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Abstract: The broader use of cements with a higher content of the main non-clinker components in
construction industry is one of the directions leading to the decarbonization in cement production.
This contribution analyzes the properties of low-emission cements containing from 44% to 56% of
Portland clinker in their composition and indicates the possibilities of wider use in the construction.
The obtained results confirmed that following the appropriate technological regimes, low-emission
cements can be implemented into the production of concrete exposed to carbonation-induced corrosion
(exposure class XC4 according to EN 206), frost-resistant concrete (exposure class XF4 according to
EN 206), self-compacting concrete (SCC) and high-performance concrete (HPC). An analysis of the
level of CO2 emissions in the production of specific types of concrete using low-emission cements
was also made.

Keywords: ternary cements; granulated blast furnace slag; siliceous fly ash; limestone; concrete performance;
concrete durability; CO2 emission; frost-resistant concrete; SCC concrete; HPC concrete

1. Introduction

In recent years, a lot of emphasis has been put on the use of low-carbon and energy-saving products.
Concrete, as one of the most commonly used materials, is the subject to continuous improvement,
not only to reduce the negative impact on the environment, but also to increase its positive properties
in practical use.

The properties of concrete are determined by cement, which production is associated with carbon
dioxide (CO2) emission and the consumption of non-renewable natural resources [1]. CO2 emission
comes from the production of main cement component, which is Portland clinker, with about 2/3 of
the emissions coming from the thermal decomposition of calcium carbonate, the main component of
raw material for the production of Portland clinker, while the remaining 30–40% of CO2 emissions
are the result of fuel combustion (mainly coal) in order to obtain the necessary temperature for the
synthesis of cement clinker. The heat energy consumption to produce one ton of cement clinker is about
3.4 GJ [2]. Therefore, numerous technological measures are taken to reduce greenhouse gas emissions
in the cement production process, as well as in the effective use of cement in concrete composition.
These include the wider application of alternative fuels substituting the primary energy carrier used in
the cement industry, which is hard coal, affected by combustion with the emissions of 84.6–94.6 kg
CO2/ GJ [2]. The second important factor is the reduction of Portland clinker content in the cement
composition. This is due to the wider practical implementation of multicomponent cements CEM
II–CEM V, in accordance with EN 197-1 [3,4]. The main components in this type of cements are basically
industrial by-products from various industries, such as granulated blast furnace slag (S) from the pig
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iron smelting process in a blast furnace, or fly ash from coal combustion in heat and power plants
(siliceous V, calcareous W). These components successfully replace Portland cement clinker in cement,
reducing cement and concrete emissions. Moreover, they affect the properties of cement, concrete mix,
and hardened concrete [5–7]. Unfortunately, the availability of these valuable raw materials is limited
in the world. Granulated blast furnace slag is practically completely utilized, while fly ash has variable
properties associated with several coal combustion techniques [8,9]. Europe is also moving away from
the energy obtained from coal in favor of the energy obtained from renewable sources (solar, wind, and
water energy), which significantly limits the possibility of obtaining fly ash for the cement (concrete)
production. Therefore, standardization works have been started to introduce new types of cements,
such as CEM II/C-M multicomponent Portland cements and a group of multicomponent cements CEM
VI [10]. These binders are considered as so-called ternary cements, with low content of Portland clinker,
which composition mainly consist of siliceous fly ash (V) with granulated blast furnace slag (S) and
limestone (LL) with fly ash (V) or limestone (LL) with slag (S). The properties of such cements are the
effect of activity and synergistic interaction of individual non-clinker components [11–14]. A special
emphasis should be put on the presence of limestone (LL) in the composition of this type of cements.
It is a raw material widely available in the world, and importantly, practically at the disposal of every
cement producer.

The wider use of low-emission cements in the construction industry very often encounters
great difficulties from contracting entities and construction supervision concerned about obtaining
adequate strength and durability properties. The argument relating to the lack of concrete tests
carried with these application-oriented cements is very often raised. Hence, the purpose of this
work was to show the possibility of making concrete, commonly used in construction, produced
from low-emission cements. The attention was focused on concrete exposed to environmental
corrosion caused by carbonation (exposure class XC4 according to EN 206 [15]), concrete subjected
to aggression caused by freezing/thawing with the use of de-icing agents, self-compacting concrete
(SCC) and high-strength concrete (HPC). Increased need for implementation of low-emission concretes,
determined by the constantly growing environmental requirements, force the cement industry to strive
to reduce greenhouse gas and dust emissions. The European Union places particular emphasis on
reducing emissions, which has introduced a comprehensive decarbonization strategy, the so-called
‘The European Green Deal’. It assumes that by 2050, Europe will be a net-zero emitter of greenhouse
gases [16].

