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Abstract: Energy baseline is an important method for measuring the energy-saving benefits of
chiller system, and the benefits can be calculated by comparing prediction models and actual results.
Currently, machine learning is often adopted as a prediction model for energy baselines. Common
models include regression, ensemble learning, and deep learning models. In this study, we first
reviewed several machine learning algorithms, which were used to establish prediction models. Then,
the concept of clustering to preprocess chiller data was adopted. Data mining, K-means clustering,
and gap statistic were used to successfully identify the critical variables to cluster chiller modes.
Applying these key variables effectively enhanced the quality of the chiller data, and combining the
clustering results and the machine learning model effectively improved the prediction accuracy of the
model and the reliability of the energy baselines.

Keywords: energy baselines; machine learning; clustering

1. Introduction

With the popularity of sustainable development concepts, an increasing number of enterprises are
adopting energy conservation and carbon reduction as a significant aspect of corporate development.
In most current enterprises, air-conditioning systems are the most energy-intensive equipment.
Subsequently, chiller system are the most energy-intensive subsystems in air-conditioning systems.
Therefore, improving the energy efficiency of chiller system can significantly reduce the energy
consumption of entire systems.

Once the energy efficiency of chiller system is improved, our next focus is the effectiveness
and benefits of the improvement methods. In this stage, accurately assessing the energy efficiency
of improvement methods becomes a critical topic. Currently, the most widely used method is the
establishment of energy baselines. An energy baseline refers to the collection of data within a
time period before equipment improvement. The collected data can then be used to establish the
mathematical equations that can describe the operation modes of equipment. This process is known as
baseline modeling. Then, data are collected within a time period after equipment improvement to
determine the prediction values of the post-improvement data in the baseline model. Finally, energy
efficiency can be calculated by comparing the prediction values and post-improvement data.

Because energy baselines are an essential approach for assessing the improvement performance
of chiller system, many studies have focused on developing chiller prediction models. The models
can be predominantly classified into semi-empirical models and empirical models. Semi-empirical
models refer to the use of equations derived from relevant laws of physics to describe performance of
chiller system. For example, Lee and Reddy developed regression models to predict the coefficient of

Energies 2020, 13, 4368; doi:10.3390/en13174368 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13174368
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/17/4368?type=check_update&version=2


Energies 2020, 13, 4368 2 of 20

performance (COP) of screw chillers and centrifugal chillers [1,2]. Empirical models are data-oriented
models. Equations that describe chiller performance can be established without having to collected
chiller-related system data. For example, Adnan et al. combined artificial neural network (ANN)
models of different structures and used three variables, specifically refrigeration ton, inlet temperature,
and outlet temperature, to create a chiller prediction model [3]. Kim et al. used different combinations
of input variables to identify the ANN model with the highest prediction accuracy [4]. Yu et al. used
random forest model to predict the operating parameters that maximize chiller COP under different
working conditions [5,6].

The development of prediction models can effectively enhance the accuracy of energy baseline
predictions. Nonetheless, chiller system are intricate pieces of equipment. Many operating parameters
must be collected, and operating modes may vary depending on the setting. Appropriately
preprocessing data can facilitate overall analysis efficiency. Clustering is an excellent data preprocessing
approach. It functions by calculating the relationships between data points and identifying hidden
data structures. Malinao et al. applied the X-means clustering method to cluster chiller system and
identify different operating modes [7]. Habib et al. used a two-layer K-means algorithm to cluster
chiller system and identify and remove outliers to enhance energy analysis efficiency [8]. Habib et al.
combined K-means, BoWR, and hierarchical clustering to preprocess chiller data. The researchers
proposed a model to automatically detect the energy systems of different constructs. The model can be
used for fault detection and diagnosis [9].

The operating modes in different conditions can be identified by clustering chiller data. This process
enhances data quality and usability, thereby improving analysis efficiency. However, existing studies
mostly used clustering for fault detection and diagnosis and rarely used preprocessed data in the
development of prediction models. Therefore, using the COP of chiller system as the target of research,
we applied a clustering method to preprocess chiller data and identify the operating modes of chiller
system in different settings. In addition, a machine learning method was used to create prediction
models for various operating modes.

