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Abstract: With the increase in penetration of photovoltaics (PV) into the power system, the correct
prediction of return on investment requires accurate prediction of decrease in power output over time.
Degradation rates and corresponding degraded energy estimation must be known in order to predict
power delivery accurately. Solar radiation plays a key role in long-term solar energy predictions.
A combination of auto-encoder and long short-term memory (AE-LSTM) based deep learning approach
is adopted for long-term solar radiation forecasting. First, the auto-encoder (AE) is trained for the
feature extraction, and then fine-tuning with long short-term memory (LSTM) is done to get the final
prediction. The input data consist of clear sky global horizontal irradiance (GHI) and historical solar
radiation. After forecasting the solar radiation for three years, the corresponding degradation rate
(DR) influenced energy potentials of an a-Si PV system is estimated. The estimated energy is useful
economically for planning and installation of energy systems like microgrids, etc. The method of solar
radiation forecasting and DR influenced energy estimation is compared with the traditional methods
to show the efficiency of the proposed method.

Keywords: auto-encoder; LSTM; deep learning; machine learning; solar radiation forecasting;
PV energy estimation; degradation rate

1. Introduction

Forecasting correct power energy over a span of time is essential for the growth of, and getting
benefits from, photovoltaic (PV) technology. Most important factors are the efficiency with which sunlight
is converted into power and how this relationship changes with passing time. The degradation rate (DR)
is a useful parameter to understand the power decline over a span of time, which plays a key role for PV
technology beneficiaries like power companies, businesses and researchers, etc. DR is important from the
economical point of view, as higher DR results in decreased power generation over time, consequently
decreasing future cash flow [1]. Inaccurate calculation of degradation rates results in increased financial
risk [2]. Degradation mechanisms are also important from a technical point of view, as they lead to failure
of the system [3]. Therefore, finding out the science of degradation through modeling and experiments
will lead to lifetime improvements.

Due to the low costs of production and having smaller coefficients of temperature, thin-film
modules are becoming more popular day by day in the solar power market [4,5]. However, due to
their susceptibility to changes in temperature and spectrums, the efficiency of these thin modules
degrades with the passage of time. Mostly, research is being carried out for power delivery prediction
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using statistical and physical methods without any consideration of the DR impact [6–9]. Only limited
studies are carried out on energy estimation considering the influence of degradation rates [10,11].
Solar radiation is the key parameter in solar generation and DR influenced energy estimation. Using only
historical solar radiation as input, the paper [10] adopted different machine learning methods to
predict solar radiation for three years ahead, and then derived the conclusion that random forest
regression (RFR) brought out the most accurate estimation. However, the said paper lacks a clear
explanation about the method of data management and processing for long-term prediction, which is
very important.

The nature of the solar radiation forecasting problem is the time series. In time series problems,
next time step output is dependent on past time step outputs. Deep learning has shown great success
in dealing with time series problems [12–14]. Specifically, extensions of recurrent neural network,
i.e., long short-term memory unit (LSTM) and gated recurrent unit (GRU) are more suitable for
time series problems, due to their inherent characteristics of learning long-term dependencies [15,16].
Mostly, deep learning model-based forecasting is short-term forecasting ranging from a few hours to
days [17–19]. Multi-time steps ahead solar irradiance forecasting of up to 120 minutes is performed
in [20]. However, DR influenced energy estimation requires solar radiation data over a longer span of
time. Year ahead solar radiation was forecasted using simple LSTM and GRU models [17]. However,
these methods were trained in a supervised manner without optimal feature extraction and did not
estimate the DR influenced energy of PV systems.

