EUDC driving
cycle for the MABC-SQP algorithm. More weightage (50%) is given to minimization of fuel utilization in
Cases 1 and 2, and the remaining 50% weightage is distributed among the other three emission vehicle
parameters. In Cases 3 and 4, maximum weightage (70%) is given for emission and the remaining 30%
weightage is kept for the fuel usage. The performance of the algorithm for various requirements of
the vehicle is analyzed under these various objective functions with different weightage. Tony and
Wipke [3] show the influences of the driving cycle on the peak speed and distance, with relation to the
fuel consumption and emission. The optimal control problem setup is solved over the ECE-EUDC and
FTP driving cycles, and the results are compared below to benchmark the proposed MABC + SQP
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algorithm over the MABC algorithm in finding the optimal solution. The analysis is done in two steps,
namely MABC only and the MABC with SQP-Hessian approach.

4.1. Modified Artificial Bee Colony Algorithm (MABC) FTP Driving Cycle

Table 3 shows the corresponding initial input and optimized values obtained for the considered
driving cycles for various cases for the FTP driving cycle for the MABC algorithm.

Table 3. Optimization results for the FTP driving cycle.

FTP Driving Cycle MABC

Items Case 1 Case 2 Case 3 Case 4 Initial Value

Variables

FC_torque_scale 1.351 1.400 1.400 1.458 1.349
MC_torquescale 0.714 0.783 1.100 1.076 1.182

ESS_modulenumber 27.741 30.000 27.000 28.000 30.000
CS_ELSpeed_lo 4.195 7.000 3.000 1.000 3.000
CS_ELSpeed_hi 19.595 23.000 31.000 18.000 20.000
CS_min_trq_frac 0.442 0.800 0.317 0.311 0.218
CS_off_trq_frac 0.051 0.069 0.050 0.139 0.137

CS_lo_soc 0.540 0.570 0.507 0.500 0.567
CS_hi_soc 0.753 0.650 0.617 0.680 0.695

CS_charge torque 13.890 31.000 25.000 31.000 31.000

Constraints

Grade (%) 8.547 8.322 8.260 8.891 7.200
0–60 mph time (s) 8.080 7.976 8.453 8.152 8.400
40–60 mph time(s) 3.796 3.730 4.097 3.886 4.000

0–85 mph (s) 15.493 15.281 16.571 15.754 16.300
Max speed (mph) 129.02 129.960 126.200 129.030 127.000
Max accel (ft/s2) 16.400 16.400 16.400 16.400 16.400

Distance in 5 s (ft) 183.355 184.330 182.510 184.167 183.700

Objective

FC (mpg) 35.890 35.600 33.701 33.958 32.200
HC (g/mile) 0.539 0.574 0.571 0.587 0.564
CO (g/mile) 2.236 2.639 2.504 2.519 3.244

NOx (g/mile) 0.418 0.460 0.459 0.457 0.471

Figures 4 and 5 show the vehicle performance change after optimization of its design with the
MABC approach for the FTP driving cycle, Case 1. Figure 4 shows the battery SOC variation with
respect to the driving cycle, and it can be observed from the figure that variation between the initial
and final value of battery SOC is less than 0.5% and SOC value lies close to 59%.
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Figure 5 shows fuel converter efficiency and as it is seen from the figure, there is no big impact and
the efficiency is maintained at around 27%. Because of the large variation of speeds ranging from idle
to nearing 60 mph top speed in this driving cycle, the loss at lower speeds is compensated. Figure 6
shows the electric motor torque-speed characteristics and also the limits of maximum motoring and
regeneration torque. At lower rpm, the torque points lie more on the positive region, supplementing
the engine operation, and at rpm greater than 2000, torque points also shift to the negative region due
to regeneration operation.
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Also, Figures 7 and 8 show energy utilization of different key components of the vehicle during
power mode and regeneration mode of the vehicle. It can be observed from these figures that the
energy utilized by the fuel converter is higher during the power mode, which is about 28,000 kJ,
and energy utilized by the motor controller is higher, 1200 kJ, during regeneration mode, in order
to recharge the battery and keep it within the intended SOC level. Additionally, it can be seen that
although the efficiency of the fuel converter is around 27% only, which is similar to the previous case,
the energy loss has been reduced after optimization. Also, energy usage by braking components is also
near to 1400 kJ in this mode, to support higher energy regeneration.
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4.2. Modified Artificial Bee Colony + Sequential Programming Algorithm (MABC + SQP) FTP Driving Cycle

In order to obtain a balance between the exploration and exploitation issues and to overcome
the same, a combined approach of using MABC as a global optimizer for exploration and SQP as a
deterministic local search for exploitation has been used. The results show that with reduced emissions
and still with an improved fuel economy compared to the initial design, as shown in the results for
most of the cases, the proposed MABC with SQP-Hessian approach shows its superiority in finding an
optimal solution compared to the other individual heuristic approach. Table 4 shows the corresponding
initial input and optimized values obtained for the considered driving cycles for various cases of the
MABC + SQP algorithm.