The contribution of this paper is the proposal of a methodology for improving the prediction
accuracy of chiller system. The chiller system examined in this study was a 230RT air-conditioning
chiller equipped with a variable-frequency, centrifugal compressor. The methodology first selected
K-means as clustering method based on characteristics of data. Then, we used data mining and
statistical techniques to identify the critical variables for clustering method. After successfully
identifying the critical variables, we applied K-means clustering and gap statistic to cluster chiller
modes. For finding the best prediction accuracy of chiller system, the optimal number of clusters was
calibrated, if needed. Finally, we combined the clustering results and machine learning models to
establish a prediction model of chiller system. The simulation showed that the error rate of prediction
model was successfully reduced and the prediction accuracy of chiller energy baselines without
excessively increasing computational cost was enhanced.

The structure of this paper is as follows. In Section 2, we introduce commonly used chiller-related
prediction models, such as regression models, ANN models, and random forest models. Extreme
gradient boosting model is compared, which has gained considerable popularity in recent data analysis
competitions. In Section 3, data, modeling, and model assessment criteria are discussed. In Section 4,
a prediction simulation on the data is performed and we discuss the results. In Section 5, a conclusion
to this study is provided.

2. Review of Machine Learning Algorithm

In this section, we review several machine learning algorithms which were used to establish
prediction models of chiller system or related work. Here, we briefly review the final mathematical
form of each model, and a detailed formulation is described in Appendix A.
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2.1. Regression Model

2.1.1. Lee Simplified Model

Lee combined law of thermodynamics and heat exchanger to develop a prediction model of screw
chillers [1]. Equation (1) describes the prediction model of coefficient of performance (COP):

1
cop

= −1 +
Tci
Twi

+
1

Qe

[
−A0 + A1Tci −A2

Tci
Twi

]
(1)

where A0, A1, and A2 are coefficients of model and can be derived by regression analysis
(see Appendix A).

2.1.2. Multivariate Polynomial Regression Model

Reddy and Andersen used three variables, specifically cooling capacity, cooling water inlet
temperature, chilled water outlet temperature, and their interaction, to create a multivariate regression
model of centrifugal chillers [2]. Equation (2) describes the prediction model:

COP = β0 + β1Qe + β2Twi + β3Tci + β4Qe
2 + β5Twi

2 + β6Tci
2 + β7QeTwi + β8QeTci + β9TwiTci (2)

2.2. Artificial Neural Networks

A basic ANN framework is illustrated in Figure 1. Blue circles mark the neurons. They are
responsible for recording values. The arrows illustrate the neural connections and the direction of data
transfer. The framework can be broadly categorized into an input layer, hidden layer, and output layer.
The hidden layer is responsible for receiving and converting data from the input layer and transferring
the converted data to the output layer to derive a solution. The structure of the hidden layer and the
data conversion method influence the quality of the overall ANN.
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Equation (3) describes the relationship of inputs xi and the jth node in the hidden layer:

net j = σ

 n∑
i=1

wi jxi + b j

 (3)
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where wi j is connection weight, b j is bias; i is the number of input nodes, and j is the number of
hidden nodes. σ is a activation function that transfer the inputs to the hidden layer by way of
nonlinear transformation. The widely used activation function are sigmoid function, relu function,
and softmax function.

Equation (4) describes the relationship of jth node in the hidden layer and output ŷk:

ŷk = σ

 ∑
j

w jknet j + bk

 (4)

ANN models can derive the optimal solution for parameters (w, b) by differentiating the loss
function, whereby the loss function is expressed as L = loss (y, ŷ). If the hidden layer comprises more
than one sublayer, it may be challenging to derive the optimal solutions for the parameters of the
various layers using common differentiation methods. In this instance, the chain rules in calculus can
be applied to derive the solutions.

2.3. Ensemble Learning

2.3.1. Random Forest

Random forest is a classic ensemble learning algorithm. Predictions are carried out by combining
the results of multiple classifications and regression tree (CART) models. When developing a CART in
a random forest, the data and the variables are repeatedly sampled to increase the differences between
models and prevent the overfitting problem common to CART models. The form of random forest can
be written as:

ŷi =
M∑

m=1

n∑
i=1

K∑
k=1

CkI(xi ∈ Rk) (5)

where Rk is the kth output space, Ck is average value of Rk, and m is the number of CART in the random
forest model.

