

Supplementary Materials Carbon Dioxide Conversion with High-Performance Photocatalysis into Methanol on NiSe₂/WSe₂

Zheng Luo ^{1,†}, Yinghan Li ^{1,†}, Fengbo Guo ^{2,*}, Kaizhi Zhang ², Kankan Liu ², Wanli Jia ² and Yuxia Zhao ²and Yan Sun ²

- ¹ Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA luozheng@uw.edu (Z.L.); yinghl2@uw.edu (Y.L.)
- ² School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; s12345yadc@163.com (K.Z.); liukk@nuc.edu.cn (K.L.); jiawly15@nuc.edu.cn (W.J.); zhaoyuxia1000@163.com (Y.Z.); sunyan30000@163.com (Y.S.)
- * Correspondence: gfbo@nuc.edu.cn
- + These authors contributed equally to this work

Received: 21 July 2020; Accepted: 18 August 2020; Published: 21 August 2020

1. XRD of synthetized WSe₂

XRD of synthetized WSe₂ is shown in Figure S1. It can be clearly seen from the pattern that the positions of the main diffraction peaks of the synthesized WSe₂ coincide with the characteristic peaks of the hexagonal WSe₂ (JCPDS cards, PDF#38-1388). The positions of the diffraction peaks, as marked in the figure, are 13.54°, 31.57°, 34.55°, 37.76°, 41.64°, 47.35°, 55.67°, 65.29°, 69.14° and 76.33° respectively, which correspond to the (002), (100), (102), (103), (006), (105), (110), (200), (203) and (205) crystal surface of WSe₂. This phenomenon signifies the pure WSe₂ has been successfully synthesized.

2. XPS of synthetized WSe₂

Figure S2. XPS of synthetized WSe2.

XPS of synthetized WSe₂ is shown in Figure S2. The energy spectrum of Se is shown as figure (a). Peaks locate at 54.6eV and 55.4eV belong to Se3d_{5/2} and Se3d_{3/2}, which in turn proves that Se atom exists as Se²⁻ [1]. The energy spectrum of W is shown as figure (b). Peaks locate at 32.05eV and 34.45eV belong to W4f_{7/2} and W4f_{5/2}, which in turn proves that W atom exists as W⁴⁺ [2]. These outcomes all contribute to the conclusion that the synthesized compound is turns out to be WSe₂.

3. Comparaison of the methanol yields between the work and literatures

No.	Catalyst	Methanolyields	Resource	Remark
1	g-C ₃ N ₄ /ZnO	0.6 mmol h ⁻¹ g ⁻¹	[3]	
2	ZnV2O6/pCN	3742.19 umol g ⁻¹	[4]	
3	CdS/g-C ₃ N ₄	1352.07 umol h ⁻¹ g ⁻¹	[5]	
4	Cuo/TiO ₂	1600 umolh ⁻¹ g ⁻¹	[6]	
5	BiVO ₄ /rGO	513.1 µmol/L	[7]	
6	Bi ₂ S ₃ /TNT	224.6 umol g ⁻¹	[8]	
7	WSe ₂	1.07 mmol g ⁻¹ , 10h	The work	500℃ Annealing
8	NiSe ₂ /WSe ₂	3.80 mmol g ⁻¹ , 10h	The work	500℃ Annealing

Table S1. Comparaison of the methanolyields between the work and literatures

References.

- 1. Liu, Z.; Zhao, H.; Li, N.; Zhang, Y.; Zhang, X.; Du, Y. Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe₂ layers anchored on graphene sheets. *Inorg. Chem. Front.* **2016**, *3*, 313–319, doi:10.1039/C5QI00216H.
- 2. Zou, M.; Zhang, J.; Zhu, H.; Du, M.; Wang, Q.; Zhang, M.; Zhang, X. A 3D dendritic WSe₂ catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. *J. Mater. Chem. A* 2015, *3*, 12149–12153, doi:10.1039/c5ta02538a.
- 3. Yu, W.; Xu, D.; Peng, T. Enhanced photocatalytic activity of g-C₃N₄ for selective CO₂ reduction to CH₃OH via facile coupling of ZnO: A direct Z-scheme mechanism. *J. Mater. Chem. A* **2015**, *3*, 19936–19947, doi:10.1039/C5TA05503B.
- 4. Bafaqeer, A.; Tahir, M.; Amin, N.A.S. Well-designed ZnV₂O₆/g-C₃N₄ 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO₂ to fuels. *Appl. Catal. B Environ.* **2019**, *242*, 312–326, doi:10.1016/j.apcatb.2018.09.097.
- 5. Yang, X.; Yang, W.; Xin, X.; Yin, X.; Shao, X. Enhancement of photocatalytic activity in reducing CO₂ over CdS/g-C₃N₄ composite catalysts under UV light irradiation. *Chem. Phys. Lett.* **2016**, 651, 127, doi:10.1016/j.cplett.2.
- 6. Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, X. Photocatalytic reduction of CO₂ in methanol to methyl formate over CuO–TiO₂ composite catalysts. *Chem. Eng.* **2011**, *356*, 257, doi:10.1016/j.cej.2011.11.029.

- 7. Li, S.; Zhou, Y.; Wang, T. Study on preparation and photocatalysis-reduction for CO₂ of BiVO₄/rGO composite. *Inorg. Chem. Ind.* **2019**, *51*, 11, doi:10.11962/1006-4990.2019-0008.
- Li, X.; Liu, H.; Luo, D.; Li, J.; Huang, Y.; Li, H.; Fang, Y.; Xu, Y.-H.; Zhu, L. Adsorption of CO₂ on heterostructure CdS(Bi₂S₃)/TiO₂ nanotube photocatalysts and their photocatalytic activities in the reduction of CO₂ to methanol under visible light irradiation. *Chem. Eng. J.* **2012**, *180*, 151–158, doi:10.1016/j.cej.2011.11.029.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).