Auto-encoders (AEs) are effective in unsupervised feature extraction and dimensionality
reduction [21,22]. In AE, the model is trained to reconstruct the input using a backpropagation
algorithm [23]. AE first encodes the input into low dimensionality representations, and then reconstructs
the input through the decoding process. In this paper, a combination of AE and LSTM, i.e., an AE-LSTM
model is proposed for long-term solar radiation forecasting and PV energy estimation, in order to
utilize the feature extraction ability of AE and the long-term dependency learning ability of LSTM.
Firstly, features are extracted by training an AE model with input data. Then fine-tuning of the trained
encoder part of the AE with the LSTM model is done to forecast solar radiation for the year ahead.
Therefore, the main contributions of this paper are an AE-LSTM based deep learning model for three
years ahead solar radiation forecasting and then corresponding DR influenced energy estimation of
the PV system. Historical solar radiation data as well as clear sky global horizontal irradiance (GHI)
are used as input data. The paper is divided into six sections: Section 2 contains methodology, which
includes data selection and management. Section 3 explains the proposed AE-LSTM deep learning
model. Section 4 gives the experiments and results. A comprehensive discussion is made in Section 5.
Section 6 is the conclusion.

2. Methodology

Figure 1 shows the overall methodology. It can be seen from this figure that the proposed
methodology is divided into three steps. The first step consists of data gathering and preprocessing.
The preprocessing includes filling in of missing data by interpolation techniques [24], selection of
appropriate input features by finding correlations and splitting the data into training and testing sets.
The second step consists of the proposed deep learning model for solar radiation forecasting. In this
step, first the AE model is trained to extract the underlying features in the input data. The extracted AE
features are combined with LSTM layers to form a fully connected predictive model (AE-LSTM). In the
final step, a PV system is designed in the horizon of forecasted solar radiation. Using appropriate
parameters along with the forecasted radiation, DR influenced energy of the designed PV system is
estimated for three years ahead. The following subsections explain the data selection and management
in detail.
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used as input features. In order to estimate the clear sky GHI, different parametric models can be 
found in literature [25–27]. Depending on the availability of parameters, an appropriate parametric 
model can be chosen for the clear sky GHI estimation. Figure 2 shows the Pearson correlation between 
next year’s solar radiation data Y and the input data, which consists of historical solar radiation X 
and clear sky GHI. From this figure, it can be seen that all the inputs have a good correlation with the 
output. Specifically, clear sky GHI has the highest correlation among all the inputs. Similarly, Figure 
3 shows the relationship of clear sky GHI and the actual measured GHI for the year 2018 in Seoul, 
South Korea. From this figure also, it can be seen that these two quantities have very good correlation. 
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2.1. Input Feature Selection

For year-ahead radiation forecasting, historical solar radiation and clear sky GHI data can be used
as input features. In order to estimate the clear sky GHI, different parametric models can be found
in literature [25–27]. Depending on the availability of parameters, an appropriate parametric model
can be chosen for the clear sky GHI estimation. Figure 2 shows the Pearson correlation between next
year’s solar radiation data Y and the input data, which consists of historical solar radiation X and clear
sky GHI. From this figure, it can be seen that all the inputs have a good correlation with the output.
Specifically, clear sky GHI has the highest correlation among all the inputs. Similarly, Figure 3 shows
the relationship of clear sky GHI and the actual measured GHI for the year 2018 in Seoul, South Korea.
From this figure also, it can be seen that these two quantities have very good correlation.
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consists of 11 entries with 10 entries for historical solar radiation of the past ten years and 1 entry for 
the predicting year’s clear sky GHI. Output Y is the target year’s solar radiation to be predicted. In 
order to predict multiple years ahead, the model is trained by using the sliding window as shown in 
Figure 4b. The features are extracted after each year of training. The extracted features and the 
forecasted solar radiation are further used to forecast multiple years ahead. 
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2.2. Data Management Technique

The method of training the deep learning model for one year ahead is shown in Figure 4a.
Input consists of 11 entries with 10 entries for historical solar radiation of the past ten years and 1 entry
for the predicting year’s clear sky GHI. Output Y is the target year’s solar radiation to be predicted.
In order to predict multiple years ahead, the model is trained by using the sliding window as shown
in Figure 4b. The features are extracted after each year of training. The extracted features and the
forecasted solar radiation are further used to forecast multiple years ahead.
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3. Deep Learning Model