2.3.2. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a popular method used in data analysis competitions
recently. It is a strong ensemble learning algorithm improved from gradient boosting decision
tree algorithm (GBDT) [10]. In recent years, XGBoost have been actively applied to energy related
issues [11–14].

XGBoost combines the results of CART models one by one to establish the prediction model,
and uses residual as prediction target. For a given data set with n examples and d features D ={
(xi, yi)

∣∣∣xi ∈ Rd, yi ∈ R, i = 1, . . . , n
}
, Equation (6) describes a tree ensemble model using K additive

functions to predict the output:

ŷi =
K∑

k=1

wq(xi)
(6)

where wq(xi)
is the CART model. To learn the optimal parameters used in prediction model, Equation

(7) describes the regularized objective function Obj:

Obj =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( fk) (7)
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where l is a differentiable convex loss function and Ω is the complexity of the model. For a fixed
structure q(xi), the optimal parameter w∗j and corresponding value Obj∗ of output space j can be
calculated by

w∗j = −
G j

H j + λ
(8)

Obj∗ = −
1
2

T∑
j=1

G j
2

H j + λ
+ γT (9)

where G j and H j represents the sum of first and second-order gradient statistics in output space j.

2.4. Clustering

Clustering is an unsupervised machine learning method. The purpose of clustering is to
analyze the distal relationships of data points and identify underlying data structures, thereby
facilitating users in carrying out advanced data analysis. Depending on the nature of the data,
clustering approaches can be based on data prototype, class, density, or graphics. Table 1 summarized
common clustering algorithm and their applicability from popular machine learning web, scikit-learn
(https://scikit-learn.org/stable/modules/clustering.html). This subsection introduces the K-means
clustering and gap statistic used in this research.

Table 1. Summary of clustering algorithm.

Method Name Scalability Use Case Geometry

K-means very large sample,
medium clusters

1. general-purpose
2. even cluster size

3. flat geometry
4. not too many clusters

distances between points

Spectral clustering medium sample,
small clusters

1. few clusters
2. even cluster size

3. non-flat geometry
graph distance

Ward hierarchical
clustering

large sample,
large clusters

1. many clusters,
2. possibly connectivity

constraints
distances between points

DBSCAN very large sample,
medium clusters

1. non-flat geometry
2. uneven cluster sizes

distances between
nearest points

Birch large sample
large clusters

1. large dataset
2. outlier removal
3. data reduction.

Euclidean distance
between points

Mean-shift not scalable with
samples

1. many clusters,
2. uneven cluster size
3. non-flat geometry

distances between points

OPTICS not scalable

1. non-flat geometry
2. uneven cluster size

3. variable cluster
density

distances between points

HDBSCAN very large sample,
medium clusters

1. non-flat geometry
2. uneven cluster sizes

distances between
nearest points

2.4.1. K-Means

K-means is a clustering method with relatively simple computational procedures [15]. Although
K-means fails to obtain good results in some cases, such as nonspherical, different variance, and
different density, it is still popular for its simplicity to implement, known limitations, and excellent

https://scikit-learn.org/stable/modules/clustering.html
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fine-tuning capabilities [16]. Several researchers have proposed different methods to solve different
problems [17,18].

K-means can be performed in three steps. First, a k number of cluster centers are randomly
established. Then, the Euclidean distance between each sample and the k cluster center is determined,
and the sample point is classified into its nearest cluster. Finally, the centers of each cluster are updated
using the detailed data until all sample groups reach the shortest distance to the core of their clusters.
A detailed formulation is described in Appendix A.

2.4.2. Gap Statistic

The idea of the gap statistic is to compare the total within intracluster variation Wc with its
expectation under an appropriate null reference distribution of the data [19]. The estimate of the
optimal k is the value for which the total within intracluster variation falls the farthest below this
reference curve. Hence, the optimal k is the smallest value k, satisfied in Expression (10):

Gap(k) ≥ Gap(k + 1) − sk+1 (10)

Gap(k) and sk+1 described in Equations (11) and (12).

Gap(k) =
1
B

B∑
b=1

log
(
W∗c,b

)
− log(Wc) (11)

sk =

√
1 + B

B

√√√√
1
B

B∑
b=1

(log (W∗c,b) −
1
B

B∑
b=1

log (W∗c,b))

2

(12)

where B is the number of sampling.

