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Abstract: Climate change has been recognized as a threatening environmental problem around
the world. CO2 is considered to be the main component of greenhouse gas. By using solar energy
(light energy) as the energy source, photocatalytic conversion is one of the most effective technologies
to reveal the clean utilization of CO2. Herein, using sodium tungstate, nickel nitrate, and selenium
powder as the main raw materials, the high absorption and utilization of WSe2 for light energy and the
high intrinsic conductivity of NiSe2 were combined by a hydrothermal method to prepare NiSe2/WSe2

and hydrazine hydrate as the reductant. Then, high-performance NiSe2/WSe2 photocatalytic material
was prepared. The characterization results of XRD, XPS, SEM, specific surface area, and UV-visible
spectroscopy show that the main diffraction peak of synthesized NiSe2/WSe2 is sharp, which basically
coincides with the standard card. After doping NiSe2, the morphology of WSe2 was changed from a
flake shape to smaller and more trivial crystal flakes, which demonstrates richer exposed edges and
more active sites; the specific surface area increased from 3.01 m2 g−1 to 8.52 m2 g−1, and the band
gap becomes wider, increasing from 1.66 eV to 1.68 eV. The results of a photocatalytic experiment
show that when the prepared NiSe2/WSe2 catalyst is used to conduct photocatalytic reduction of CO2,
the yield of CH3OH is significantly increased. After reaction for 10 h, the maximum yield could reach
3.80 mmol g−1, which presents great photocatalytic activity.

Keywords: NiSe2/WSe2; photocatalysis; CO2; methanol

1. Introduction

CO2, whose primary resource is the combustion of fossil fuel and the massive emission of
automobiles, is currently ongoing excessive emission. It is the main cause of the greenhouse effect [1–3].
An effective measure to address the greenhouse effect is to convert the CO2 in air into organic
chemical fuel. Photocatalytic technology has attracted great attention due to its mild conditions,
environmental friendliness, effectiveness, no secondary pollution, and other advantages. However,
current catalysts have various shortages, such as less-specific surface-active sites, a fast recombination
rate of photoelectron–hole pair, low quantum efficiency, and a low absorption and utilization rate of
sunlight. Therefore, searching for effective catalysts has become the focus of researchers around the
world [4–6].

In recent years, transition metal nitride [7], transition metal carbide [8], and transition metal
chalogenide [9] have all presented the characteristics of low cost and great catalytic stability.
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Among them, the two-dimensional layered transition metal chalogenide (TDMC) MX2 (M represents
the transition metal element, and X represents S, Se, and Te) has the characteristic of changing
from an indirect band gap to a direct band gap during the transition from multiple layers to a
single layer [10,11]. At present, there is much research on the preparation and performance of
MoS2 and its composite materials, but research on WSe2 compounded with other metal ions has
been little studied [12,13]. As the main transition metal chalogenide, tungsten diselenide (WSe2)
is a diamagnetic p-type semiconductor material, which locates at a low conduction band (1.16 eV).
WSe2 is the material with the lowest thermal conductivity in the world, which indicates that the
heat will not be easily dissipated from the system; in other words, the efficiency needed for the
system to convert energy will be higher [14]. Therefore, the application of this new material with
high energy efficiency can be regarded as a significant improvement. Furthermore, when WSe2

changes from bulk material to a single-layer material, its energy gap will vary with the change of
layers. At a single layer, the electronic structure will experience significant change, and the 1.2 eV
indirect band gap will suddenly change into a 1.8 eV direct band gap. Such a band gap width
is very close to the solar spectrum, so WSe2 has high optical adsorption properties and exhibits
great application prospects in the fields of photoelectrocatalysis and photoelectric conversion [15].
Besides, WSe2 exhibits dose-dependent toxicological effects compared with other similar inorganic
analogues such as MoS2 or WS2 [16]. This character denotes that the hazardous level of this component
is relatively low. The two-dimensional layered transition metal chalogenides generally have the
problems of poor electrical conductivity, a tendency for aggregation, and difficulty in preparing several
layers [17], which has severely affected their catalytic performance. In order to address these problems,
the researchers have conducted significant investigations. Yu et al. [18] synthesized reduced graphene
oxide (RGO) onto the single-layer WSe2 nanolayer via the one-pot solvothermal reaction. They found
that compared with the bare WSe2 nanosheets, the composite material synthesized with RGO has
higher photocatalytic activity. Similarly, Wang et al. [19] employed the same method to prepare the
multi-walled carbon-nanotubes-modified WSe2 (CNT/WSe2). Based on analysis of their research
conclusion, it can be found that when exposed to visible light, the CNT/WSe2 composite material shows
increased photocatalytic activity during the photocatalytic decomposition of the organic dye methyl
orange (MO). Furthermore, Stuart Licht et al. [20] pointed out that the cationic dissolving salt can affect
the photoelectric properties of the WSe2 nanolayer. Moreover, Feng et al., Li et al., and Guo et al. [21–23]
pointed out that the photopotential and photoelectrochemical cell power can be significantly enhanced
when transition-metal chalcogenides were employed for electrodes, especially for MoSe2/graphene and
WSe2/graphene nanosheets and core–shell structure of NiSe2 nanoparticles@nitrogen-doped graphene.