3.1. Auto-Encoder (AE)

As mentioned above, AEs are unsupervised neural networks that use a backpropagation mechanism
to obtain useful features and represent the information in a compressed manner. In order to learn useful
features, the input is set as the target value and the AE reconstructs the input in the best possible way
through encoding-decoding process. A simple AE model is shown in Figure 5, which consists of an
input layer, hidden layers representing the compressed representation of input data, and a final output
layer that reconstructs the input. Equation (1) shows the encoding process where input is changed into
compressed representation, while Equation (2) shows the decoding process where input is reconstructed
from the compressed representation:
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h(t) = f(wX(t) + b), (1)

X′(t) = f′(w′h(t) + b′), (2)

where h represents the encoded representation or the code of input X(t), X′(t) is decoded or reconstructed
input. w and w′ are the weights of encoder and decoder, respectively. Similarly, b and b′ are the
corresponding biases of encoder and decoder. f and f′ are the activation functions. AEs are trained by
minimizing reconstruction error or the loss, which is given in Equation (3):

L(X, X′) =
∣∣∣∣∣∣X−X′

∣∣∣∣∣∣2= ∣∣∣∣∣∣X− f′(W′(f(Wx + b)) + b′)
∣∣∣∣∣∣2 (3)

To prevent the AEs from learning identity functions, and simultaneously to learn rich representations
and improve their ability to capture important information, sparsity [28] has been added to the AE in
the proposed model. A sparse AE training criterion involves a sparsity penalty Ω(h) on the code h,
i.e., L(X,X′) + Ω(h). In order to achieve the sparsity in Keras [29], activity regularizer term L1/L2 is
applied on the hidden layers, scaled by a certain parameter λ [30]. In this case the loss function will be:

L(X, X′) = L(X, X′) + λ
∣∣∣∣∑i

hi

∣∣∣∣ (4)

3.2. Proposed AE-LSTM Model

To train an AE-LSTM model, first the AE is trained by reconstructing the input as shown in
Figure 6. In training, this AE model will learn important features from the input data depending on
different weathers or seasons. The AE model consists of an input layer, hidden encoder/decoder layers,
and an output layer. The input layer consists of 11 nodes with 10 entries of historical solar radiation
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data and 1 entry for clear sky GHI. The optimal hidden layers consist of two encoder layers and two
decoder layers. The optimal number of hidden layers is selected after running the model several times
by varying the number of hidden layers as shown in Figure 7. In this Figure, root mean square error
(RMSE) is taken as an error criterion. The final layer is the output layer that reconstructs the input.
The actual input and the reconstructed input for a year is shown in Figure 8, where Figure 8a is the
actual input given to the model, and Figure 8b is the reconstructed input by the AE model. ‘Tanh’ is
used as the activation function in the hidden layers, while the linear activation function is used in the
output layer. The optimizer used in the AE model is the Adam optimizer. Dropout from Keras API is
added in the hidden layers of the AE model to avoid overfitting during training. Activity regularization
is used to add sparsity. The optimal parameter settings for the training of AE model is given in Table 1.
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Table 1. Optimal parameter settings to train the AE model.

Parameter Values

Adam optimizer (learning rate) 0.001
Batch size 16

Epochs 150
Activity regularizer (l1) 0.0001

Dropout rate 0.2

Once the AE is trained, the encoder is cut at the bottleneck and attached with an LSTM model to
form a fully connected predictive model as shown in Figure 9. The final predictive model consists
of the trained encoder part of AE, three LSTM layers with 32 LSTM units in each layer, and a final
dense layer with a single node for prediction. Each LSTM unit consists of an internal memory with
three gates, i.e., input gate, output gate and forget gate as shown in Figure 10. The input gate decides
how much current information needs to be passed, the forget gate decides the information needing
to be forgotten from the previous state, while the output gate decides the internal state information
that needs to be passed [17]. The internal memory, also called the cell state, remembers important
information. Equations for LSTM gates and internal memory are given in [17]. With these gates and
memory, LSTM can learn important initial information and carry it over long-distance, hence, capturing
long-term dependencies.

The fully connected AE-LSTM model is trained using the backpropagation algorithm. Fine-tuning
of this model is done by tuning with optimal parameters. This combination of AE and LSTM will utilize
the properties of both AE and LSTM and produce a combined result, hence, improving the efficiency.