3. Methodology

3.1. Data Description and Statistic

The data examined in this study were from a chiller monitoring system in an undisclosed research
center. The system was a 230RT air-conditioning chiller equipped with a variable-frequency, centrifugal
compressor. The operating data between April 2018 and May 2019 were collected. Each data point
represents one minute. After excluding the idle and maintenance times, a total of 316,749 data points
and 28 variables were retained. Using a ratio of 8:2, 253,399 data points were used for training,
and 63,350 data points were used for testing. The target of research was the COP of chiller system.
The descriptive statistics of the training data and the key variables are illustrated in Figure 2 and
tabulated in Table 2.

Table 2. Descriptive statistics of the key variables of chiller system.

Variables Mean Standard Deviation Maximum Minimum

COP 4.411 0.786 12.329 0.424
Power (kW) 38.139 6.045 127.224 30.001

Load rate (%) 20.76 4.853 62.358 1.825
Flow (GPM) 558.238 89.15 738.068 87.912
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The top left image in Figure 2 is a trend chart for COP. The chart shows that the COP values
were predominantly distributed between 2 and 6. The top right figure is a trend chart for power
consumption. The chart shows that power consumption was significantly higher in specific periods.
The full distance of the data approximated 100. The lower left figure is a trend chart for load rate.
The distribution was similar to COP. The lower right figure is a trend chart for chilled water flow.

Then, calculate the maximal information coefficient (MIC) for COP. MIC provides a measure of the
strength of the linear or nonlinear association between two variables [20]. To ensure a fair comparison,
MIC normalized the values and obtained modified values between zero and one. Table 3 tabulated
some variables with higher correlation coefficient.

Table 3. Maximal information coefficient of performance (COP).

Variables kW/RT
Exhaust

Temperature
(◦C)

Load
Supply Cooling Water
Temperature Different

(◦C)

Inhale
Temperature

(◦C)

Chilled
Water Flow

(GPM)

Maximal
information
coefficient

0.9634 0.5342 0.4907 0.3255 0.3130 0.2714

Subsequently, a scatter diagram was plotted to observe the distribution relationships between
each variable. Scatter relationships of interest are plotted in Figures 3–5. Figure 3 is a scatter diagram
of COP and kW/RT. COP and kW/RT presented a reciprocal relationship. The anticipated results were
a curve presenting a convex to origin. Instead, five curves and numerous sporadic scatter points were
plotted in Figure 3. Therefore, we speculated that other variables influencing the scattering of COP
and kW/RT were present.
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Figure 3. Scatter diagram of the kW/RT and COP.

Figure 4 is a scatter diagram of the condenser flow trend and COP. Figure 4 shows that the data
were distributed into six distinct clusters in an apparent manner. Most of the condenser flow trend
values ranged between 175 and 200, and the degree of COP dispersion increased concurrently with the
condenser flow trend. Figure 5 is a scatter diagram of the chilled water flow and COP. The degree of
COP dispersion increased concurrently with the chilled water flow. A block distribution of data points
could be vaguely observed.
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3.2. Model

This subsection describes the integration of clustering and machine learning. First, a suitable
clustering approach was selected based on the data characteristics. In order to obtain a robust clustering
effect, we also recommend using other clustering methods as validation. The necessity of estimating
the optimal clustering value k was determined based on the approach. Estimation methods primarily
included the elbow method, silhouette coefficient, and gap statistic. Third, the clustering method
was employed to cluster the trained data, and the necessity of adjusting the clustering value k was
determined by observing the clustering trends. Fourth, the clusters were then incorporated into a
chiller prediction model to optimize the parameters and derive the final prediction model. Finally,
the results of the different prediction models were compared based on the test data and the model
assessment standards. Figure 6 summary the flow chart of establishing prediction model.
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Figure 6. Flowchart of establishing prediction model. The procedure first selected a suitable clustering
method according to the training data. Then, we determined the best number of cluster k, if the
clustering method was needed. After obtaining the result of clustering, we drew and observed the
scatterplot of clustering to determine whether to adjust k or not. Finally, we used the machine learning
algorithm to train each cluster to obtain the prediction models, and optimized these models to obtain
the final model.

