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Abstract: In recent years, there has been growing interest in the market interactions between carbon
(or clean/renewable energy) and traditional fossil energy such as coal and oil, but few studies
have discussed their dynamic volatility spillover and time-varying correlation. To investigate
these issues, we used the weekly data of the European Union carbon emission allowance (EUA)
futures, biofuel and Brent oil prices from 25 October 2009 to 5 July 2020. We employed the vector
autoregressive-generalized autoregressive conditional heteroscedasticity (VAR-GARCH) model with
the Baba, Engle, Kraft and Krone (BEKK) specification. Our main findings are summarized as follows:
First, we identified the sudden changes and the volatility persistence in the EUA, biofuel, and Brent
oil markets, and also confirmed that the volatility of the markets has changed significantly over time.
Second, we found a weak volatility spillover effect among the three markets, and a strong spillover
effect between the EUA and Brent oil markets. In particular, the effect of volatility spillover from the
Brent oil market to the EUA market was the strongest than the other cases. Lastly, in financial market,
by holding the EUA and energy sources together as assets, investors can effectively hedge their
investment risk. The possibility of hedging is more pronounced between the EUA and biofuel markets.

Keywords: EUA; European Union emission trading system (EU ETS); spillover; optimal weight;
hedging ratio; sudden change

1. Introduction

The carbon market under the European Union (EU) emission trading system (ETS), which
was opened in 2005 to tackle global climate change caused by greenhouse gas emissions, has been
developing rapidly. Although the carbon market is an emerging market, it has become more essential
in the global commodity and financial markets, in which investors can make profits and diversify or
hedge their portfolio risks [1,2]. However, in recent years, as we will see later, there have been large
fluctuations and some big sudden changes in the movement of the EU carbon emission allowance
(EUA) prices. The movement is closely connected to the prices of fossil and clean/renewable energies
primarily for three reasons: First, the association of fossil energy combustion with increased carbon
emissions has been proven, and lower fossil energy prices can lead to higher energy consumption,
which can cause in turn a rise in demand for carbon credits and a rise in carbon prices. However, if fossil
energy price decreases due to lower production activity, then the decrease in the use of fossil fuel can
lower the demand for carbon credits and the carbon price. Second, the growing global population
and the steady economic growths led by the major developing countries have significantly increased
fossil energy consumption, resulting in increased carbon emissions and higher carbon prices. Third,
clean/renewable energy can substitute fossil energy and decrease carbon emissions from fossil energy
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combustion (the difference in energy use sensitivity due to seasonal and weather changes also can
affect the volatility of carbon price and fossil and clean/renewable energy prices [3,4]).

The relationship between carbon (and clean/renewable energy) and fossil energy prices is of
interest to the various economic players from the following two aspects: First, the potential pollutant
emission source (heavy energy-using companies such as power stations and industrial plants) are
trying to reduce greenhouse gas emission (recently, greenhouse gas reduction is one of the major
achievements of the environmental management system (EMS) [5,6]). The government policy for
reducing carbon emissions and the price volatility of carbon could influence the operations and
related stock market performance of industries covered by the EU ETS [7,8]. Therefore, the industrial
sectors and its participants want sufficient information on carbon (and clean/renewable energy) and
fossil energy prices to pursue their efficient way of using energy and optimal strategies for carbon
emission reduction. Second, with the advent of the carbon credit market, the connectivity between the
financial and carbon (or energy) markets has been strengthened, and the relationship between these
asset markets has become closer. Hence, it becomes more important for policy makers and market
participants to fully grasp the structure of the linkages between the carbon and financial markets.

Based on the above reasons and needs, there are ample incentives to study the connectedness
between carbon prices and energy source-specific prices (i.e., fossil and clean/renewable energy prices).
However, we have confirmed that so far, few studies have analysed the time-varying correlation and the
spillover of dynamic volatility among the three markets. The purpose of our study is thus to uncover
the dynamic spillover and hedging among carbon (the EUA), clean/renewable energy (biofuel) and
fossil energy (Brent crude oil) prices. For this aim, we employ the vector autoregressive-generalized
autoregressive conditional heteroscedasticity (VAR-GARCH) model with the Baba, Engle, Kraft and
Krone (BEKK) specification of the weekly price data in these three markets.

The contributions of our study are three fold: First, we analyse these relationships by applying a
trivariate framework. Although there are many studies on the market connectedness among carbon,
biofuel and crude oil, all these studies focus on their bivariate relationships. Second, although the price
dynamics of the three markets are volatile and show sudden changes, few studies have considered
these sudden changes in their analysis. We incorporate explicitly the effect of a sudden change in
the analysis. Third, although the EUA is regarded as an important financial asset in reality, no study
analysed its optimal weight in the portfolio and hedging ability. We regard the EUA as one of financial
asset and study optimal weight in the portfolio and hedging ability of the investment decision.

The rest of this study is laid out as follows: Section 2 provides a theoretical and empirical review of
the previous literature. Section 3 displays the sample data and methodology employed in our analysis.
Section 4 presents the main findings of our empirical analysis. Section 5 provides the conclusions of
this study.

2. Literature Review

The mainstream of research on the EUA trading market is that the carbon market is closely related
with fossil energy markets [9–12]. This is mainly explained for the following two reasons: First, the ratio
of fossil energy is about 80% of global energy consumption, and the combustion of fossil energy is
known to be a major source of global carbon emissions [13]. In particular, fossil energy has been used
as a primary fuel for power generation companies, and carbon prices are considered a major cost for
the EU electric power companies. Thus, the EUA price is regarded as a cost of heavy energy-using
companies, and fluctuation of the EUA price can lead to the volatility of fossil energy markets.