2. Materials and Methods

2.1. Characteristic of Components and Composition of Tested Cements

The cements applied in the research were manufactured on an industrial scale in cement plant.
They contained ground granulated blast furnace slag (S), silica fly ash (V), and limestone (LL). Table 1
shows the methods used to determine cement and main cement constituents’ properties.

Table 1. Procedures applied to determine the properties of cement and main cement constituents.

Property Standard Test Method

Chemical composition EN 196-2:2013-11 [17]
Initial setting time EN 196-3:2016-11 [18]

Water demand EN 196-3:2016-11 [18]
Specific surface EN 196-6:2011 [19]

Cement hydration heat EN 196-9:2010 [20]
Density EN 1097-7:2008 [21]

Compressive strength EN 196-1:2016-05 [22]

Table 2 concludes the chemical composition of cement components. The ingredients exploited in
the tests met the requirements of EN-197-1 [3]. The composition of tested low-emission cements is
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given in Table 3. The names of cements were adopted, taking into account the provisions of the draft
standard prEN 197-5 [10]. The percentage of Portland clinker in cement composition ranged from 56%
(cement C1) to 44% (cement C4). Assuming the emission from clinker production at the level of 840 kg
CO2 from 1 Mg of clinker [23], the level of CO2 emission from the production of tested cements was
calculated (Table 3).

Table 2. Chemical composition and physical properties of main cement components.

Component
Share of Component [%]

Density [g/cm3]
CaO Fe2O3 SiO2 Al2O3 MgO SO3 Cl- Na2O K2O

Portland clinker with set
controlling agent 62.86 2.47 19.70 5.25 1.44 3.79 0.097 0.121 0.809 3.13

Granulated blast furnace slag 43.85 0.88 38.58 7.11 6.4 1.31 0.011 0.44 0.32 2.94
Siliceous fly ash (V) (*) 2.6 5.5 51.58 27.17 2.29 0.06 0.013 0.87 3.22 2.20

Limestone (**) 53.1 0.2 2.8 0.45 0.36 0.1 0.020 - - 2.75
(*) LOI siliceous fly ash V—4.43 [% mas.] (category A acc. to EN 197-1:2012 [3]; reactive SiO2 content—32.5% [3]),
(**) content of CaCO3 calculated on CaO amount is 94.8 [% mas.], total organic carbon content (TOC)—0.07 [% mas.],
clay content—0.4 g/100 g.

Table 3. Composition of low-emission cements and CO2 emission level.

Cement
Designation

Cement Type

Component Content [%]
CO2 Emission Level

from Mg of Cement [kg]Clinker Granulated Slag Siliceous Fly Ash Limestone

K (C *) S V LL

C1 CEM II/C-M (S-LL) [10] 56 (60) 30 - 10 470.4
C2 CEM II/C-M (S-V) [10] 50 (53) 47 420.0
C3 CEM III/A [3] 47 (50) 50 - 394.8
C4 CEM VI (S-V) [10] 44 (47) 53 - 369.6

C *—Portland clinker with set controlling agent.

2.2. Concrete Compositions and Properties’ Test Methods

In order to assess the properties of concrete mixtures and hardened concrete, the test methods
given in Table 4 were used.

Table 4. Research methods used to determine the properties.

Tested Material Property Standard Test Method (Procedures)

Concrete mixture

Density EN 12350-6:2019-08 [24]
Air content EN 12350-7:2019-08 [25]
Consistency EN 12350-2:2019-07 [26]

Consistency—SCC concretes EN 12350-8:2019-08 [27]
V-funnel EN 12350-9:2012 [28]

L-box EN 12350-10:2012 [29]

Hardened concrete

Density EN 12390-7:2019-08 [30]
Compressive strength EN 12390-3:2019-07 [31]

Depth of water penetration under pressure EN 12390-8:2019-08 [32]
Depth of carbonation EN 12390-12:2020-06 [33]

Frost resistance PN-B-06265:2018-10 [34]
De-icing salts frost resistance PN-B-06265:2018-10 [34]

In order to check the applicability of low-emission cements in construction industry, concretes for
various applications were designed: concrete exposed to carbonation corrosion (XC4), frost-resistant
concrete (XF4), self-compacting concrete (SCC), and high-performance concrete (HPC). The depth of
water penetration under pressure [32], frost resistance [34], and carbonation depth [33] were assessed
after two curing periods: after 28 and after 90 days. This is due to the significant increase in the
compressive strength and insulating of the microstructure of concrete made of low-emission cements
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containing fly ash and slag after a longer curing [4,5,8]. The compositions of designed concrete mixtures
are shown in Table 5. Concrete designations were adopted as a combination of the concrete usage and
the type of cement used from C1 to C4.