3.3. Evaluation Metrics

To evaluate the performance of the prediction models, three different metrics were used: The MSE
(mean square error; Equation (13)), the CVRMSE (coefficient of variation of root-mean squared error;
Equation (14)) and the MAPE (mean absolute percentage error; Equation (15)).

MSE =

∑N
i=1(yi − ŷi)

2

N
(13)

CVRMSE =

√∑N
i=1(yi−ŷi)

2

N
1
N

∑N
i=1 yi

∗ 100 (14)

MAPE =
1
N

N∑
i=1

∣∣∣yi − ŷi
∣∣∣

yi
(15)

where ŷi is the predicted value, yi is the actual value, and N is the total number of data.
MSE intuitively represent the error of predicted value and actual values. CVRMSE gives an

indication of the model’s ability to predict the overall load shape that is reflected in the data. MAPE
provides an overall assessment of the general percent error [21]. In addition to these three metrics, we
also took computation speed into account.

4. Discussion

In this chapter, we elucidate whether integrating clustering and machine learning improved the
model’s predictive accuracy of energy baselines. The aforementioned machine learning model and
chiller data were used to train and validate the prediction model. The target of validation was chiller
COP, and the variables used in this research were the variables with high MIC values. The simulation
environment was Anaconda, the popular data science platform, and the machine learning models were
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package from scikit-learn (https://scikit-learn.org/stable/preface.html). The assessment results of the
test data are tabulated in Table 4.

Table 4. Evaluation metrics of predict model for COP.

Model MSE CVRMSE MAPE Time (s)

Linear regression 0.0341 0.0456 0.0351 0.24
Lee simplified model 0.5057 0.1758 0.1608 0.44

Multivariate polynomial regression 0.4263 0.1615 0.1467 0.29
ANN 0.013 0.0282 0.0205 38.6

Random forest 0.003347 0.0143 0.0069 54.6
XGBoost 0.003326 0.0143 0.0075 19.2

In Table 4, the four evaluation metrics, MSE, CVRMSE, MAPE, and Time(s), are calculated.
The results indicate that ensemble learning model, random forest, and XGBoost had the better
prediction error. The three-error metric of the XGBoost model and random forest model were relatively
similar, and the computation speed of XGBoost model was faster than random forest model. Although
the evaluation metrics of the three regression models were acceptable, they were less favorable in terms
of performance compared to the ensemble learning model, only outperforming the ensemble learning
model in computation time. The performance of ANN model was between the regression models and
ensemble learning. Then, we assessed whether integrating clustering and machine learning improved
the accuracy of the prediction models.

According to the Figure 4, the data were distributed into six distinct clusters in an apparent
manner. Although the data seemed a bit uneven, they were well separated from each other. So, we
tried to use K-means as the clustering method. Gap statistic is the ideal method for calculating the
clustering value k. To validate the choice, we also tried to run and compare different clustering methods.
The outcome is presented in Appendix B. From the results, K-means was a great choice in this research.

K-means clustering and gap statistic were performed on the 28 variables of the chiller data.
The clustering results were then consolidated onto a graph. Based on the calculation results, the
condenser flow trend was the most suitable variable of the 28 variables for clustering. Figure 7 is
a scatter diagram of the condenser flow trend and COP after clustering. The diagram shows that
K-means distributed the data into ten clusters.
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Based on the aforementioned two points, we validated that the condenser flow trend was a suitable
variable for clustering chiller COP data.Energies 2020, 13, x FOR PEER REVIEW 12 of 20 
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was incorporated into the prediction models, and the individual test error and overall test error of 10 
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Figure 9 shows the outcome of gap statistic. The x-coordinate is the number of cluster k, and the
y-coordinate is the gap value Gap(k). The optimal value for clustering is the smallest value k satisfied
Expression (10). Here, the optimal value for clustering was k = 10. Subsequently, the clustered data
was incorporated into the prediction models, and the individual test error and overall test error of
10 clusters were calculated. The results were presented as sum of squares (SSE) and MSE, where SSE
was the value of MSE without average. The ideal results and post-integration performance of the
different prediction models are tabulated in Tables 5 and 6.