Among others, Nazifi and Milunovich [12] explored the linkage between the EUA price and the
prices of coal, natural gas, electricity and oil. They found short-run linkages between carbon and other
energy prices but did not discover any long-term relationship between them. Chevallier [14] found
evidence that an interaction exists between the price of carbon and the dynamics of macroeconomic
activity (industrial production) and price by energy source (oil, natural gas and coal). Balcılar et al. [15]
uncovered the risk spillover between energy and the EUA prices and found that a substantial



Energies 2020, 13, 4382 3 of 19

time-varying risk transfer from the energy market to the carbon market. Ortas and Álvarez [16]
confirmed that carbon assets and energy commodities exhibit varying lead/lag movements at different
time frequencies and argued that higher costs for pollution activities would be an incentive for
companies to implement their environmental industrial processes. Zhang and Sun [17] pointed out
that a unidirectional spillover of volatility from the coal market to the carbon market, and from the
carbon market to the natural gas market. They found that the positive linkage between the carbon and
fossil energy markets has become apparent over time. Dhamija et al. [18] investigated the volatility
co-ordination between the EUA market and the energy market (oil, natural gas and coal), and found
evidence of a small but significant volatility transition from the energy market to the EUA market.
Ji et al. [19] revealed that the price of Brent oil is an important element influencing the EUA price
fluctuations and risks, and there is feedback from the carbon market to other energy-related markets.
Uddin et al. [20] found evidence that carbon assets provide diversification benefits for energy asset
investments. Chevallier et al. [21] investigated the interdependence structure between the EUA and
major energy prices and found that carbon prices co-move weakly with energy prices, and their link to
oil and gas prices is negative. Wu et al. [22] researched the volatility spillover effect between carbon
and traditional fossil energy markets. They displayed that the cost of carbon emissions promotes the
use of clean energy, and the spillover of volatility between the carbon emissions market and the coal
(oil) market is the strongest (weakest).

In particular, the volatility of coal price is known to be the most important factor influencing the
changes in carbon price [10]. For instance, Castagneto-Gissey [23] argued that the coal price affects the
electricity price, which is a factor causing a bidirectional causal linkage between the price of carbon and
electricity. Hammoudeh et al. [24] revealed a negative linkage between coal and the EUA prices, that
is, increasing coal prices could lead to a carbon price decrease. Also, Hammoudeh et al. [25] argued
that in the short term, the period of decreasing in coal prices had greater influence on carbon prices
than the period of increasing in coal prices.

Second, as natural gas is an important source of power generation in Europe, the price and
volatility of natural gas can influence the carbon emission demand from energy-intensive companies,
leading to changes in carbon prices and its volatility. For instance, Fezzi and Bunn [26] identified the
interaction among energy source prices in the UK and discovered that gas prices have a significant
influence on carbon prices, both of which affect electricity prices. Hammoudeh et al. [27] uncovered
the impact of changes in energy (oil, coal, natural gas and electricity) prices on the carbon prices in the
U.S. They found that when carbon prices are very low, changes in the natural gas price negatively
affect the carbon prices.

Clean energy markets are also closely connected to the EUA and fossil energy markets.
The purchase of carbon emission credits will lead to higher costs, especially for companies in
heavy energy-consuming industries. For profit, companies will make countermeasures to reduce
carbon emission costs. The switch to biofuels has been promoted within the EU not only because it
helps to reduce greenhouse gas emissions, but also because it strengthens energy security by lowering
foreign dependence on fossil fuels [28]. Ajanovic and Haas [29] pointed out that in the early 2000s,
there were expectations that biofuels would decrease greenhouse gas emissions and replace fossil fuels
in the transportation sector. However, in reality, such expectations were not realized. The authors
described the major barriers to the expansion of biofuels: the relatively higher cost and moderate
environmental performance compared to fossil fuels, the constraints on feedstock, and the competition
as a food source. Reboredo [30] investigated the spillover of volatility between the oil market and
the EUA market during Phase II of the EU ETS and found that there was no evidence of significant
volatility spillover effect between the two markets. Wise et al. [31] explained that the increase of
biofuels usage could reduce the use of traditional fossil oil, consequently reducing CO2 emissions.
This suggests the carbon price is positively linked to biofuel price. Chiu et al. [32] also argued that
the use of biofuels has been expanded not only to reduce carbon emissions, but also to alleviate the
negative influence of fluctuating oil prices. In other words, the incentive to use biofuels is that they
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release relatively less carbon than fossil energy sources. Chao et al. [33] argued that applying carbon
emission policies to airlines could lead to a transition to biofuels in the aviation sector in the U.S.
Chen et al. [34] showed that after the global financial crisis of 2008, the correlation among the EUA,
natural gas and coal markets has weakened, but their volatility has increased.

Clean energy, including biofuel, is an alternative energy source and a substitute of fossil energy [35–37].
Thus, if the EUA price is very high, the energy consumers can reduce their preference for fossil energy and
increase the use clean energy, which can lead to increase the clean energy price. Similarly, the volatility of
the EUA and clean energy prices could change in the same direction. Dutta [38] showed that in recent
years, the ethanol production in Brazil has increased significantly to reduce the carbon emissions and the
reliance on the fossil fuels.

A substitute effect of energy sources can be more pronounced in the long-run. If low-carbon power
sources such as wind and solar power become more economical and widely available, these changes
could reduce the demand for fossil fuels and lower the EUA prices. Especially, the biofuel production
has significantly grown over the past decade to mitigate the adverse effects of carbon emissions [39].
Nevertheless, there are few studies on the relationship between clean energy, including biofuels, and
the EUA prices. We think this is because the biofuels and the EUA markets are relatively emerging and
immature market. Dutta [39] analysed the relationship between the EUA and the biodiesel markets
and found a significant transfer of risk from the carbon market to the biodiesel market. This suggests
that the fluctuations in carbon prices may increase the uncertainty in the biodiesel prices. He also
found that a rise in the price of carbon emission credits leads to increase the price of biodiesel feedstock.

There is not much research on the interdependence between biofuels and crude oil. For example,
Chang and Su [40] found that the significant price transfer effect of crude oil to biofuel futures, and the
substitute of biofuels for fossil fuels during the periods of high oil prices. Serra et al. [41] analysed
the Brazilian ethanol industry and discovered a strong connectedness between the food and energy
markets in the level and volatility of prices. They also found that because the ethanol producers
regard oil as a substitute, the price increase induced in the oil market has spread to the renewable fuels
market in Brazil. Serra et al. [42] found the long-run relationships among ethanol, oil, gasoline, and
corn prices. Chiu et al. [32] investigated the relationships among ethanol, crude oil, and corn prices.
They revealed the long-run causal connectivity among these three market prices, and also found the
short-run causality from fossil energy (oil) price to biofuel (ethanol) price. Hossain and Serletis [43]
showed that there is a small but statistically significant possibility of substitution between biofuels and
natural gas, as well as between biofuel and oil when the prices of fossil fuels changes.