Table 5. Concrete mixture compositions.

Content of Components [kg/m3] in Concrete Composition

Component XC4 b XF4 XF4-M XF4-N SCC HPC

Fine aggregate 722 665 684 694 765 623
Coarse gravel aggregate

(Dmax = 16 mm, F1
a) 1116 - - - 864 -

Crashed coarse aggregate
(Dmax = 16 mm, F1

a, FNaCl1 a) - 1323 1359 1380 - 1212

Cement (C1–C4) 300 350 350 350 380 480
Water 165 155 155 155 175 166

Siliceous Fly Ash FA - - - - 120 -
Silica Fume SF - - - - - 30

Polymer microspheres - - 2.1 - - -
Plasticizer - - - - 1.52 1.44

Superplasticizer 1.65 1.90 2.80 2.80 4.00 3.50
Air entraining agent - 0.40 - - - -

w/c ratio 0.55 0.45 0.45 0.45 0.46 0.36
w/s ratio (c + 0,4 × FA);

(c + SF) 0.55 0.45 0.45 0.45 0.41 0.33

a—aggregate frost resistance acc. to EN 12620:2002+A1:2008 [35]. b—requirements adopted acc. to PN-EN
06265:2018-10 [34].

The aggregate adopted in concretes was compliant with the standard EN 12620:2002 + A1:2008 [35].
Sand with a fraction of 0/2 mm was used as a fine aggregate in concrete. For concrete in exposure class
XC4 (carbonation) [34] and SCC concrete, gravel aggregate of 2/8 and 8/16 mm fraction was applied.
Crushed basalt aggregate of 2/8 and 8/16 mm was used for frost-resistant concretes in the XF4 exposure
class as well as for HPC concretes. In order to achieve adequate solidity of the SCC concrete mixture,
the content of fine fraction (below 0.125 mm) was increased by using the type II additive, in the form of
FA silica fume, as per standard EN 450-1:2012 [36]. The composition of HPC concrete included the type
II additive in the form of SF silica fume, complying to EN 13263-1:2005 + A1:2009 [37]. To obtain the
right consistency of concrete mixtures, a superplasticizer based on polycarboxylate ether and plasticizer
based on lignosulfonates (for SCC and HPC concretes requiring high flowability and delay in drop in
consistency) were added. In order to provide adequate frost resistance air entraining agent based on
turpentine resin was used for XF4 concretes. As an alternative aeration method, polymer microspheres
were added, which are tiny, prefabricated air pores in flexible plastic capsules.

3. Results and Discussion

3.1. Properties of Cements’ Constituents and Cements

Specified standard properties of cements are shown in Table 6. Figure 1 illustrates the amount of
heat released in the process of cement hydration [20]. The process of hydration of C1 multi-component
cement (56% clinker) released the highest amount of heat, while the least when hydrating C4
(44% clinker).
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Table 6. Standard properties of cements.

Cement
Designation

Density
[g/cm3]

Specific Surface Area
[cm2/g]

Water
Demand [%]

Initial Setting
Time [min]

Compressive Strength [MPa]

2 Days 7 Days 28 Days 90 Days

C1 3.06 4380 27.6 200 18.5 34.4 53.3 63.2
C2 2.88 3648 27.8 215 16.3 31.1 54.5 71.1
C3 3.02 3940 32.5 240 15.3 29.7 56.3 66.6
C4 2.90 3769 27.8 225 13.2 27.1 56.4 70.7
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Figure 1. Heat released during low-emission cement hydration process. (Semi-adiabatic method
consistent with EN-196-9 [20]).

In accordance with EN 197-1 [3], cements C2-C4 can be classified as binders with low hydration
heat (LH), while the amount of heat released from hydration of multicomponent cement C1 is slightly
higher than 270 J/g.

Low-emission cements were characterized by relatively low strength properties in the initial
setting time (two days) and a significant increase in strength between 28 and 90 days of curing.
After 90 days, the levels of cement compressive strength prove to be similar and amount to over
70 MPa, except for slag cement CEM III/A C3, for which it was 66.6 MPa (Table 6).