Solely examining the overall error of the models, the performance of the models was similar for
the clustered data and the unclustered data. A closer observation of the performance of individual
clusters revealed that the models performed better in 7 of the 10 clusters compared to the unclustered
data, suggesting that poor model performance was a direct result of a few individual clusters. We
performed an in-depth review into the clustering results to explain this phenomenon and found that
Clusters 1, 4, 8, 9, and 10 were the aforementioned larger data clusters with values ranging between 175
and 200. The cluster boundaries of these clusters were less prominent compared to the other clusters.
We speculate that the clustering approach adopted in this study was less capable of processing the
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data volume, resulting in the clustering results not fully reflecting the data modes. In response, we
attempted to calibrate the clusters to resolve this issue.
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Table 5. Evaluation metrics of predict model for COP after clustering of each group.

Group Group 1 Group 2 Group 3 Group 4 Group 5

SSE 19.0886 0.17391 0.0608 140.049 0.13358

MSE 0.00201 0.00295 0.00011 0.00305 0.0014

Group Group 6 Group 7 Group 8 Group 9 Group 10

SSE 0.0521 1.609 293.0232 0.1844 14.4399

MSE 0.00084 0.04597 0.0673 0.00121 0.00536

Table 6. Evaluation metrics of predict model for COP after clustering.

Evaluation Metrics Total MSE Total CVRMSE Total MAPE

Value 0.00707 0.01906 0.00904

Two calibration methods were adopted. The first method involved independently clustering the
five sets of data to eliminate the effects of the other data. The second method was grouping the data in
the five clusters without clear boundaries into one cluster for analysis. The assessment results of the
two calibration methods are tabulated in Table 7.

Table 7. Evaluation metrics of predict model for COP calibrated.

Method 1 Method 2

Total MSE 0.003386 0.002616
Total CVRMSE 0.014329 0.012591

Total MAPE 0.006657 0.006075

The table shows that the calibrated results produced using the first method were similar to the
initial clustering results. In contrast, the calibrated results produced using the second method were
better than the original clustering results, suggesting that integrating clustering and machine learning
can improve model predictions after appropriate calibration.

The percentages of improvement between the results of this study and those of the original
prediction models are tabulated in Table 8. The target of comparison was the XGB model, which
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had the best performance among the original prediction models. The results show that although
computation time increased by 80% after clustering and calibration, the MSE, CVRMSE, and MAPE
of the proposed method reduced by 21.35%, 11.96%, and 19%, respectively, suggesting a significant
improvement in prediction accuracy.

Table 8. Lift percentage of proposed model.

Model MSE CVRMSE MAPE Time (s)

Proposed model 21.35% 11.96% 19% −80%

The results confirm that clustering can effectively enhance the quality of chiller data and increase
the efficiency of incorporating machine learning in the prediction of chiller data if the limitations were
satisfied: (1) If the data could be clustered well or (2) if the clustering method failed to get good results,
the revised approach must work.

5. Conclusions

In this study, we first simulated the common prediction models for chiller system. The best results
were produced by the random forest and XGBoost models. Then, we employed statistical analysis
methods, K-means clustering, and gap statistic to identify the ideal clustering variables and clustering
value k. We successfully identified the key variables suitable for clustering and enhanced data quality
and usability for prediction. We adopted MSE, CVRMSE, MAPE, and times as the assessment standards.
After simulation and suitable calibration, MSE, CVRMSE, and MAPE improved by 21.35%, 11.96%,
and 19%, respectively, without drastically increasing computation time. Therefore, we successfully
improved the prediction accuracy of the model.

The findings of this study may serve as a reference for third parties responsible for assessing energy
efficiency in the future. Applying the procedures outlined in this study for establishing a prediction
model can effectively improve the accuracy of energy efficiency verification, reduce prediction error,
and enhance the reliability of the improvement method.