As shown above, although there are some studies on the relationships among carbon, biofuel
and crude oil, all these studies focus on the bivariate relationship. Meanwhile, we analyse these
relationships by applying trivariate framework. Analysis using the trivariate GARCH model is very
few, moreover, we can find only two studies which use the trivariate GARCH model with sudden
change dummies, namely those by Miralles-Marcelo et al. [44] and Jiao et al. [45]. These two papers did
not focus their research on energy markets. In this respect, we can contribute energy finance literature
by broadening the methodology for analysis of the price relationship among energy markets.

3. Data and Methodology

3.1. Sample Data

For the empirical analysis, we used weekly closing price data for the EUA, biofuel, and Brent oil
markets. We obtained the EUA data from Investing.com (https://www.investing.com), and biofuel
(S&P GSCI Biofuel Index) and Brent oil data (S&P GSCI Brent Crude Index) from Yahoo! Finance
(https://finance.yahoo.com). The sample period is from 25 October 2009 to 5 July 2020. Figure 1
displays the fluctuation of the weekly prices and the logarithmic returns of each series, which show
some significant sudden changes in the return series of all markets.

https://www.investing.com
https://finance.yahoo.com
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Figure 1. Price dynamics and sudden changes in returns dynamics (Note: The dotted lines define
the band of ±3 standard deviations around the points of sudden changes estimated by the iterative
cumulative sum of squares (ICSS) algorithm): (a) the EUA price; (b) the EUA returns; (c) biofuel price;
(d) biofuel returns; (e) Brent oil price; (f) Brent oil returns.

Panel A of Table 1 introduces the descriptive statistics of the weekly returns for the three markets.
During the sample period, the average returns of the EUA are positive, while those of biofuel and
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Brent oil are negative. As shown in the standard deviation, the EUA is found to be the most volatile
market, while biofuel is the least volatile. Regarding the non-normality features, all returns data
displayed asymmetry and leptokurtic distributions with higher peaks and thicker tails than the
normal distribution.

Table 1. Descriptive statistics and unit root test results for the returns.

Statistic/Test EUA Biofuel Brent Oil

Panel A: Descriptive Statistics

Mean 0.1262 −0.0661 −0.1062

Maximum 24.5545 10.8549 19.9191

Minimum −38.7855 −10.9349 −24.5892

Standard deviation 6.6786 2.7234 4.4348

Skewness −0.7555 0.1105 −0.7467

Kurtosis 7.6757 4.0455 7.8141

Jarque-Bera 557.36 *** 26.3561 *** 586.48 ***

Q(20) 28.420 * 29.671 * 55.367 ***

Qs(20) 26.957 154.753 *** 368.356 ***

ARCH LM(5) 13.357 ** 76.757 *** 133.313 ***

Panel B: Results of Unit Root Tests

DF-GLS −22.0290 *** −4.5310 *** −4.8328 ***

PP −22.5897 *** −21.7536 *** −20.6669 ***

KPSS 0.3005 0.0795 0.1068

Notes: Jarque-Bera refers to the test statistic calculated for the null hypothesis of normality. Q(20) and Qs(20) refer
to the Ljung-Box test statistics for the null hypothesis that there is no serial correlation of returns and squared
returns, respectively. The ARCH LM(5) test of Engle [46] checks the presence of the ARCH effect. The DF-GLS, PP,
and KPSS are the test statistics of the augmented GLS-detrended Dickey-Fuller test [47], the Phillips-Perron unit
root test [48], and the Kwiatkowski et al. stationarity test [49], respectively. *** (**, *) represents the rejection of the
null hypotheses at the 1% (5%, 10%) level of significance.

Therefore, the Jarque-Bera test statistics are not consistent with the aforementioned features of the
Gaussian distribution, indicating a non-linear process. The Ljung-Box Q test statistics show that there
is a serial correlation of the returns and squared returns for most series. The ARCH effect is found in
all return series. This means that the GARCH-class model can fit well into these return series well.

Panel B of Table 1 summarizes the results of three types of unit root test. The augmented
GLS-detrended Dickey-Fuller (DF-GLS) test of Elliott et al. [47], the PP test of Phillips and Perron [48],
and the KPSS test of Kwiatkowski et al. [49]. The resulting values from the DF-GLS and PP tests
are large and negative, rejecting the null hypothesis of the unit root at the 1% level of significance.
The KPSS test statistics do not reject the null hypothesis for stationarity at the 1% level of significance.
Thus, all series of the returns studied in the analysis can be said to be stationary processes.

3.2. Methodology

We assume the data generating process of the returns series considered in this study is an
autoregressive (AR) process to order one. This indicates that the dynamics of the conditional mean of
the return series can be explained using the previous value as follows:

rt = µ+ φrt−1 + εt with εt = zt
√

ht, zt ∼ N(0, 1) (1)

where
∣∣∣µ∣∣∣ ∈ [0,∞),

∣∣∣φ∣∣∣ < 1, and ht is the conditional variance of the series.
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3.2.1. Univariate Model: AR(1)-GARCH(1,1) Model

We also assume the dynamics of conditional variance of returns can be described by the GARCH(1,1)
model of Bollerslev [50] as follows:

ht = ω+ αε2
t−1 + βht−1 (2)

where ω > 0, α ≥ 0, and β ≥ 0 for the non-negativity of variance. The persistence of conditional
variance in the equation is measured as the sum of parameters (α+ β). If the sum of parameters
(α+ β) is quite close to 1, the shock on the conditional variance is infinitely persistent.

3.2.2. The ICSS Algorithm

To determine the number of sudden changes in variance of the returns and when each variance
shift occurs, we employ the ICSS algorithm [51]. The major assumption of this algorithm is that until
a sudden change happens as the consequence of an event, the variance is stationary over the initial
period. Then the variance of series remains as a stationary state until another shock occurs.