Curing temperature has a significant impact on the dynamics of cement compressive strength
development. The results of compressive strength of standard mortars under reduced (+8 ◦C) and
higher (+38 ◦C) temperatures, after two and seven days of curing, are shown in Figure 2.Energies 2020, 13, x FOR PEER REVIEW 6 of 19 
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Rising the curing temperature from 20 ◦C to 38 ◦C caused a nearly 100% increase in early
compression strength after two days and a nearly 50% increase in strength after seven days of the
process. Lowering the curing temperature to 8 ◦C resulted in more than two-fold reduction in strength
after two days compared to curing at 20 ◦C, while for multicomponent cement C4 more than three
times. After seven days of curing, the differences reduced. It is clear that there is a visible reduction
of strength with a decrease in temperature, which significantly limits the application of this type of
cements in the autumn and winter season.

The effect of the water-cement (w/c) ratio on the compressive strength of mortars was also
investigated. The results are shown in Figure 3. The mortars were made with a mortar flow similar to
the one made with a standard w/c ratio 0.5. A superplasticizer based on polycarboxylic ethers was
used to improve the rheological properties of mortars.
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Figure 3. Compressive strength of cements with different w/c ratio: (a) Cement C1; (b) Cement C2;
(c) Cement C3; (d) Cement C4.

Lowering the w/c ratio from 0.5 to 0.4 and 0.3 resulted in a significant increase in compressive
strength. This effect was most visible in the case of early strength, i.e., after two and seven days of
curing. It should be emphasized that with a reduced w/c ratio, slag cements C1 (CEM III/A) and C3
(CEM II/C-M (S-LL)) are characterized by a much higher increase in strength than slag-fly ash cements
(C2 and C4).
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Concluding this part of the research, it should be stated that both the reduction of the w/c ratio
and the increase in the temperature of concrete curing are technological methods that allow to obtain
higher early strengths when using low-emission cements with a low content of Portland clinker.

3.2. Properties of Concretes

3.2.1. Concrete Exposed to Corrosion Due to Carbonation

Carbonation (reaction of calcium hydroxide and other hydrated phases of hydrated cement with
CO2 contained in atmospheric air) is one of the basic environmental factors, which concrete elements
and structures are subjected to [38–40]. This process leads to a decrease in the pH of the pore liquid in
concrete, thus, negatively affects the durability of concrete and, in particular, the passivating properties
of reinforcing steel [41,42]. Most concrete structures are exposed to this type of corrosion, therefore,
concrete elements such as walls, columns, ceilings, and foundations that are common constructions
ought to be resistant to the destructive effects of carbonation. The composition of concrete for the XC4
exposure class (Table 5) was designed based on the Polish national supplement to the EN 206 standard
contained in the PN-B-06265: 2018-10 standard [34].

The analyzed concrete mixtures performed S3 consistency class [26], lasting for 90 min (Figure 4).
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Concretes produced with low-emission C2–C4 cements in the amount of 300 kg/m3, after 90 days
of curing, achieved compressive strength fcm 50 MPa (Figure 5), which corresponded to the compressive
strength class C35/45 (required standard strength in exposure class XC4 is C 25/30 [34]).
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The results of the depth of water penetration under pressure (Table 7) prove that concrete tightness
improves with longer ageing period (from 28 days to 90 days).

Table 7. Properties of XC4 concretes with CO2 emission level.

Concrete
Clinker Content

per m3 of
Concrete [kg]

Concrete
Density
[kg/m3]

Curing
Time
[days]

Depth of Water
Penetration under

Pressure [mm]

Compressive
Strength fcm

[MPa]

CO2 Emission
per 1 MPa [kg]

CO2 Emission per
1 m3 of Concrete

[kg]

CO2 Emission per
1 Mg of Concrete

[kg]

XC4-C1 168 2344
28 25 43.6 3.24

141.12 60.2090 19 49.1 2.87

XC4-C2 150 2302
28 24 41.6 3.03

126.00 54.7490 18 52.6 2.40

XC4-C3 141 2265
28 21 40.1 2.95

118.44 52.2990 10 50.1 2.36

XC4-C4 132 2299
28 19 41.9 2.65

110.88 48.2390 14 54.3 2.04

Figure 6 presents the results of measuring the depth of concrete carbonation realized by the
accelerated method (CO2 concentration was 4%) [33] after 28 and 90 days of curing. Samples for
carbonation tests were cured in two variants: variant N—in water for seven days and in air-dry
conditions for the remaining curing period until the test date (designations 28 N and 90 N), variant P—in
water throughout the entire ageing period (designations 28 P and 90 P). The carbonation depth was
measured by applying a phenolphthalein indicator to the surface of the fresh fracture of the sample
(color has changed to purple at pH ≥ 8.3) [43]. The cross-section of samples after the determination is
shown in Figure 7.Energies 2020, 13, x FOR PEER REVIEW 9 of 19 
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The obtained results prove the beneficial impact of extended curing process in water on the
carbonation depth. The carbonation depth was the smallest for samples treated in water for a period of
90 days.