According to the reaction process of the photocatalytic reduction of CO2, CO2 must be attached
to the active sites of the photocatalyst to further process a reaction, which is the basis of the
interfacial reaction. Therefore, the enhancement of the photocatalytic reduction of CO2 reaction
can start from the enhancement of carbon dioxide adsorption. In previous studies, a TiO2-based
heterostructured photocatalyst and g-C3N4-based heterostructured photocatalyst were also applied
to reduce CO2 to produce CH3OH [24]. Yang et al. [25], Liang et al. [26], and Bafaqeer et al. [27]
use g-C3N4/CdS, g-C3N4/ZnO, ZnV2O6 /pCN as photocatalytic materials, and the methanol yields
were 1352.07 umol g−1, 0.6mmol g−1 h−1, and 3742.19 umol gcat−1, respectively. Qin et al. [28] and
Li et al. [29] use CuO/TiO2 and BiS2/TNT as photocatalytic material to produce CH3OH; the yields of
CH3OH were 1600 umol h−1g−1 and 224.6 umol−1 g−1h−1, respectively. The results of the study show
that carbon dioxide in the solution can be adsorbed on TDMCs to form formate ion. After 3 h of sunlight
at room temperature, the system generates methanol photoelectrically. Further mechanism analysis
shows that TDMC materials can not only adsorb and activate carbon dioxide but also contribute to the
process of photogenerated electron transformation and act as a promoter [30].

In this work, NiSe2/WSe2 was successfully prepared with a hydrothermal method. The main
goal is to find a feasible way to catalyze the conversion of the CO2. By doing so, this research intends
to see to what extent the CO2 is converted. The overall situation ahead and afterwards, therefore,
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has been compared. Besides, it is also worth figuring out whether the approach has the value to be
promoted or not, say, if it is worthy and feasible enough to be considered as a regular way to treat the
ongoing CO2 emission problem. If so, the meaning of this research can thus be applied to a wider
scope. Several different plans have been considered, while the choice of WSe2/NiSe2 is due to the
access to such material and its relatively high efficiency. The photocatalysis performance of WSe2 by
doping NiSe2 to change WSe2 morphology and electronic structure has been improved. Furthermore,
its structure was characterized by adopting SEM, specific surface area (BET), XPS, and XRD, and its
photocatalysis and CO2 reducing property was also investigated.

2. Materials and Methods

2.1. Preparation of NiSe2/WSe2

The preparation method of the research is with the reference of Cao [31]. Specifically, 1.32 g
sodium tungstate (Na2WO4·2H2O) and 0.58 g nickel nitrate were added in deionized (DI) water under
stirring, and then the mixture was poured into the mixed solution containing 15 mL HCl solution
and 10 mL hydrazine hydrate (N2H4·H2O) to obtain solution A. A total of 0.97 g of selenium powder
was added to 15 mL hydrazine hydrate with a concentration of 80%, and then the resulting mixture
underwent heating and a reflux reaction for 1–2 h to obtain the precursor B. After that, solution A
was poured into precursor B, and ultrasonic treatment was conducted for the obtained mixture until
solution A and precursor B were evenly mixed. Next, the mixture was performed on a 100 mL reaction
kettle (reactor) and then experienced hydrothermal reaction for 48 h under 200 ◦C. After reaction and
cooling, deionized water was employed to wash the resulting mixture 3–4 times, and then the obtained
mixture was moved to the sodium hydroxide solution. Unreacted selenium powder was removed
through a heating reaction, and then deionized water and ethyl alcohol were conducted to wash the
mixture alternatively until the pH of the mixture was 7. The mixture was then moved into the 60 ◦C
oven for drying. After drying, the mixture was placed into a tube furnace and then underwent reaction
for 2–3 h under the condition of 500–550 ◦C in the nitrogen flow to obtain the NiSe2/WSe2. Figure 1
shows the block diagram of the preparation process of NiSe2/WSe2.