Let’s assume that a time series {εt} has a mean of zero and an unconditional variance of σ2
t .

The variances in intervals are given by σ2
j , j = 0, 1, · · · , NT, where NT is the total number of variance

changes in T observations, and 1 < k1 < k2 < · · · < kNT < T are the set of change points. The variance
over the NT intervals is defined as follows:

σ2
t =


σ2

0 1 < k < k1

σ2
1 k1 < k < k2

...
...

σ2
NT

kNT < k < T

(3)

From the first observation to the kth time point, the cumulative sum of squares can be expressed
as follows:

Ck =
k∑

t=1

ε2
t , k = 1, 2, · · · , T (4)

Let’s define the statistic Dk as follows:

Dk =
( Ck

CT

)
, D0 = DT = 0 (5)

where CT is the sum of squared residuals from the sample period of time.
If no change in variance occurs, the Dk statistic oscillates around zero (while the Dk is plotted

against k, similar to a horizontal line). While, if one or more changes of variance happen, the Dk statistic
moves up or down from zero. Under the null hypothesis of constant variance, we use the critical values
calculated from the distribution of Dk to identify significant changes in variance. If the maximum
absolute value of Dk exceeds the critical value, we can reject the null hypothesis of homogeneity. When
we define k∗ as the value at which maxk|Dk| is reached, and if maxk

√
(T/2)|Dk| is greater than the critical

value, then k∗ can be called as the time point at which the change in variance of the series happens. And
the term

√
(T/2) is to standardize the distribution. At the 95th percentile of the asymptotic distribution

of maxk
√
(T/2)|Dk|, the critical value is 1.358. So, the upper and lower bounds can be set to ±1.358 on

the Dk plot. Points of change in variance are detected when these bounds are exceeded [51,52].
The GARCH(1,1) model with sudden changes can be written as follows:

ht = ω+ δ1D1 + · · ·+ δnDn + αε2
t−1 + βht−1 (6)
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where D1, · · · , Dn denote dummy variables representing sudden changes in volatility, which is
identified by the ICSS algorithm. During the period of sudden change, the value of dummy variable
becomes one; otherwise zero.

3.2.3. Trivariate Model: VAR(1)-GARCH(1,1) Model with BEKK Specification

Using the VAR(1) process, we assume the conditional mean of returns series can be described
as follows:

r1,t = c1 + a11r1,t−1 + a12r2,t−1 + a13r3,t−1 + ε1,t (7)

r2,t = c2 + a21r1,t−1 + a22r2,t−1 + a23r3,t−1 + ε2,t (8)

r3,t = c3 + a31r1,t−1 + a32r2,t−1 + a33r3,t−1 + ε3,t (9)

εi,t
∣∣∣Ωt−1 ∼ N(0, Ht) (10)

where ri,t is the weekly returns of three markets at time t (r1,t = EUA, r2,t = Biofuel, r3,t = Brent oil). ci
and ai j are parameters to be estimated. The random error εi,t stands for the innovation of each market
at time t using the corresponding (3× 3) conditional variance-covariance matrix Ht, and Ωt−1 is the set
of information available at time (t− 1).

The conditional variance-covariance matrix of trivariate framework of the BEKK
parameterization [5] can be presented as follows:

Ht = CC′ + Aεt−1ε
′

t−1A′ + BHt−1B′ (11)

where C represents a (3× 3) lower triangular matrix with six parameters. A denotes a (3× 3) square
matrix of parameters, which measures the degree to which the conditional variance is affected by
the squared errors of past or the shock of events on the volatility. B is a (3× 3) square matrix of
parameters and represents the degree to which the current conditional variance level is affected by the
past conditional variances. The off-diagonal elements of matrices A and B capture the cross-market
effects between the two markets; shock spillover (α12, α13, α21, α23, α31 and α32) and volatility spillover
(β12, β13, β21, β23, β31 and β32).

The conditional variance-covariance matrix of trivariate GARCH-BEKK model can be written
as follows:

Ht =


c11 0 0
c21 c22 0
c31 c32 c33




c11 c21 c31

0 c22 c32

0 0 c33

+

α11 α12 α13

α21 α22 α23

α31 α32 α33

εt−1ε′t−1


α11 α21 α31

α12 α22 α32

α13 α23 α33


+


β11 β12 β13

β21 β22 β23

β31 β32 β33

Ht−1


β11 β21 β31

β12 β22 β32

β13 β23 β33

, εt−1ε′t−1

=


ε2

1,t−1 ε1,t−1ε2,t−1 ε1,t−1ε3,t−1

ε2,t−1ε1,t−1 ε2
2,t−1 ε2,t−1ε3,t−1

ε3,t−1ε1,t−1 ε3,t−1ε2,t−1 ε2
3,t−1

, Ht =


h11,t h12,t h13,t
h21,t h22,t h23,t

h31,t h32,t h33,t



(12)

By incorporating the sudden change dummies, Equation (11) can be rewritten as follows:

Ht = CC′ + Aεt−1ε
′

t−1A′ + BHt−1B′ +
n∑

k=1

D′kX′kXkDk (13)

where D denotes a (3× 3) diagonal parameter matrix; X denotes a (1× 3) row vector of volatility of the
sudden change dummy variables taking a value of 1 from each point of the sudden change of variance
onwards and zero elsewhere; n is the number of sudden change points.
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The trivariate GARCH-BEKK model can be estimated with the optimized maximum likelihood
estimation method. The conditional function of log likelihood L(θ) can be written as follows:

L(θ) = −Tln(2π) −
1
2

T∑
t=1

(
ln

∣∣∣Ht(θ)
∣∣∣+ ε′t(θ)H

−1
t (θ)εt(θ)

)
(14)

where θ is the vector of the unknown parameters to be estimated.