It is evident from the above Tables 3 and 4 that the solutions obtained for different cases are
according to the weightage of FC for different cases. As for Cases 1 and 2, they have been set with a
higher weightage value for FC, and the improvement in FC in mpg is also high when compared to
Cases 3 and 4.

Figures 9 and 10 show the vehicle performance change after optimization of its design with the
MABC approach for the FTP driving cycle, Case 1. Figure 9 shows the battery SOC variation with
respect to the driving cycle, and it can be observed from the figure that variation between the initial
and final value of battery SOC is less than 0.5% and SOC value lies close to 57%.

Figure 10 shows fuel converter efficiency and as it is seen from the figure, there is no big impact
and the efficiency is maintained around 26%. Because of the large variation of speeds ranging from idle
to nearing 60 mph top speed in this driving cycle, the loss at lower speeds is compensated. Figure 11
depicts the electric motor torque-speed characteristics and also, the limits of maximum motoring and
regeneration torque. At lower rpm, the torque points lie more on the positive region, supplementing
the engine operation, and at rpm greater than 2000, torque points also shift to the negative region due
to regeneration operation.
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Table 4. Optimization results of FTP driving cycle for MABC + SQP.

FTP Driving Cycle, MABC + SQP

Items Case 1 Case 2 Case 3 Case 4 Initial Value

Variables

FC_torque_scale 1.400 1.351 1.400 1.458 1.349
MC_torquescale 0.783 0.714 1.100 1.076 1.182

ESS_modulenumber 29.010 27.741 27.000 28.000 30.000
CS_ELSpeed_lo 7.000 4.195 3.000 1.000 3.000
CS_ELSpeed_hi 23.000 19.595 31.000 18.000 20.000
CS_min_trq_frac 0.485 0.442 0.317 0.311 0.218
CS_off_trq_frac 0.069 0.051 0.050 0.139 0.137

CS_lo_soc 0.381 0.540 0.507 0.500 0.567
CS_hi_soc 0.660 0.753 0.617 0.680 0.695

CS_charge torque 31.00 13.890 25.000 31.000 31.000

Constraints

Grade (%) 8.964 8.547 8.260 8.891 7.200
0–60 mph time (s) 8.515 8.080 8.453 8.152 8.400

40–60 mph time (s) 4.105 3.796 4.097 3.886 4.000
0–85 mph (s) 16.68 15.493 16.571 15.754 16.300

Max speed (mph) 125.551 129.02 126.200 129.030 127.000
Max accel (ft/s2) 16.4 16.400 16.400 16.400 16.400

Distance in 5 s (ft) 181.133 183.355 182.510 184.167 183.700

Objective

FC (mpg) 36.098 35.890 33.701 33.958 32.200
HC (g/mile) 0.578 0.539 0.571 0.587 0.564
CO (g/mile) 2.625 2.236 2.504 2.519 3.244

NOx (g/mile) 0.465 0.418 0.459 0.457 0.471
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Figure 11. Motor torque-speed.

Additionally, Figures 12 and 13 show the energy utilization of different key components of the
vehicle during power mode and regeneration mode of the vehicle. It can be observed from these
figures that the energy utilized by the fuel converter is higher during the power mode, which is about
27,000 kJ, and energy utilized by the motor controller is higher, 1300 kJ, during regeneration mode,
in order to recharge the battery and keep it within the intended SOC level. Moreover, it can be seen
that although the efficiency of the fuel converter is around 26% only, which is similar to the previous
case, the energy loss has been reduced after optimization. Also, energy usage by braking components
is also near to 1400 kJ in this mode, to support higher energy regeneration.
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4.3. Modified Artificial Bee Colony Algorithm (MABC) ECE EUDC Driving Cycle

Table 5 shows the ECE-EUDC driving cycle for the MBAC algorithm.
Figures 14 and 15 show the vehicle performance change after optimization of its design with

the MABC + SQP approach for the ECE-EUDC driving cycle, Case 1. Figure 14 shows the battery



Energies 2020, 13, 4529 15 of 22

SOC variation with respect to the driving cycle, and it can be observed from the figure that variation
between the initial and final value of battery SOC is less than 0.5% and SOC value lies close to 39%.
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Table 5. Optimization results for ECE-EUDC MABC.