Figure 1. Block diagram of the preparation process of NiSe2/WSe2.

The process of WSe2 preparation is almost identical to the description above, except for not adding
the nickle nitrate.
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2.2. Characterization

X-ray powder diffraction (XRD): The Japanese D/MaxRB X-ray Spectrometer was used (Cu target
Kα ray) to test the chemical components of samples and their phase composition. The test double
angle was 2θ = 10–80◦; the UV-visible absorbance spectrum was tested using the ultraviolet-visible
spectrophotometer (UV-Vis-8800S, Shanghai, China). The integrating sphere, whose function is to
measure the absorbance of the powder sample, was applied in this section for the operation; the BaSO4

tablet was used to test the optical properties of sample, and the measurement range was 200–800 nm;
the specific surface area (BET) test was conducted with the NOVA Touch 4LX instrument (Quantachrome
Instruments, Boynton Beach, FL, U.S.), which can be used to test the specific surface area and pore size
distribution; for the scanning electron microscope (SEM), we adopted the JSM-6700F field emission
scanning electron microscope (resolution of 1.0 nm (15 KV)/2.2 nm (1 KV), with an accelerating voltage
of 0.5–30 KV). X-ray photoelectron spectroscopy (XPS) was tested by using ThermoESCALAB250XI.

2.3. Photocatalytic Reduction Experiment of CO2

The photocatalytic reduction of CO2, as shown in Figure 2, is conducted in the photocatalytic
reactor, which was produced by Beijing Newbet Technology Co., Ltd. (NBeT, Beijng, China). Six quartz
tubes were prepared. A total of 50 mL of 0.08 mol L−1 NaHCO3 solution and 50 mg of prepared
catalyst were added into each quartz tube, and then magnetic stirring was conducted to evenly disperse
the catalyst. Under dark conditions, we continuously injected CO2 for 30 min to remove air and
complete the adsorption–desorption balance of CO2 by the catalyst; the 300WXe light was used as
the simulation light source. The photocatalysis reaction as conducted by filtering with the 420 nm
filter, a 1 mL reaction solution was extracted every 2 h, and after removing the catalyst through
centrifugation, gas chromatography (GC-920) was used to test the product content. The carrier gas
of gas chromatography was high-purity N2, the detector was a hydrogen flame ionization detector
(FID), and the chromatographic column was a capillary column; the column temperature was 120 ◦C,
the inlet temperature was 140 ◦C, and the detector temperature was 160 ◦C.

Figure 2. Reaction device for photocatalytic reduction of CO2.

3. Results and Discussion

3.1. XRD and XPS Analysis

X-ray diffractograms of the synthesized NiSe2/WSe2 were shown in Figure 3.
According to Figure 3, it can be seen that the main diffraction peak of synthesized NiSe2/WSe2

presents a sharp peak value, and the positions of diffraction peaks basically coincide with the standard
cards of WSe2 (JCPDS card, PDF#38–1388) and NiSe2 (JCPDS card, PDF#41–11495). Among them,
the diffraction peaks at 13.54◦, 31.69◦, 32.16◦, 34.21◦, 37.84◦, 47.39◦, 56.52◦, and 57.92◦ belong to the
(002), (100), (101), (102), (103), (105), (008), and (112) crystal faces of WSe2, respectively. Synthetized
WSe2 diffraction peaks were also shown the same characteristics (Figure S1). The characterization
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results are consistent with those of Jung [32]. The diffraction peaks at 29.89◦, 33.41◦, 36.74◦, 45.37◦,
50.48◦, 57.57◦, 61.82◦, 64.01◦, and 70.18◦ belong to the (200), (210), (211), (221), (311), (321), (400),
(410), and (420) crystal faces of NiSe2, respectively. This indicates that the synthesized material is
NiSe2/WSe2 [33]. In order to further detect the composition and valence of surface elements, the XPS of
NiSe2/WSe2 spectrum was shown in Figure 4. Obviously, peaks of Ni, W, and Se were found in the full
spectra. In the high-resolution spectra of Ni2p, its peak was composed of two peaks [34], where those
at 872 eV and 875 eV were related to Ni2p1/2 and Ni2p2/3, respectively. In the Se3d spectra, the peaks
at 55.6eV, 54.2eV were assigned to the Se–Se, Ni–Se bonds. Three peaks positioned at 32.2eV, 35.7eV
were ascribed to W4f5/2 and W4f7/2. Similar results were obtained accordingly on the W4f and Se3d
high-resolution spectra (Figure S2).