3.2.4. Cost Minimizing Portfolio and Dynamic Hedging Ratio

The conditional variance and covariance of the return series is the basic data commonly used in
the asset pricing, the investment risk management, and the portfolio allocation. Kroner and Ng [53]
proposed a method to calculate the risk-minimized portfolio without reducing the expected returns.
If the portfolio with zero expected returns is composed of two assets (i, j), the optimal portfolio weight
of the holdings of asset i, w∗i j,t is given as follows:

wi j,t =
h j j,t − hi j,t

hii,t − 2hi j,t + h j j,t
(15)

w∗i j,t = 0 i f wi j,t< 0; w∗i j,t = wi j
t i f 0 ≤ wi j,t ≤ 1; w∗i j,t = 1 i f wi j,t >1 (16)

where hii,t and h j j,t are the conditional volatility of the i and j market, respectively. hi j,t is the conditional
covariance between the two markets at time t. The optimal portfolio weight of the j market is equal to(
1−w∗i j,t

)
in the budget constraint.

In this study, we also calculate the risk-minimized hedge ratio or the optimal hedge ratio, β,
following the methodology of Kroner and Sultan [54]:

βi j,t =
hi j,t

h j j,t
(17)

This ratio means that in order to minimize the risk of a portfolio, which is the $1 long position
(position to hold) on the i asset, the investor should take the $β short position (position not to hold) on
the j asset.

4. Empirical Results

4.1. Detection of Sudden Changes in Conditional Variance

Using the ICSS algorithm, we calculate the standard deviations between the time points to detect
the sudden changes in variance. As shown above, Figure 1b,d,f display the movements of returns of
the EUA, biofuel and Brent oil series, and the dotted lines show the points of sudden change with
the band of ±3 standard deviations. Table 2 summarizes the sub-periods of sudden volatility changes
detected by the ICSS algorithm. All the series returns have the sudden change points corresponding to
the distinct regimes of volatility.

These sudden changes can be due to geopolitical factors and economic, political and global shocks
in these markets (It is very cautious to mention some specific events because the sudden change
happens due to the overlapping of many different factors. Nevertheless, it is possible to mention
several events for the energy sector; The plunge in international oil prices in 2012 may be attributed to
the fact that major oil producing countries did not agree to control oil production, despite declining oil
demand due to the global economic downturn that has continued since 2008. Since 2014, oversupply
of the global oil market and market restructuring have been underway due to the increase in oil
production in non-OPEC countries centered on the U.S. called the shale revolution. From the beginning
of 2020, most of the world’s economy has been stagnant and stiff due to the COVID-19 pandemic, and
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energy demand has also significantly decreased). We generate dummy variables based on the sudden
change points in each market.

Table 2. Sudden change points identified by the ICSS algorithm and standard deviations.

Number of Sudden Changes Sub-Periods Standard Deviations

EUA 3

25 Oct. 2009–28 Oct. 2012 5.8251

4 Nov. 2012–30 Mar. 2014 9.7364

6 Apr. 2014–29 May. 2016 4.2217

5 Jun. 2016–5 Jul. 2020 7.0095

Biofuel 1
25 Oct. 2009–22 Jul. 2012 3.8174

29 Jul. 2012–5 Jul. 2020 2.2359

Brent oil 4

25 Oct. 2009–15 Jul. 2012 3.7895

22 Jul. 2012–16 Nov. 2014 2.1977

23 Nov. 2014–27 Nov. 2016 5.2373

04 Dec. 2016–16 Feb. 2020 3.7198

23 Feb. 2020–5 Jul. 2020 12.7009

4.2. Estimation of Univariate AR(1)-GARCH(1,1) Model with and without Sudden Change Dummies

We estimate the univariate AR(1)-GARCH(1,1) model with and without sudden change dummy
variables. The results are summarized in Tables 3–5. In these tables, most estimates of ω, α and β are
positive values at the 5% level of significance. The sum of parameters (α+ β) is very high and close to
one; 0.8804 for the EUA, 0.9310 for biofuel, and 0.9804 for Brent oil. This reflects the persistence of
volatility, meaning that the shock could be a permanent impact on the variance of returns. However,
considering the dummy variables, the sum of parameters (α+ β) in the volatility of all three markets
are 0.7228 for the EUA, 0.6714 for biofuel, and 0.3141 for Brent oil. This evidence is consistent with the
studies of Aggarwal et al. [2], Hammoudeh and Li [55], Wang and Moore [56], Kang and Yoon [57] and
others, whom discovered that the standard GARCH model overestimates the persistence of volatility
when it ignores sudden changes in conditional variance.

Table 3. Estimation results of AR(1)-GARCH(1,1) model for the EUA returns.

Without the Sudden Change Dummies With the Sudden Change Dummies

Panel A: Estimates of the Univariate AR(1)-GARCH(1,1) Model

µ 0.3483 (0.2726) 0.2649 (0.2327)

EUA returns (−1) 0.0312 (0.0511) 0.0237 (0.0523)

ω 5.8671 (2.0541) *** 9.6061 (3.1836) ***

α 0.1464 (0.0508) *** 0.0987 (0.0410) **

β 0.7340 (0.0758) *** 0.6241 (0.0987) ***

D1 - 19.9769 (8.4173) **

D2 - −5.6132 (2.2815) **

D3 - 4.3918 (2.6537) *

(α+ β) 0.8804 0.7228

Panel B: Results of Diagnostic Tests

Log likelihood −1816.0342 −1791.9016

Q(20) 17.810 [0.5999] 18.606 [0.5476]

Qs(20) 7.827 [0.9930] 9.316 [0.9790]

ARCH LM(5) 0.407 [0.8440] 0.376 [0.8653]

Notes: The standard errors are in parentheses and the p-values are in brackets. See also the note of Table 1.
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Table 4. Estimation results of AR(1)-GARCH(1,1) model for the Biofuel returns.

Without the Sudden Change Dummies With the Sudden Change Dummies

Panel A: Estimates of the Univariate AR(1)-GARCH(1,1) Model

µ −0.1367 (0.1036) −0.1343 (0.0982)

Biofuel returns (−1) 0.0278 (0.0459) 0.0148 (0.0471)

ω 0.5374 (0.2484) ** 5.0659 (2.4414) **

α 0.1645 (0.0464) *** 0.1647 (0.0625) ***

β 0.7666 (0.0665) *** 0.5067 (0.1703) ***

D1 - −3.4303 (1.8198) *

(α+ β) 0.9310 0.6714

Panel B: Results of Diagnostic Tests

Log likelihood −1304.3633 −1295.2755

Q(20) 20.871 [0.4048] 19.152 [0.5119]

Qs(20) 19.195 [0.5092] 16.295 [0.6982]

ARCH LM(5) 0.620 [0.6846] 0.478 [0.7926]

Note: See the notes of Tables 1 and 3.