In this research, the situations in which clustering methods may fail to get good results were
not fully listed. In the future, the flowchart of establishing prediction model can be expanded for
application in general contexts.
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Tci Cooling water inlet temperature
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XGBoost Extreme gradient boosting
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MSE Mean-square error
CVRMSE Coefficient of variation of root-mean squared error
MAPE Mean absolute percentage error
MIC Maximal information coefficient
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Appendix A. Review of Detailed Machine Learning Algorithm

Appendix A.1. Lee Simplified Model

Equation (A1) describe the prediction model of coefficient of performance (COP):

1
cop

= −1 +
Tci
Twi

+
1

Qe

[
−A0 + A1Tci −A2

Tci
Twi

]
(A1)

where A0, A1 and A2 are coefficients of model and can be derived by regression analysis. Let α =
(

1
COP + 1− Tci

Twi

)
∗

Qe, Equation (A1) becomes:

α = −A0 + A1Tci −A2
Tci
Twi

(A2)

then set β = α+ A2
Tci
Twi

, Equation (A2) becomes:

β = A1Tci −A0 (A3)

The coefficient A2 can be calculated by regressing α on Tci
Twi

, and the coefficients A0 and A1 can be calculated
by regressing β on Tci.

Appendix A.2. Random Forest

Let (xn, yn) represent a data set with n instances, the form of CART can be written as:

n∑
i=1

K∑
k=1

CkI(xi ∈ Rk) (A4)

where Rk is the kth output space and Ck is average value of Rk. Output space are split by calculating feature j and
node s satisfied Expression (A5):

min
j,s

[min
C1

∑
xi∈R1( j,s)

(yi − c1)
2 + min

C1

∑
xi∈R2( j,s)

(yi − c2)
2] (A5)

Combine Expression (A4) and Expression (A5), the form of random forest can be written as:

ŷi =
M∑

m=1

n∑
i=1

K∑
k=1

CkI(xi ∈ Rk) (A6)

where m is the number of CART in random forest model.

Appendix A.3. Extreme Gradient Boosting

For a given data set with n examples and d featuresD =
{
(xi, yi)

∣∣∣xi ∈ Rd, yi ∈ R, i = 1, . . . , n
}
, Equation (A7)

describes a tree ensemble model using K additive functions to predict the output:

ŷi =
K∑

k=1

fk(xi) (A7)

where fk is the kth CART model. The CART model can be expressed as Equation (A8):

fk(xi) = wq(xi) (A8)

where q is the structure of CART that maps the inputs xi to the corresponding output space, w is the weights of
output space. To learn the optimal parameters used in prediction model, Equation (A9) describes the regularized
objective function Obj:

Obj =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( fk) (A9)
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where l is a differentiable convex loss function and Ω is the complexity of the model. Here, the loss function is
least squares method (yi − ŷi)

2, and Ω is defined as Equation (A10):

Ω( fk) = γT +
1
2
λ

T∑
j=1

w2
j (A10)

where T is the number of output space, γ and λ are hyper parameters.
Because tree ensemble model is an additive function, the objective function should satisfy Obj(t) < Obj(t−1).

Let ŷi
(t) be the prediction of the ith instance at the tth iteration, Equation (A11) becomes:

ŷi
(t) =

t∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi) (A11)

and Equation (A9) becomes:

Obj(t) =
n∑

i=1

l
(
yi, ŷi

(t−1) + ft(xi)
)
+ Ω( ft) + constant (A12)

Here, the term
∑t

k=1 Ω( fk) can be expanded to Ω( ft) +
∑t−1

k=1 Ω( fk), and
∑t−1

k=1 Ω( fk) can be regarded as
a constant.

To minimize the objective function, Equation (A12) can be expanded and rewritten as following.

Obj(t) =
n∑

i=1

[
yi −

(
ŷi
(t−1) + ft(xi)

)]2
+ Ω( ft) + constant

=
n∑

i=1

[(
yi − ŷi

(t−1)
)
− ft(xi)

]2
+ Ω( ft) + constant

=
n∑

i=1

[
l
(
yi, ŷi

(t−1)
)2
− 2l

(
yi, ŷi

(t−1)
)

ft(xi) + f 2
t (xi)

]
+ Ω( ft) + constant

=
n∑

i=1

[
l
(
yi, ŷi

(t−1)
)2
+ gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft) + constant

(A13)

where gi =
∂l(yi,ŷi

(t−1))
∂ŷi

(t−1) and hi =
∂2l(yi,ŷi

(t−1))
∂ŷi

(t−1) are first- and second-order gradient statistics on the loss function.
Then, remove the constant term, and the objective function becomes Equation (A14):

Obj(t) =
n∑

i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (A14)

Finally, ft(xi) and Ω( ft) are substituted by Equation (A8) and (A10):

Obj(t) =
n∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft)