ECE EUDC Driving Cycle MABC

Items Case 1 Case 2 Case 3 Case 4 Initial Value

Variables

FC_torque_scale 1.190 1.200 1.300 1.210 1.349
MC_torquescale 0.783 0.811 0.700 0.834 1.182

ESS_modulenumber 30.000 30.000 23.000 28.000 30.000
CS_ELSpeed_lo 8.000 8.000 4.330 6.751 3.000
CS_ELSpeed_hi 11.000 11.000 30.000 19.665 20.000
CS_min_trq_frac 0.100 0.723 0.246 0.534 0.218
CS_off_trq_frac 0.183 0.183 0.211 0.162 0.137

CS_lo_soc 0.520 0.516 0.223 0.158 0.567
CS_hi_soc 0.850 0.845 0.727 0.611 0.695

CS_charge torque 36.000 35.000 5.200 39.118 31.000

Constraints

Grade (%) 7.565 7.606 9.075 8.015 7.200
0–60 mph time (s) 8.964 8.954 9.221 9.704 8.400
40–60 mph time (s) 4.451 4.444 4.595 4.934 4.000

0–85 mph (s) 18.105 18.071 18.675 19.935 16.300
Max speed (mph) 120.456 120.678 119.172 119.385 127.000
Max accel (ft/s2) 16.4 16.4 16.4 16.4 16.400

Distance in 5 s (ft) 180.665 180.761 178.23 176.349 183.700

Objective

FC (mpg) 33.558 33.357 29.291 32.667 28.600
HC (g/mile) 0.724 0.729 0.736 0.736 0.768
CO (g/mile) 3.148 3.124 2.566 3.735 3.157

NOx (g/mile) 0.482 0.486 0.436 0.508 0.495

Figure 15 shows fuel converter efficiency and as it is seen from the figure, there is no big impact
and the efficiency is maintained at around 24%. Because of the large variation of speeds ranging from
idle to nearing 75 mph top speed in this driving cycle, the loss at lower speed is compensated.

Figure 16 shows the electric motor torque-speed characteristics and also the limits of maximum
motoring and regeneration torque. At lower rpm, the torque points lie more on the positive region,
supplementing the engine operation, and at rpm greater than 2000, torque points also shift to the
negative region due to regeneration operation. Also, Figures 17 and 18 show energy utilization of
different key components of the vehicle during power mode and regeneration mode of the vehicle.
It can be observed from these figures that the energy utilized by the fuel converter is higher during the
power mode, which is about 20,000 kJ, and energy utilized by the motor controller is higher, 1000 kJ,
during regeneration mode, in order to recharge the battery and keep it within the intended SOC level.
It can be seen that although the efficiency of the fuel converter is around 24% only, which is similar to
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the previous case, the energy loss has been reduced after optimization [28]. Also, energy usage by
braking components is also near to 500 kJ in this mode, to support higher energy regeneration.
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4.4. Modified Artificial Bee Colony Algorithm (MABC + SQP) ECE EUDC Driving Cycle

Figures 19 and 20 show the vehicle performance change after optimization of its design with the
MABC approach for the ECE-EUDC driving cycle, Case 1. Figure 19 shows the battery SOC variation
with respect to the driving cycle, and it can be observed from the figure that variation between the
initial and final value of battery SOC is less than 0.5% and SOC value lies close to 64%.
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Figure 21 illustrates the electric motor torque-speed characteristics and also the limits of maximum
motoring and regeneration torque. At lower rpm, the torque points lie more on the positive region,
supplementing the engine operation, and at rpm greater than 2000, torque points also shift to the
negative region due to regeneration operation.
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Moreover, Figures 22 and 23 represent the energy utilization of different key components of the
vehicle during power mode and regeneration mode of the vehicle. It can be observed from these figures
that the energy utilized by the fuel converter is higher during the power mode, which is about 19,000 kJ,
and energy utilized by the motor controller is close to 800 kJ during regeneration mode, in order to
recharge the battery and keep it within the intended SOC level. Also, it can be seen that although the
efficiency of the fuel converter is around 24% only, which is similar to the previous case, the energy
loss has been reduced after optimization. Furthermore, energy usage by braking components is also
near to 550 kJ in this mode, to support higher energy regeneration.
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4.5. Inference