Energies 2020, 13, 4373 7 of 14 

 

 
Figure 8. AE training. (a) Actual input and (b) reconstructed input. 

Table 1. Optimal parameter settings to train the AE model 

Parameter Values 
Adam optimizer (learning rate) 0.001 

Batch size 16 
Epochs 150 

Activity regularizer (l1) 0.0001 
Dropout rate 0.2 

Once the AE is trained, the encoder is cut at the bottleneck and attached with an LSTM model to 
form a fully connected predictive model as shown in Figure 9. The final predictive model consists of 
the trained encoder part of AE, three LSTM layers with 32 LSTM units in each layer, and a final dense 
layer with a single node for prediction. Each LSTM unit consists of an internal memory with three 
gates, i.e., input gate, output gate and forget gate as shown in Figure 10. The input gate decides how 
much current information needs to be passed, the forget gate decides the information needing to be 
forgotten from the previous state, while the output gate decides the internal state information that 
needs to be passed [17]. The internal memory, also called the cell state, remembers important 
information. Equations for LSTM gates and internal memory are given in [17]. With these gates and 
memory, LSTM can learn important initial information and carry it over long-distance, hence, 
capturing long-term dependencies. 

The fully connected AE-LSTM model is trained using the backpropagation algorithm. Fine-tuning 
of this model is done by tuning with optimal parameters. This combination of AE and LSTM will utilize 
the properties of both AE and LSTM and produce a combined result, hence, improving the efficiency. 

 
Figure 9. Fully connected AE-LSTM predictive model. Figure 9. Fully connected AE-LSTM predictive model.Energies 2020, 13, 4373 8 of 14 

 

 
Figure 10. An LSTM unit. Reproduced from [17], MDPI: 2019. 

4. Experiments and Results 

Real-time daily solar radiation data of the Seoul region, South Korea, were obtained from the 
Korea Meteorological Administration (KMA) [31]. The proposed AE-LSTM deep learning model was 
compared with the state-of-the-art deep learning models, i.e., LSTM and GRU, and machine learning 
model, i.e., RFR. LSTM and GRU models consist of 4 hidden layers with 32 units in each layer [17]. 
All the models are implemented in Jupyter Notebook (Version 6.0.0, Anaconda, USA) environment 
using Python (Version 3.7.3, Anaconda, USA) with Keras and TensorFlow at the backend. The models 
were trained in a system with AMD Ryzen Threadripper 2950X and 64 GB RAM, and only CPU was 
used for model training and prediction. The error criteria used in this paper are root mean square 
error (RMSE), mean absolute error (MAE) and R2 score. The models were run for 50 epochs with 16 
batch size. Adam optimizer with learning rate of 0.001 was used to train the deep learning models. 
Each model was run 10 times to get the mean value of RMSE, MAE and R2 score. The equations to 
calculate RMSE, MAE and R2 score are given below: 

RMSE(x’,x) = . ∑ 	–	 	 (5) 

MAE(x’,x) = . ∑ | 	 | (6) 

R2 (x’,x)= 1 - ∑ 	∑ 	 ̅  (7) 

Where x’ is the predicted value, x is the actual value, and ̅ is the mean of actual value. The units of 
RMSE and MAE are in MJ/m2. 

4.1. Solar Radiation Forecasting 

Solar radiation data from 2000 until 2015 and corresponding clear sky GHI were used to predict 
the solar radiation data of 2016. Similarly, solar radiation data from 2001 to 2016 with corresponding 
clear sky GHI were used to predict 2017 solar radiation. In the same way, 2018 data was predicted 
with the solar radiation data from 2002 to 2017 and corresponding clear sky GHI. Table 2 shows the 
comparison of RMSE, MAE and R2 score of each model. Similarly, Table 3 compares total radiation 
for a year predicted by each model with the actual value. 
  

Figure 10. An LSTM unit. Reproduced from [17], MDPI: 2019.