Table 5. Estimation results of AR(1)-GARCH(1,1) model for the Brent oil returns.

Without the Sudden Change Dummies With the Sudden Change Dummies

Panel A: Estimates of the Univariate AR(1)-GARCH(1,1) Model

µ −0.0344 (0.1489) −0.0975 (0.1380)

Brent oil returns
(−1) 0.0292 (0.0485) 0.0386 (0.0414)

ω 0.5448 (0.3659) 9.9955 (3.1183) ***

α 0.1321 (0.0303) *** −0.0338 (0.0335)

β 0.8483 (0.0409) *** 0.3480 (0.1890) *

D1 - −6.8351 (2.2935) ***

D2 - 9.6980 (3.9109) **

D3 - −0.9368 (1.1755)

D4 - 95.0835 (39.631) **

(α+ β) 0.9804 0.3141

Panel B: Results of Diagnostic Tests

Log likelihood −1538.0533 −1506.1258

Q(20) 29.697 [0.0749] * 22.090 [0.3357]

Qs(20) 18.822 [0.5334] 27.305 [0.1269]

ARCH LM(5) 1.043 [0.3913] 1.538 [0.1760]

Note: See the notes of Tables 1 and 3.

In Panel B of Tables 3–5, the calculated statistics of the Ljung-Box Q test for no serial correlation of
the returns and the squared returns do not reject the null hypothesis at the 5% level of significance.
And the calculated statistics of the ARCH LM(5) test show that there are no remaining ARCH effects.
These results determine that the AR(1)-GARCH(1,1) model illustrates the volatility of these three
markets well.

On the other hand, the estimates of the sudden change dummy variables display that all dummy
variables except for D3 are significant at the 10% level in the Brent oil market. These results demonstrate
that the volatility of three markets has changed significantly over time, as displayed in Figure 1 and
Table 2. And the calculated log-likelihood values in all the tables are larger for the model with dummies.
This finding means that the model with sudden change dummies is a better than the model without
the dummies. Thus, we could continue the empirical analysis considering the sudden changes.
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4.3. Estimation of Trivariate VAR(1)-GARCH(1,1)-BEKK Model with and without Sudden Change Dummies

To investigate the spillover effects among the EUA, biofuel and Brent oil markets, we estimate
the trivariate VAR(1)-GARCH(1,1)-BEKK model with and without the sudden change dummies.
Table 6 summarizes the results of the estimated models.

Table 6. Estimation results of VAR(1)-GARCH(1,1)-BEKK model for the EUA, biofuel, and Brent
oil returns.

Parameters Without the Sudden Change Dummies With the Sudden Change Dummies

c1 0.1642 (0.2972) 0.1868 (0.3071)

a11 −0.0090 (0.0473) 0.0059 (0.0568)

a12 0.0492 (0.0835) −0.0375 (0.1285)

a13 0.0233 (0.0648) 0.0091 (0.0805)

c2 −0.1737 (0.1049) * −0.0474 (0.1117)

a21 0.0067 (0.0158) 0.0026 (0.0188)

a22 0.0479 (0.0396) 0.0495 (0.0481)

a23 0.0284 (0.0234) 0.0172 (0.0327)

c3 −0.0304 (0.1442) −0.1455 (0.1611)

a31 0.0476 (0.0212) ** 0.0516 (0.0251) **

a32 0.0895 (0.0557) 0.0891 (0.0685)

a33 −0.0018 (0.0398) 0.0286 (0.0531)

c11 2.0149 (0.4091) *** 1.5111 (2.9682)

c21 0.1339 (0.1636) −2.7690 (1.7051)

c22 0.4283 (0.1387) *** 0.2753 (5.2922)

c31 −0.0901 (0.2432) 2.6341 (7.5780)

c32 −0.7814 (0.1919) *** 4.5095 (5.0844)

c33 0.0005 (0.8264) 0.1415 (0.3039)

α11 0.2444 (0.0540) *** 0.1614 (0.0788) **

α12 −0.0188 (0.0155) −0.0646 (0.0368) *

α13 −0.0447 (0.0210) ** −0.0445 (0.0511)

α21 0.0315 (0.1172) 0.2964 (0.1421) **

α22 0.2177 (0.0463) *** 0.2230 (0.1037) **

α23 −0.1078 (0.0571) * −0.0564 (0.1302)

α31 0.1175 (0.0742) −0.2272 (0.1102) **

α32 −0.0402 (0.0227) * −0.0520 (0.0624)

α33 0.3805 (0.0408) *** 0.1701 (0.0950) *

β11 0.9195 (0.0295) *** 0.8340 (0.1025) ***

β12 0.0026 (0.0085) −0.0586 (0.0646)

β13 0.0254 (0.0137) * −0.0343 (0.0675)

β21 −0.0098 (0.0542) −0.3679 (0.4717)

β22 0.9466 (0.0197) *** 0.5428 (0.2611) **

β23 0.0522 (0.0276) * −0.0391 (0.3882)

β31 −0.0569 (0.0386) −0.1792 (0.1376)

β32 0.0353 (0.0127) *** −0.1936 (0.1069) *

β33 0.9040 (0.0196) *** 0.5897 (0.1749) ***

Notes: Figures in the parentheses are the standard errors of the estimates. *** (**, *) represents the rejection of the
null hypotheses at the 1% (5%, 10%) level of significance. The estimates of sudden change dummies are not reported
to save space.
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As explained later, the diagnostic test results in Panel C of Table 7 show that most of the Ljung-Box
Q test results have no serial correlation and no ARCH effect remains. Therefore, in this study, it can be
confirmed that the VAR(1)-GARCH(1,1)-BEKK model trivariate is suitable for our analysis.