The result for BABC has been referred from this work [20] as it was also using similar vehicle
configuration. To illustrate the improvement in the vehicle performance after optimization, Case 1
results of all the three methods discussed above are tabulated below for comparison. Tables 6–8
show the comparative analysis for the two driving cycles and its units for the constraints are already
mentioned in the respective tables. As seen from Tables 6–8, there is a significant increase in the fuel
consumption in terms of miles per gallon. This shows that the combined MABC + SQP method can
obtain superior results in terms of vehicle performance compared to other methods. Similarly, for the
other cases, based on the weightage of the variables, either the fuel efficiency would be increased,
or the emissions would be reduced, as discussed in the previous section.
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Table 6. Results of ECE-EUDC driving cycle for MABC + SQP.

ECE-EUDC Driving Cycle, MABC + SQP

Items Case 1 Case 2 Case 3 Case 4 Initial Value

Variables

FC_torque_scale 1.050 1.200 1.198 1.300 1.349
MC_torquescale 0.967 0.548 0.832 0.700 1.182

ESS_modulenumber 29.010 22.971 28.950 29.000 30.000
CS_ELSpeed_lo 4.000 4.302 6.979 7.6000 3.000
CS_ELSpeed_hi 19.000 29.955 12.920 14.000 20.000
CS_min_trq_frac 0.485 0.444 0.331 0.678 0.218
CS_off_trq_frac 0.154 0.090 0.086 0.110 0.137

CS_lo_soc 0.567 0.386 0.322 0.523 0.567
CS_hi_soc 0.844 0.742 0.730 0.727 0.695

CS_charge torque 31.000 15.822 29.994 32.000 31.000

Constraints

Grade (%) 73.340 8.076 7.810 8.097 7.200
0–60 mph time (s) 8.889 9.066 8.879 8.141 8.400

40–60 mph time (s) 4.378 4.463 4.374 3.842 4.000
0–85 mph (s) 17.883 18.221 17.745 15.677 16.300

Max speed (mph) 119.905 119.268 121.298 127.922 127.000
Max accel (ft/s2) 16.400 16.400 16.400 16.400 16.400

Distance in 5 s (ft) 179.700 177.819 180.179 180.179 183.700

Objective

FC (mpg) 34.484 34.447 32.048 32.048 28.600
HC (g/mile) 0.621 0.713 0.690 0.690 0.768
CO (g/mile) 3.183 2.705 2.905 2.905 3.157

NOx (g/mile) 0.442 0.459 0.470 0.470 0.495

Table 7. Comparison of the FTP driving cycle for the BABC, MABC, and MABC + SQP methods.

Items BABC
Case 1

MABC
Case 1

MABC + SQP
Case 1 Initial Value

Variables

FC_torque_scale 1.500 1.351 1.400 1.349
MC_torquescale 0.783 0.714 0.783 1.182

ESS_modulenumber 30.000 27.741 29.010 30.000
CS_ELSpeed_lo 8.000 4.195 7.000 3.000
CS_ELSpeed_hi 22.000 19.595 23.000 20.000
CS_min_trq_frac 0.800 0.442 0.485 0.218
CS_off_trq_frac 0.069 0.051 0.069 0.137

CS_lo_soc 0.570 0.540 0.381 0.567
CS_hi_soc 0.650 0.753 0.660 0.695

CS_charge torque 31.000 13.890 31.00 31.000

Constraints

Grade (%) 9.057 8.547 8.964 7.200
0–60 mph time (s) 7.841 8.735 8.515 8.400
40–60 mph time(s) 3.633 4.287 4.105 4.000

0–85 mph (s) 14.882 17.381 16.68 16.300
Max speed (mph) 131.01 123.16 125.551 127.000
Max accel (ft/s2) 16.400 16.400 16.4 16.400

Distance in 5 s (ft) 185.04 181.75 181.133 183.700

Objective

FC (mpg) 34.857 35.890 36.098 32.200
HC (g/mile) 0.605 0.539 0.578 0.564
CO (g/mile) 2.522 2.236 2.625 3.244

NOx (g/mile) 0.472 0.418 0.465 0.471
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Table 8. Comparison of the ECE EUDC driving cycle for the BABC, MABC, and MABC + SQP methods.