3.2.2. Frost-Resistant Concrete

In the temperate climate zone, one of the factors determining the durability of concrete is its
resistance to freeze-thaw cycles [44]. It is influenced by high daily temperature amplitudes associated
with frequent passages through 0 ◦C (over 100 passes each winter) [45]. The use of de-icing salts on
road communication facilities (mainly NaCl) is another essential aspect in the winter, accelerating frost
destruction, causing above all scaling of the surface layers of concrete [46]. The most effective methods
to increase concrete resistance to cyclic freezing and thawing processes are the proper aeration of
concrete, reduction of water-cement ratio and adequate curing [47].

Properties of concrete were designed (Table 5) and determined in order to meet the requirements
for exposure classes XF4 according to EN 206 [15]. Exposure class XF4 assumes corrosive effects due to
freeze/thaw cycles in the presence of de-icing salts or sea water. The test subjected non-aerated concrete
(additional designation N), aerated to the air content in the concrete mix of 5% vol. and concrete
containing microspheres (additional designation M) in the amount of 2.1 kg/m3 of concrete.
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Cements C1–C3 were used in the tests. The properties of concrete mixtures are presented in
Table 8. For XF4, XF4-M, and XF4-N concretes, the consistency of the concrete mix was established
by slump test after 5, 30, and 60 min after the first contact of cement with water. Achieving similar
slump values after 5 min (about 150 mm) for concretes without the addition of air-entraining agent
(XF4-M and XF4-N) required an increase in the superplasticizer dosage by 0.9 kg/m3. It was observed,
that despite the increased dosage of superplasticizer and similar initial consistencies, non-aerated
concrete mixtures and mixtures using polymer microspheres were characterized by a faster decrease in
consistency over the examined period of 60 min. The results of consistency tests are shown in Figure 8.

Table 8. XF4 concrete mixtures test results.

Property XF4-C1 XF4-C1-M XF4-C1-N XF4-C2 XF4-C2-N XF4-C3 XF4-C3-M XF4-C3-N

Air Content
[% vol.] 5.0 2.1 2.0 5.9 2.2 5.1 1.5 2.3

Density [kg/m3] 2481 2551 2580 2446 2571 2471 2540 2565
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The dynamics of strength increase of concretes is illustrated in Figure 9. The properties of
hardened concrete and decarbonization factor are demonstrated in Table 9. After 28 days of curing,
the concretes reached average fcm strength above 60 MPa, and after 90 days, the fcm strength
increased to approximately 70 MPa. Obtained level of strength met the requirements for class XF4
(minimum C 30/37).
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Table 9. Properties of XF4 concretes with CO2 emission level.

Concrete
Clinker

Content per m3

of Concrete [kg]

Concrete
Density
[kg/m3]

Curing
Time
[days]

Depth of Water
Penetration under

Pressure [mm]

Compressive
Strength fcm

[MPa]

CO2 Emission
per 1 MPa

[kg]

CO2 Emission
per 1 m3 of

Concrete [kg]

CO2 Emission
per 1 Mg of

Concrete [kg]