Table 7. Wald test for dynamic volatility spillover among the EUA, Biofuel, and Brent oil returns.

Hypothesis/Test Statistic Without Sudden Change Dummies With Sudden Change Dummies

Panel A: Wald test results for volatility spillover among three markets

H0 :
3∑

i=1

3∑
j=1(i, j)

αi j = 0 23.0030 [0.0008] *** 13.0519 [0.0422] **

H0 :
3∑

i=1

3∑
j=1(i, j)

βi j = 0 32.6676 [0.0000] *** 5.4815 [0.4837]

H0 :
3∑

i=1

3∑
j=1(i, j)

αi j = 0 and

3∑
i=1

3∑
j=1(i, j)

βi j = 0
41.3946 [0.0000] *** 20.0821 [0.0655] *

Panel B: Wald test results for volatility spillover between two markets

H0 : α12 = β12 = 0 1.9516 [0.3769] 4.5675 [0.1019]

H0 : α21 = β21 = 0 0.0735 [0.9639] 4.3540 [0.1134]

H0 : α12 = β12 = α21 = β21 = 0 2.0675 [0.7233] 8.9997 [0.0611] *

H0 : α13 = β13 = 0 4.8350 [0.0891] * 1.0547 [0.5902]

H0 : α31 = β31 = 0 2.6440 [0.2666] 9.6522 [0.0080] ***

H0 : α13 = β13 = α31 = β31 = 0 6.0848 [0.1929] 10.1175 [0.0385] **

H0 : α23 = β23 = 0 4.4584 [0.1076] 0.2488 [0.8830]

H0 : α32 = β32 = 0 8.1173 [0.0173] ** 4.5436 [0.1031]

H0 : α23 = β23 = α32 = β32 = 0 17.1020 [0.0018] *** 4.8128 [0.3071]

Panel C: Diagnostic test results

Log-likelihood −4640.2370 −4568.0657

Q(20), EUA equation 18.5913 [0.5485] 17.7176 [0.6157]

Q(20), Biofuel equation 20.6701 [0.4168] 21.1804 [0.6060]

Q(20), Brent oil equation 30.6007 [0.0607] * 31.8136 [0.3866]

Qs(20), EUA equation 7.7760 [0.9933] 10.5892 [0.1091]

Qs(20), Biofuel equation 42.9214 [0.0021] *** 31.3813 [0.9562]

Qs(20), Brent oil equation 17.1160 [0.6454] 22.6207 [0.0504] *

ARCH LM(5), EUA equation 2.00 [0.8491] 2.51 [0.7749]

ARCH LM(5), Biofuel equation 24.32 [0.0002] *** 11.41 [0.0438] **

ARCH LM(5), Brent oil equation 5.46 [0.3626] 7.57 [0.1816]

Notes: The subscript 1 (2, 3) denotes the EUA (biofuel, Brent oil) market. αi j represents the impact of shock on the
i market on the volatility in the j market. βi j represents the degree of volatility spillover effect from the i market to the
j market. Figures in Panel A and B are χ2 statistics for the Wald test. The p-values are in brackets. *** (**, *) represents
the rejection of the null hypotheses at the 1% (5%, 10%) level of significance.

4.4. Wald Test for Spillover Effects

Table 7 summarizes the Wald test results for the dynamic volatility spillover among the EUA,
biofuel, and Brent oil price returns, and the diagnostic tests for the VAR(1)-GARCH(1,1)-BEKK model
estimation results in Table 6.

Looking at the diagnostic test results in Panel C of Table 7, we can see the remaining serial
correlation and the ARCH effect are weaker in the model with the sudden change dummies. And the
calculated log-likelihood values are larger for the model with dummies. These results mean that the
model with the sudden change dummies is a better specification than the model without them. Thus,
we continue the empirical analysis considering the sudden changes, and explain the results of Wald
test only for the model with the sudden change dummies.



Energies 2020, 13, 4382 14 of 19

Panel A of Table 7 summarizes the Wald test results for the existence of spillover effects among
the three markets using the VAR(1)-GARCH(1,1)-BEKK model with the sudden change dummies.
As shown in the table, the null hypothesis of no spillover effects among the three markets through the
parameter αi j is rejected at the 5% level of significance, suggesting evidence of the impact of the shock
on one market on the volatility in another market. However, the null hypothesis of no spillover effect
among these markets through the parameter βi j is not rejected at the 10% level of significance, implying
no evidence of the volatility spillover from one market to another market. The null hypothesis that
there are no spillover effects among the three markets through the parameters αi j or βi j is rejected at the
10% level of significance, implying weak evidence that the spillover effects exist among three markets.

Panel B of Table 7 summarizes the results of Wald test for the existence of spillover effects between
two markets. The null hypothesis of no volatility spillover effect from the EUA (i = 1) to biofuel (i = 2)
markets is not rejected. The null hypothesis that there is no volatility spillover effect from biofuel
(i = 2) to the EUA (i = 1) markets is not rejected, too. However, the null hypothesis of no volatility
spillover effect between the EUA and biofuel markets is not rejected at the 10% level of significance,
implying weak evidence of the existence of spillover effects between these two markets.

The null hypothesis of no volatility spillover effect from the EUA (i = 1) to Brent oil (i = 3)
markets is not rejected, while the null hypothesis of no volatility spillover effect from Brent oil (i = 3) to
the EUA (i = 1) markets is rejected at the 1% level of significance. The null hypothesis of no volatility
spillover effect between the EUA and Brent oil markets is rejected at the 5% significance level, implying
strong evidence of the existence of spillover effects between these two markets.

The null hypothesis of no volatility spillover effect from (to) the biofuel (i = 2) to (from) Brent
oil (i = 3) markets is not rejected. The null hypothesis of no volatility spillover effect between the
Brent oil (i = 3) to biofuel (i = 2) markets is also not rejected. Thus, we cannot find any evidence of
volatility connectedness between the biofuel and Brent oil markets.