Items BABC
Case 1

MABC
Case 1

MABC + SQP
Case 1 Initial Value

Variables

FC_torque_scale 1.315 1.190 1.050 1.349
MC_torquescale 0.952 0.783 0.967 1.182

ESS_modulenumber 29.000 30.000 29.010 30.000
CS_ELSpeed_lo 7.000 8.000 4.000 3.000
CS_ELSpeed_hi 12.902 11.000 19.000 20.000
CS_min_trq_frac 0.259 0.100 0.485 0.218
CS_off_trq_frac 0.002 0.183 0.154 0.137

CS_lo_soc 0.261 0.520 0.567 0.567
CS_hi_soc 0.655 0.850 0.844 0.695

CS_charge torque 30.000 36.000 31.000 31.000

Constraints

Grade (%) 8.526 7.565 73.340 7.200
0–60 mph time (s) 9.231 8.964 8.889 8.400

40–60 mph time (s) 4.614 4.451 4.378 4.000
0–85 mph (s) 18.618 18.105 17.883 16.300

Max speed (mph) 120.897 120.456 119.905 127.000
Max accel (ft/s2) 16.4 16.400 16.400 16.400

Distance in 5 s (ft) 178.297 180.665 179.700 183.700

Objective

FC (mpg) 30.387 33.558 34.484 28.600
HC (g/mile) 0.74 0.724 0.621 0.768
CO (g/mile) 2.857 3.148 3.183 3.157

NOx (g/mile) 0.474 0.482 0.442 0.495

5. Conclusions

The design of a parallel HEV involves a number of variables that must be optimized for better
fuel economy and vehicle performance. Driving cycle pattern also plays a key role in assessing the fuel
economy and emissions. The objective of this study was to minimize the overall fuel consumption of a
parallel HEV on FTP and ECE-EUDC driving cycles to improve the vehicle performance. The weighting
factors also have the influence on determining the parameters for the vehicle performance. In this
research, a hybrid MABC with SQP approach was proposed to obtain better optimal solutions.
This method was analyzed with various boundary conditions and PNGV constraints, which occur
in every driving cycle and test case. From the test cases, the performance of HEV and its PNGV
constraints were analyzed. From the results, it was clearly indicated that the proposed approach
achieved an increased fuel economy of 12% for FTP and 20% for ECE-EUDC driving cycles. In most
of the cases, the size of the Energy Storage System (ESS) components were minimized, which will
decrease the overall cost of the HEV in parallel. Furthermore, the proposed MABC-SQP approach
decreased one of the engine emission parameters, HC, up to 19% for the ECE-EUDC driving cycle.
While considering the FTP driving cycle, the engine emission parameter CO was decreased up to
19%. While considering the SOC portion, the change was within 0.5% tolerance on every solution
with reduced battery modules, which satisfies the required vehicle performance. While comparing
the results of the individual heuristic approach [20], the proposed MABC + SQP approach achieved
better results, as indicated above. Also, in comparison to a MABC algorithm, the hybrid MABC + SQP
solution was found to be outstanding in that it achieved remarkable real-time fuel savings and reduced
emissions, with no significant penalties for final battery charging and reduced size of key vehicle
components for different driving cycles.
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Nomenclature

General
ABC Artificial Bee Colony
ADVISOR Advanced Vehicle Simulator
CO Carbon Monoxide
EACS Electric Assist Control Strategy
ECE-EUDC Economic commission Europe – Extra Urban Driving Cycle
FC Fuel Consumption
FTP Federal Test Procedure
HC Hydrocarbons
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
NEDC New European Driving Cycle
NOX Oxides of Nitrogen
NREL National Renewable Energy Laboratory
PMP Pontryagins Minimum Principle
PNGV Partnership for a New Generation of Vehicles
PSO Particle Swarm Optimization
SI Spark Ignition
SOC State of Charge
SQP Sequential Quadratic Programming
UDDS Urban Dynamometer Driving Schedule
VRLA Valve Regulated Lead Acid
Notations
α Distance to constraint boundaries in SQP
dˆk Search direction variable for SQP
λK Lagrange multipliers
L(x, λ) Lagrangian function
Pmot Motor Mechanical power (W)
Pengine Engine power (W)
Pengine_max_power Maximum Engine power (W)
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