XF4-C1 196.0 2487
28 16 59.9 2.75

164.64 66.4490 12 68.6 2.40

XF4-C1-M 196.0 2571
28 17 70.0 2.35

164.64 63.9490 14 78.3 2.10

XF4-C1-N 196.0 2583
28 17 71.9 2.29

164.64 63.7490 14 81.4 2.02

XF4-C2 175.0 2465
28 28 60.1 2.45

147.00 59.1590 18 71.0 2.07

XF4-C2-N 175.0 2577
28 18 75.5 1.95

147.00 57.0490 15 86.4 1.60

XF4-C3 164.5 2487
28 17 61.8 2.24

138.18 55.7090 11 69.4 1.99

XF4-C3-M 164.5 2558
28 14 72.5 1.91

138.18 54.7990 10 77.5 1.78

XF4-C3-N 164.5 2569
28 11 76.0 1.82

138.18 53.7990 7 84.0 1.65

Frost resistance of concrete was determined by two methods. The concretes were tested for F150
frost resistance [34], which means that the concrete samples were subjected to 150 cycles of alternating
freezing and thawing in a special chamber. Samples were weighed before and after the freezing
(−18 ◦C) and thawing (+18 ◦C) cycles. The drop-in sample weight stands for a measure of concrete frost
destruction. A visual assessment was also carried out. In order to assess the destructive effect of frost
on the concrete microstructure, the compressive strength of samples subjected to freeze/thaw cycles
was provided, then compared to the strength of test specimens. This included samples that were not
subjected to freeze/thaw cycles and matured in laboratory conditions. The decrease in strength should
be ≤20%. Concretes were also submitted for resistance to freeze-thaw cycles in the presence of de-icing
salts in accordance with PN-B-06265:2018-10 [34]. The determination was made after 90 days of curing.
The test consisted of subjecting the surface obtained from the intersection of the concrete sample to
freeze/thaw cycles under a 3 mm thick 3% sodium chloride (NaCl) solution. The result of the test was
the mass of material exfoliated from the test surface after 56 freeze/thaw cycles. Frost resistance test
results on the F150 degree, as well as the resistance of concrete to cyclic freeze-thaw process in the
presence of de-icing salts are shown in Table 9 and Figure 10.
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The results of frost resistance tests (Table 10) revealed that concretes made of low-emission C1-C3
cements did not prove adequate frost resistance without the additional aeration process. Non-aerated
concretes on cements C1-C3 after 150 of freeze/thaw cycles showed strength drops well above 20% and
could not be considered as a frost-resistant. Frost resistance improves after the aeration of concrete,
both, through the use of traditional aeration agents and the addition of polymer microspheres, however,
the application of microspheres led to much greater decrease of strength. This requires an increase in
the number of microspheres in concrete composition—corresponding studies are on-going. The results
of concrete surface test on frost resistance in the presence of de-icing agents confirmed a significant
amount of scaling in non-aerated concretes. It has been observed, that both aeration by means of
an air-entrained admixture and polymer microspheres significantly reduced the mass of scaling of
the surface of concrete subjected to freezing/thawing cycles in the presence of deicing salts for all
cements used.

Table 10. Tests results of F150 frost resistance of concretes XF4.

Concrete

Test Ordinary Frost Resistance F150

Curing Time Average Mass Loss
∆mF

Average Decrease
in Strength ∆fF

Assessment Criteria

[Days] [%]

XF4-C1
28 0.04 1.92

Samples prove no
cracking
∆mF ≤ 5
∆fF ≤ 20

90 0.12 1.06

XF4-C1-M
28 0.68 17.21
90 0.90 19.11

XF4-C1-N
28 0.58 38.79
90 0.52 31.88

XF4-C2
28 0.25 2.41
90 0.04 1.27

XF4-C2-N
28 1.41 43.62
90 0.98 34.87

XF4-C3
28 0.39 4.17
90 0.11 1.49

XF4-C3-M
28 0.39 11.02
90 0.72 12.39

XF4-C3-N
28 1.78 52.16
90 1.16 39.16

3.2.3. Self-Compacting Concrete (SCC)

Self-compacting concrete is a product with special properties of concrete mixture that demonstrates
the ability to flow easily, tightly, and evenly filling the formwork, bypassing the vibration process,
without segregating the ingredients. This allows one to eliminate the nuisance associated with
noise and vibration when concreting and reduce the labor and energy consumption of concrete
works. Self-compacting concrete mixture is required to obtain specific rheological properties,
i.e., flowability and stability, as well as the ability to flow through reinforcement without loss
of homogeneity. Self-compacting concrete is currently widely used both in prefabrication plants and in
the implementation of monolithic elements with a complex reinforcement system [48,49].

Mixtures of self-compacting concrete were designed according to the composition presented in
Table 6. The following properties of concrete mixture were determined:

• Consistency by concrete slump test acc. to EN 12350-8:2019-08 [27],
• Viscosity by V-funnel method acc. to EN 12350-9:2012 [28],
• Flow ratio by L-box method acc. to EN 12350-10:2012 [29].
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The test results of self-compacting concrete mixtures are presented in Table 11. No signs of
segregation of components were observed (Figure 11). The consistency, viscosity and flow rates were
obtained in accordance with the requirements for self-compacting concrete mixtures.