Figure 3. XRD of NiSe2/WSe2.

Figure 4. The full XPS spectra of (a) NiSe2/WSe2, (b) high-resolution XPS spectra of Ni2p, (c) Se3d,
(d) W4f.
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3.2. SEM Analysis

Figure 5a,b show the SEM images of WSe2 and NiSe2/WSe2, respectively. From Figure 5a, it can
be seen that the WSe2 morphology presents the flower shape stacked by many flakes; in Figure 5b,
the hexagonal material is NiSe2; after being synthesized with NiSe2, the morphology of WSe2 changes
from stacked flakes to smaller and more trivial crystal flakes, which have richer exposed edges and can
provide more active sites to contact the CO2 in the reaction solution. In the meantime, the specific
surface area is also increased, which is consistent with the results of BET analysis, and this benefits
the adsorption of CO2. Furthermore, from these images, it can be seen that NiSe2 and WSe2 present
a homogeneous distribution and great dispersibility, which has not only solved the tendency for
aggregation of WSe2 but the conductivity of material is also increased, so as to achieve the objective of
improving the catalysis performance and stability of NiSe2/WSe2. The EDS image of NiSe2/WSe2 is
shown in Figure 5c. The Se/W atomic ratio of the sample is shown in Figure 5d. The X-axis represents
the W atom percentage, the Y-axis represents the percentage of Se atom, and the slope represents the
Se/W atomic ratio. The Se/W (Ni) = 1.78 in the NiSe2/WSe2 sample. Figure 5d corresponds to the
theoretical value of Se / W (Ni) (theoretical value is 2), which further proves that the sample is the
target product.

Figure 5. SEM of (a) WSe2; (b) NiSe2/WSe2; (c) EDS of NiSe2/WSe2; (d) Atom ratio of NiSe2/WSe2.
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3.3. BET Analysis

Figure 6 shows the adsorption–desorption isothermal diagram of N2. According to Figure 6,
the adsorption isothermal diagram of WSe2 and the desorption isothermal diagram of NiSe2/WSe2

form a hysteresis loop without overlapping, which presents type IV isotherm with hysteresis loop.
In other words, after synthesizing with NiSe2, the isothermal diagram of NiSe2/WSe2 is still type IV,
which indicates that the introduction of NiSe2 has damaged the mesoporous structure of the material.
Figure 6 exhibits the pore diameter distribution curve. According to Figure 7, it could be seen that the
pore diameter of WSe2 and NiSe2/WSe2 are mainly distributed in the range of 2–10 nm, but NiSe2/WSe2

still contains very few large pores, which is mainly caused by the distribution of NiSe2.

Figure 6. Adsorption–desorption curve of N2.

Figure 7. Pore diameter distribution curve.

Table 1 shows the specific surface area, pore volume, and pore diameter of WSe2 and NiSe2/WSe2.
According to Table 1, the specific surface area of NiSe2/WSe2 presents a significant increase compared
to that of pure WSe2, which has increased by 1.83 times. This indicates the increase of active sites on
the surface of NiSe2/WSe2, which can benefit the adsorption of CO2 and the exchange of CO2 in the
pore passage. Its macroscopic expression is the high activity of the catalyst, so that the photocatalysis
performance can be further improved.
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Table 1. Specific surface area, pore volume, and pore diameter of WSe2 and NiSe2/WSe2.