=
n∑

i=1

[
giwq(xi) +

1
2 hiw2

q(xi)
]
+ γT + 1

2λ
T∑

j=1
w2

j

=
T∑

j=1


∑i∈I j

gi

w j +
1
2

∑i∈I j

hi + λ

w2
j

+ γT

=
T∑

j=1

[
G jw j +

1
2

(
H j + λ

)
w2

j

]
+ γT

(A15)

where G j =

∑i∈I j

gi

 and H j =

∑i∈I j

hi

 represents the sum of first- and second-order gradient statistics in output

space j.
For a fixed structure q(xi), the optimal parameter w∗j and corresponding value Obj∗ of output space j can be

calculated by

w∗j = −
G j

H j + λ
(A16)
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Obj∗ = −
1
2

T∑
j=1

G j
2

H j + λ
+ γT (A17)

Appendix A.4. K-Means

Let
{
xi
∣∣∣xi ∈ Rd, i = 1, . . . , n

}
be the set of d-dimensional points to be clustered into a set of k clusters,{

µ(t)c

∣∣∣∣µ(t)c ∈ Rd, c = i, . . . , k
}

be the cluster centers. Equation (A18) calculates the Euclidean distance of each sample

and classified into its nearest cluster S(t)c at the tth iteration:

S(t)c =
{
xi : ‖xi − u(t)c ‖

2 < ‖xi − u(t)c′ ‖
2,∀i = 1, . . . , n

}
(A18)

Equation (A19) describes how to update µ(t)c :

u(t+1)
c =

1
nc

∑
xi∈S

(t)
c

xi (A19)

where nc is the number of points in cth cluster. K-means repeats formula (A18) and (A19) until S(t+1)
c = S(t)c .

Appendix A.5. Gap Statistics

Using data set defined in Appendix A.4, let Dc be the sum of the pairwise distances for all points in cluster Sc
and Wc be the pooled within-cluster sum of squares around the cluster means. Equation (A20) and (A21) describe
the formula of Dc and Wc:

Dc =
∑
xi∈Sc

∑
x j∈Sc

‖xi − x j‖
2 = 2nc ∗

∑
xi∈Sc

‖xi − uc‖
2 (A20)

Wc =
k∑

c=1

1
2nc

Dc =
k∑

c=1

∑
xi∈Sc

‖xi − uc‖
2 (A21)

The idea of gap statistic is to standardize the graph of log(Wc) by comparing it with its expectation under an
appropriate null reference distribution of the data [19]. The estimate of the optimal k is the value for which log(Wc)
falls the farthest below this reference curve. Hence, the optimal k is the smallest value k satisfied expression (A22):

Gap(k) ≥ Gap(k + 1) − sk+1 (A22)

Gap(k) and sk+1 are described in Equation (A23) and (A24).

Gap(k) =
1
B

B∑
b=1

log
(
W∗c,b

)
− log(Wc) (A23)

sk =

√
1 + B

B

√√√√
1
B

B∑
b=1

log
(
W∗c,b

)
−

1
B

B∑
b=1

log
(
W∗c,b

)
2

(A24)

where B is the number of sampling.

Appendix B. Compare of Different Clustering Methods

In this appendix, we ran and compared different clustering methods to validate whether K-means is a good
choice or not. In total, we ran four clustering methods to compare with K-means. The four clustering methods are
Mean-shift, OPTICS, Birch, and HDBSCAN. We summarized a detailed information of each clustering methods.
Table A1 describes the detailed information.
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Table A1. Detailed information of each clustering methods.

Methods Parameters Number of Clustering Time (s)

Mean-shift bandwidth 12 617
OPTICS epsilon MinPts 40 2432

Birch Not necessary 3 3
HDBSCAN Not necessary 18 40

K-means number of clustering 10 2

From Table A1, the computation speed of Birch, HDBSCAN and K-means are better than Mean-shift and
OPTICS. Then, we plotted the scatter diagram of each clustering methods in Figure A1. From Figure 1, none of
these five methods could perfectly separate the data, and a calibration method was necessary for the next research.
Observing the scatter diagram, K-means seems to be a better method. It well separated data from each other
without noises except data, which values ranging between 175 and 200. The calibration of K-means appeared
easier than others. Hence, we selected K-means as the clustering method used in this research.
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