Table 11. SCC concrete mixture test results.

Test
Results after 90 min

Consistency Class
SCC-C1 SCC-C2 SCC-C3 SCC-C4

Slump [mm] 650 690 680 670 SF2
V-funnel [s] 4.3 4.9 6.5 7.1 VF1

L-box [-] 0.85 0.98 0.92 0.89 PL2
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The properties of hardened concrete and the emissivity of concrete are shown in Table 12.
Concrete was characterized by high tightness, which increased with the curing period. This was visible
in the measurements of the depth of water penetration under pressure after 28 and 90 days of curing.
A similar trend was noted for the level of strength increase. The highest dynamics of strength increase
between 7 and 90 days of curing period was performed by concrete made of C4 cement containing 53%
of the slag S and fly ash V mixture (Figure 12).

Table 12. Properties of SCC concretes with CO2 emission level.

Concrete
Clinker Content

per m3 of
Concrete [kg]

Concrete
Density
[kg/m3]

Curing
Time
[days]

Depth of Water
Penetration under

Pressure [mm]

Compressive
Strength fcm

[MPa]

CO2 Emission
per 1 MPa [kg]

CO2 Emission
per 1 m3 of

Concrete [kg]

CO2 Emission
per Mg of

Concrete [kg]

SCC-C1 212.8 2281
28 18 70.6 2.53

178.75 78.3790 13 78.4 2.04

SCC-C2 190.0 2254
28 23 65.1 2.45

159.60 70.8190 15 79.5 2.01

SCC-C3 178.6 2279
28 18 63.4 2.37

150.02 65.8390 15 72.3 2.08

SCC-C4 167.2 2283
28 23 62.2 2.26

140.45 61.5290 16 81.3 1.73
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3.2.4. High-Performance Concrete (HPC)

HPC high-performance concrete stands for concrete obtained by modifying the composition
in terms of quality and quantity. Typically, such concretes are produced with high-quality cement,
maintaining a low water-cement ratio (water-binder), resulting from the use of highly effective chemical
admixtures (plasticizers and superplasticizers) and active additives of type II (most frequently silica
fume SF) [50,51]. The application of high-strength concrete in construction allows for a reduction in
cross-sections of structural elements, less wear of reinforcing steel and the reduction of the structure’s
own weight while ensuring that the load capacity of the element and durability are preserved at the
right level [52,53].

Table 5 present the compositions of HPC concretes. The consistency of the tested concrete mixtures
remained in S3 consistency class for 90 min (Figure 13). Hardened concrete showed high tightness
and average compressive strength fcm, approximately 100 MPa after 28 days of curing (Table 13).
The increase in strength between 28 and 90 days of curing time ranged from 5% in case of C3 cement
(slag cement CEM III/A) to about 15% in case of cement C2 and C4 (Figure 14). Noteworthy is also the
low emissivity level—below 2 kg of CO2 per 1 MPa after 90 days of curing (Table 13).
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Table 13. Properties of HPC with CO2 emission level.

Concrete
Clinker Content

per m3 of
Concrete [kg]

Concrete
Density
[kg/m3]

Curing
Time
[days]

Depth of Water
Penetration under

Pressure [mm]

Compressive
Strength fcm

[MPa]

CO2 Emission
per 1 MPa [kg]

CO2 Emission
per 1 m3 of

Concrete [kg]

CO2 Emission
per Mg of

Concrete [kg]

HPC-C1 268.8 2531
28 14 108.9 2.07

225.79 89.2190 11 117.9 1.71

HPC-C2 240.0 2472
28 17 96.1 2.10

201.60 81.5590 7 108.4 1.86

HPC-C3 225.6 2491
28 15 101.4 1.87

189.50 76.0890 10 106.8 1.77

HPC-C4 211.2 2484
28 21 101.6 1.75

177.41 71.4290 9 115.1 1.54
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The investigated high-performance concretes HPC, despite the lack of the aeration admixtures
in composition, met the requirements for the degree of frost resistance F150 after 28 days of curing
(Table 14). Strength drop after the frost resistance test was several percent (permitted value is up to
20%). This was the result of the formation of a tight structure in the binder matrix of concrete, the fact
confirmed by the results of the depth of water penetration under pressure. The high compressive
strength fcm around 100 MPa after 28 days of curing was not without significance (Table 13, Figure 14).

Table 14. Frost resistance F150 test results of HPC concretes.