4.5. Calculation of Optimal Portfolio Weights and Hedge Ratios

Table 8 summarizes the optimal average weights for portfolios of two assets and the portfolio’s
risk-minimized hedge ratios. Panel A of Table 8 demonstrates that for the Portfolio I consisting of the
EUA and biofuel, the optimal weight for the portfolio is 0.1615, indicating that 16.15% of total asset
should be invested in the EUA market, while the remaining 83.85% should be held in the biofuel market.
In case of the Portfolio II consisting of the EUA and Brent oil, the optimal weight for the portfolio is
0.2918 that means 29.18% of total assets should be invested in the EUA market and the remaining 72.51%
should be held in the Brent oil market. Portfolio III consisting of the biofuel and Brent oil shows the
optimal weight for the asset portfolio is 0.6995, meaning that 69.95% of total asset should be invested in
the biofuel market, and the remaining portion of 30.05% should be held in the Brent oil market.

Table 8. Optimal portfolio weights and hedge ratios for the EUA, biofuel and Brent oil markets using
the model with the sudden change dummies.

Asset Portfolio I
(EUA-Biofuel)

Portfolio II
(EUA-Brent Oil)

Portfolio III
(Biofuel-Brent Oil)

Panel A: Average of optimal portfolio weights

EUA 0.1615 0.2918 −

Biofuel 0.8385 − 0.6995

Brent oil − 0.7082 0.3005

Panel B: Risk-minimized hedge ratios

Mean −0.0851 0.0714 0.1552

Median −0.0247 0.0964 0.1185

Maximum 0.8147 0.8135 0.7895

Minimum −1.6765 −1.3177 −0.1024

Notes: The Portfolio I, II, and III are composed of the EUA and biofuel, the EUA and Brent oil, and the biofuel and
Brent oil assets, respectively.
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Panel B of Table 8 displays the results of the risk-minimized hedge ratio. For Portfolio I, the average
hedge ratio is −0.0851, which means that when an investor takes a long position (position to hold) of $1
in the EUA market, it can be effectively hedged the investment in the EUA by taking a long position of
$0.0851 in the biofuel market as well. For the Portfolio II, the average hedge ratio is 0.0714, and when
an investor takes a long position of $1 in the EUA market, taking a short position (position not to hold)
of $0.0714 in the Brent oil market can be effectively hedged the investment in the EUA. In case of the
Portfolio III, the average hedge ratio is 0.1552, implying that the biofuel investment can be effectively
hedged by taking a short position of $0.1552 dollars in the Brent oil market when taking a long position
of $1 in the biofuel market.

Figure 2 shows the time-varying correlations of conditional variances between two markets, which
are calculated from the estimation results of the VAR(1)-GARCH(1,1)-BEKK model with the sudden
changes. A positive (+) value of correlation means that the portfolio composed of two assets can be
used for diversification. As the correlation gets closer to 1.0, indicating that two assets respond equally
to market changes, thus the diversification ability of asset composition is diminished. On the other
hand, a negative (−) value of correlation indicates that a portfolio of two assets is a means for hedging
market changes. When the correlation approaches −1.0, both assets can be treated as the other’s safe
haven assets. Figure 2a,b suggest the possibility that the EUA acts as a hedging for the energy source
markets. This possibility is more pronounced between the EUA and biofuel markets, with at least four
sharply low correlations. On the other hand, the diversification ability of assets is stronger between the
biofuel and Brent oil markets, with positive correlations in most sample periods.
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5. Conclusions

In recent years, there has been a growing interest in the market price interactions between
carbon (or clean/renewable energy) and traditional fossil energy sources such as coal and oil.
The relationship between the two markets provides the necessary information for the industrial
sector to plan the transition of energy consumption structures and to formulate their optimal carbon
emission strategies. On the other hand, this is also important information in determining an asset
portfolio in financial markets.

The purpose of this study is to investigate these issues, for the weekly data of the EUA
futures, biofuel and Brent oil prices from 25 October 2009 to 5 July 2020. We employed the vector
autoregressive-generalized autoregressive conditional heteroscedasticity (VAR-GARCH) model with
the Baba, Engle, Kraft and Krone (BEKK) specification [58]. Our results may be summarized as follows:

• First, we identified the sudden changes and the volatility persistence in the three markets, and
also confirmed that the volatility of the markets has changed significantly over time. In detail,
during the sample period, the EUA, biofuel, and Brent oil markets had 3, 1, and 4 sudden change
points, respectively. These time points of change can be explained by many factors, but major
events such as the recession after the global financial crisis happened in 2008, the imbalance of
supply and demand with the structural changes in the global oil market, and the unprecedented
global economic stiffness caused by the COVID-19 pandemic would have affected.

• Second, we found a weak volatility spillover effect among the three markets, and a strong spillover
effect between the EUA and Brent oil markets. In particular, the effect of volatility spillover from
the Brent oil market to the EUA market was stronger than the opposite case. This means that
if the volatility of Brent oil price changes increases due to the inconsistency between oil supply
and demand in the market, it can have a significant effect on the EUA price changes, accordingly.
On the other hand, we could not find any evidence of volatility spillover between the biofuel and
Brent oil markets.

• Lastly, in financial markets, the EUA as an asset can be used as a hedging portfolio for energy
sources. In other words, by holding the EUA and the energy sources together as assets, investors
can effectively hedge their risk of investment. The possibility of hedging is more pronounced
between the EUA and biofuel markets, while the diversification ability of assets is stronger between
the biofuel and Brent oil markets. This means that trying to hold both the biofuel and Brent oil
assets at the same time is not an appropriate action for investors to minimize the risk of investment.

As Jackson and Robertson [59] argued, using carbon trading to change the behaviour of government
and industrial sectors is more likely to have a more immediate influence on carbon emissions than
encouraging individuals to purchase low-carbon products and services. And, as many experts say,
the carbon market will play an increasingly substantial role than now in effectively reducing global
carbon emissions.

Furthermore, our results suggest that carbon trading can be an attractive investment asset in the
financial market as well. In short, a well-structured portfolio considering carbon as an asset in the
financial market can help investors manage their investment risk. These results also mean that there
is an incentive for energy-intensive facilities such as power generation plants, industrial plants, and
airlines to cost-effectively participate in the carbon market.
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