Sample Specific Surface Area (m2
·g−1) Pore Volumes (cc·g−1) Average Pore Diameter (nm)

WSe2 3.007 0.007 1.702
NiSe2/WSe2 8.522 0.008 1.916

3.4. Analysis of UV-Visible Absorbance Spectrum

When WSe2 is a bulk material, it is a 1.2 eV indirect band gap semiconductor, while the direct
band gap for single-layer WSe2 is 1.6–1.7 eV. According to Figure 8, it can be seen that WSe2 and
NiSe2/WSe2 both show a strong photo response within the range of 250–750 nm. Although they
demonstrate different light absorption intensities at different wavelengths, within the wavelength
range of 250–750 nm, WSe2 and NiSe2/WSe2 show basically the same variation trend of light absorption
intensities, which means that the introduction of NiSe2 has not changed the light absorption performance
of WSe2. The intersection line plotting method is employed to plot the absorption wavelength threshold
in Figure 8, and it can be obtained that λWSe2 = 748 nm, λNiSe2/WSe2 = 736 nm. By combining
formula E = h ∗ c/λ, the band gap widths of WSe2 and NiSe2/WSe2 can be obtained, which are 1.66 eV
and 1.68 eV, respectively, indicating that the synthesized WSe2 has a single layer. It has been learnt
that because of the combined effects of Ni doping, which in turn cause the increase of energy of
the surrounding electronics and the Burstein–Moss effect, the band gap after doping is increased
so that the band gap of NiSe2/WSe2 is the larger one. Note that such an increase contributes to the
separation of photo-generated electrons and photo-generated holes and reduces the recombination rate
of electron–hole pairs; therefore, the effective number of photo-generated electrons and photo-generated
holes is increased. The goal of improving photocatalytic performance can be thereby fulfilled.

Figure 8. UV-visible absorbance spectrum.

3.5. Photocatalysis Performance

Figure 9 shows the relationship between the yield of CH3OH obtained from the photocatalytic
reduction of CO2 using WSe2 and NiSe2/WSe2 with the time. the comparisons of CH3OH yields
between the work and literatures were shown Table S1. According to Figure 9, with the increase of
catalysis time, the yields of CH3OH all show an increasing trend when different catalysts are used.
However, under the catalytic action of NiSe2/WSe2, the yield of methanol is significantly higher than
that under the catalysis of WSe2. During the first 8 h of reaction, the overall yield of methanol shows
continuous growth. However, from 8 h to 10 h of reaction, the yield of methanol basically remains
the same under the catalysis of WSe2, while under the catalytic action of NiSe2/WSe2, the yield of
methanol still exhibits continuous growth, increasing from 3.00 mmol g−1 to 3.80 mmol g−1. This is
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mainly because NiSe2 and WSe2 have a homogeneous distribution in NiSe2/WSe2, so that NiSe2/WSe2

becomes more dispersed and will not easily aggregate. The conductivity of NiSe2/WSe2, therefore,
is increased by the combination of these two materials. Its morphology is presented as the smaller and
more trivial crystal flakes, the surface area therefore has been increased, and there are more active sites,
all of which can help to improve its photocatalysis performance.

Figure 9. Relationship between the yield of methanol and the reaction time.

4. Conclusions

In this paper, the hydrothermal method is employed to prepare NiSe2/WSe2. The main diffraction
peak of synthesized NiSe2/WSe2 is sharp, and the positions of diffraction peaks basically coincide
with the standard cards of WSe2 (JCPDS card, PDF#38–1388) and NiSe2 (JCPDS card, PDF#41–11495);
both WSe2 and the synthesized NiSe2/WSe2 demonstrate a strong photo response within the range of
250–750 nm, and the presence of an impurity band and band tail with the introduction of NiSe2 causes
the band gap of NiSe2/WSe2 to become wider, from 1.66 eV to 1.68 eV, which is helpful for increasing
of the effective number of photo-generated electrons and photo-generated holes. In the prepared
NiSe2/WSe2, NiSe2 and WSe2 have a homogeneous distribution, and NiSe2 also makes WSe2 more
dispersed; the morphology characterization changes from stacked flower shape to smaller and more
trivial crystal flakes, the surface area is increased, and more active sites are provided. The photocatalytic
reduction results of CO2 show that the yield of CH3OH is significantly increased: the yield reaches
3.80 mmol g−1 at 10 h of reaction, which is 3.4 times the yield under the catalysis of pure WSe2, and the
NiSe2/WSe2 has great photocatalytic activity.

5. Patents

The results studied in this paper have been accepted for a patent in China with the application
number 202010247325.5 and named as A photocatalytic carbon dioxide reduction catalyst and its preparation
method and application.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/17/4330/s1,
Figure S1: XRD of synthetized WSe2, Figure S2: XPS of synthetized WSe2, Table S1: Comparaison of the methanol
production between this research and other literatures.
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