Energies 2020, 13, 4373 8 of 14

4. Experiments and Results

Real-time daily solar radiation data of the Seoul region, South Korea, were obtained from the
Korea Meteorological Administration (KMA) [31]. The proposed AE-LSTM deep learning model was
compared with the state-of-the-art deep learning models, i.e., LSTM and GRU, and machine learning
model, i.e., RFR. LSTM and GRU models consist of 4 hidden layers with 32 units in each layer [17].
All the models are implemented in Jupyter Notebook (Version 6.0.0, Anaconda, USA) environment
using Python (Version 3.7.3, Anaconda, USA) with Keras and TensorFlow at the backend. The models
were trained in a system with AMD Ryzen Threadripper 2950X and 64 GB RAM, and only CPU was
used for model training and prediction. The error criteria used in this paper are root mean square error
(RMSE), mean absolute error (MAE) and R2 score. The models were run for 50 epochs with 16 batch size.
Adam optimizer with learning rate of 0.001 was used to train the deep learning models. Each model
was run 10 times to get the mean value of RMSE, MAE and R2 score. The equations to calculate RMSE,
MAE and R2 score are given below:

RMSE(x′, x) =

√
1
N

.
∑N

n=1
(x′n–xn)

2 (5)

MAE(x′, x) =
1
N

.
∑N

n=1

∣∣∣x′n − xn
∣∣∣ (6)

R2(x′, x) = 1−

∑N
n=1(x

′
n − xn)

2∑N
n=1(xn − x)2 (7)

where x′ is the predicted value, x is the actual value, and x is the mean of actual value. The units of
RMSE and MAE are in MJ/m2.

4.1. Solar Radiation Forecasting

Solar radiation data from 2000 until 2015 and corresponding clear sky GHI were used to predict
the solar radiation data of 2016. Similarly, solar radiation data from 2001 to 2016 with corresponding
clear sky GHI were used to predict 2017 solar radiation. In the same way, 2018 data was predicted
with the solar radiation data from 2002 to 2017 and corresponding clear sky GHI. Table 2 shows the
comparison of RMSE, MAE and R2 score of each model. Similarly, Table 3 compares total radiation for
a year predicted by each model with the actual value.

Table 2. RMSE, MAE and R2 score values of solar radiation for different models.

RMSE Values

Year RFR LSTM GRU AE-LSTM
2018 6.5817 6.3750 6.3313 6.2191
2017 5.6705 5.3696 5.3315 5.3060
2016 5.1201 4.7768 4.8233 4.7577

MAE values

Year RFR LSTM GRU AE-LSTM
2016 3.9595 3.7845 3.8760 3.7358
2017 4.5513 4.2836 4.3134 4.2809
2018 5.0418 4.9738 5.0329 4.9521

R2 Score values

Year RFR LSTM GRU AE-LSTM
2016 0.2767 0.3723 0.3550 0.3749
2017 0.3472 0.4349 0.4283 0.4381
2018 0.2585 0.2779 0.2672 0.3034
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Table 3. Total yearly radiation for different models.

Year Actual
(MJ/m2)

RFR
(MJ/m2)

GRU
(MJ/m2)

LSTM
(MJ/m2)

AE-LSTM
(MJ/m2)

2018 5078.36 4779.46 4791.15 4869.95 4881.474
2017 4577.29 4326.26 4430.23 4443.65 4527.382
2016 4520.88 4377.96 4450.80 4422.67 4589.863

Figure 11 shows the comparison of the daily predicted solar radiation by the AE-LSTM model
and the actual values for the year 2018. Similarly, Figure 12 shows the comparison of the monthly
prediction of different models with the actual values for the year 2018. Monthly data was obtained by
summing the data of each month.
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The forecasted values of solar radiation data are further used to estimate the energy potentials of
an a-Si PV system by using the following equation [10]:

E = A * I * ηa−Si * PR (8)
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Here, A is the area of the PV modules exposed to sunlight, which is equal to 11 m2; I is the
predicted solar radiation in MJ/ m2; ηa-Si is the conversion efficiency of the a-Si PV module, which is
taken as 12%. PR is the performance ratio that represents the quality of the PV system. For calculating
the PR, a hypothetical power plant with a-Si PV is simulated in PVsyst [32] by considering all the
weather and installation influences. In order to obtain the energy estimates in a more realistic way,
the DR of a-Si PV plant is considered. For the first year, i.e., 2016, the PR would be the same as the
value obtained from the PVsyst simulation, which ranges from 79% to 82%. For the coming years,
the PR is reduced by the DR. The DR of the a-Si system is evaluated applying linear least square fitting
method for the obtained PR as follows:

Y = m ∗ X + c, (9)

where m is the slope of the trend line, and c is the intercept of the trend line obtained for the performance
ratio (PR) [33]. Figure 13 shows the PR for the years 2016, 2017 and 2018.

After obtaining the DR influenced PR, the PV energy for the years 2016, 2017 and 2018 can be
obtained as shown in Figures 14–16. The estimated values were compared with the actual values.
Actual values represent the estimated energy of a particular year considering the real solar radiation of
the corresponding year.
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5. Discussion

Table 2 shows the comparison of solar radiation forecasting of the different models based on
RMSE, MAE and R2 score. From this table it can be seen that the state-of-the-art deep learning models,
i.e., LSTM and GRU are better than the machine learning model RFR. This is due to the fact that
these deep learning models can learn long-term dependencies and hence, are suitable for time series
forecasting. However, AE-LSTM is even better than these deep learning models, because AE-LSTM
combines the benefits of both AE and LSTM. This means, it utilizes the feature extraction property of AE
and the long-term dependency learning ability of LSTM. As is obvious from the results, this combination
of both properties is suitable for time series forecasting. Similarly, Table 3 shows the comparison of total
yearly predicted solar radiation by each model with the actual values. It can be seen from this table also
that the AE-LSTM prediction is closer to the actual values as compared to the other models. Figure 11
gives graphical comparison of daily predicted radiation with the actual values. Similarly, Figure 12
graphically compares monthly actual values with the different models’ predicted data. From all these
tables and figures, it can be concluded that the AE-LSTM is a better predictive model for long-term solar
radiation forecasting as compared to the traditional state-of-the-art deep learning and machine learning
methods. Since AE-LSTM is better than the other models for solar radiation forecasting, therefore,
by using Equation (8), the DR influenced energy estimation of a-Si PV system from AE-LSTM predicted
data is comparatively more accurate. This fact can be seen from Figures 14–16, where the estimated
DR influenced energy from AE-LSTM is closer to the actual values as compared to the other models.
The proposed method can be useful for long-term planning and installation of PV systems from the
economic point of view, especially in microgrids.
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6. Conclusions

Thin-film modules used for PVs suffer from degradation as they are susceptible to spectral and
temperature effects. Hence, a DR influenced energy estimation is required for an accurate power
delivery prediction. Solar radiation is the key parameter for solar energy estimation. Solar radiation
is a time series problem. Traditionally, machine learning methods, specifically, RFR is used as the
most appropriate technique for solar radiation forecasting by using only historical solar radiation data.
However, these methods are not very efficient in solving time series problems, as they cannot efficiently
capture long-term dependencies. Traditionally, the methodology to deal with data in long-term
radiation forecasting is not clearly explained.

Deep learning models, specifically the extension of the recurrent neural network, i.e., LSTM,
have shown great success in dealing with time series data due to its characteristic of capturing
long-term dependencies. On the other hand, AEs are good at feature extraction and representation
learning. Therefore, a combination of AE and LSTM, i.e., AE-LSTM is proposed in this paper to
obtain the combined benefits of both. In this paper, solar radiation forecasting of three years ahead is
performed using the AE-LSTM model, and then the corresponding DR influenced energy estimation of
PV panels is carried out. The results of AE-LSTM are compared with the state-of-the-art deep learning
models, i.e., LSTM and GRUs, and the machine learning model, i.e., RFR. The proposed AE-LSTM
model outperformed the other methods in terms of accuracy, proving its efficiency for long-term solar
radiation forecasting and PV energy estimation.
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