Concrete

Frost Resistance F150

Curing Time
Average

Mass Loss
∆mF

Average Strength
of Test

Specimens fF1

Average Strength
of Frozen

Samples fF2

Average Strength Loss
∆fF

Assessment
Criteria

[days] [%] [MPa] [%]

HPC-C1
28 0.15 103.0 101.8 1.2

Samples
prove no
cracking
∆mF ≤ 5
∆fF ≤ 20

90 0.10 104.3 103.8 0.5

HPC-C2
28 0.22 94.4 92.2 2.3
90 0.10 113.7 108.0 3.0

HPC-C3
28 0.18 91.6 89.6 2.2
90 0.13 98.1 96.5 1.6

HPC-C4
28 0.37 98.9 95.4 3.5
90 0.14 109.1 106.7 2.2

4. Summary

The prospects of reducing carbon dioxide emissions through various methods at the cement
(concrete) production stage are one of the key factors determining their increasingly neutral
environmental impact. It is important to make the most of concrete’s capacity and capture its
value already at the design stage of the concrete structure (object).
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Table 15 presents CO2 emissivity calculated for obtaining strength at 1 MPa. Attention ought to
be paid to its reduction after 90 days of concrete curing.

Table 15. The emissivity of concretes calculated per 1MPa.

Concrete Designation Cement Content [kg/m3] Clinker Content [kg/m3] w/c Ratio
CO2 Emission Level per 1 MPa

28 Days of Curing 90 Days of Curing

XC4-C1

300

168.0

0.55

3.24 2.87
XC4-C2 150.0 3.03 2.40
XC4-C3 141.0 2.95 2.36
XC4-C4 132.0 2.65 2.04

XF4-C1

350

196.0

0.45

2.75 2.40
XF4-C1-M 2.35 2.10
XF4-C1-N 2.29 2.02

XF4-C2
175.0

2.45 2.07
XF4-C2-N 1.95 1.60

XF4-C3
164.5

2.24 1.99
XF4-C3-M 1.91 1.78
XF4-C3-N 1.82 1.65

SCC-C1

380 (+120 FA)

212.8

0.46 (0.41) *

2.53 2.04
SCC-C2 190.0 2.45 2.01
SCC-C3 178.6 2.37 2.08
SCC-C4 167.2 2.26 1.73

HPC-C1

480 (+30 SF)

268.8

0.36 (0.33) **

2.07 1.71
HPC-C2 240.0 2.10 1.86
HPC-C3 225.6 1.87 1.77
HPC-C4 211.2 1.75 1.54

* w/(c + 0.4 FA). ** w/(c + SF).

The selection of an appropriate type of cement, considering its quantity and emissivity, moreover,
the choice of a low water-cement ratio (using effective superplasticizers) and a properly designed
aggregate skeleton in the mixture, ensure the production of good quality concrete that plays a key role
in reducing CO2 emissions generated by cement industry and the entire construction industry.

The test results of low-emission cements and concretes made with their use, presented in the article,
testify to the wide range of possible applications of low-emission cements in construction (concrete for
the construction of foundations, foundation walls, columns and floors, prefabrication, high performance
concrete), and under the provision of the additional technological conditions associated with confirming
concrete frost resistance (aeration of the concrete mix) also in infrastructural elements. The properties
of the similar ternary cements have been also tested by other researchers [54,55]. Achieved results
were similar, but in this article the authors focused on presenting the application possibilities of
concretes made of low-emission cements, where Portland and slag cements are currently used. In the
future, the researchers intend to focus on testing the concretes made of CEM II/C-M and CEM VI
multi-component cements built into real structures on an industrial scale.

5. Conclusions

Based on the results obtained, the following conclusions were drawn:

• Portland multicomponent cements CEM II/C-M (S-LL) and CEM II/C-M (S-V), slag cement CEM
III/A, as well as multicomponent cement CEM VI (S-V) perform low emission per Mg of produced
cement, ranging from 369.6 (CEM VI) to 470.4 (CEM II/C-M (S-LL) kg CO2.

• Low-emission cements CEM II/C-M, CEM III/A and CEM VI with a high content of non-clinker
main components (ground granulated blast furnace slag (S), siliceous fly ash (V) and limestone
(LL)) are characterized by a moderate increase in compressive strength at the beginning of curing
(2 and 7 days) and a significant increase in strength over a longer period of time.

• Reducing the w/c ratio or rising the temperature results in a significant increase in concrete
strength, both early and after a longer period of curing. Lowering the temperature has the
opposite effect, which can lead to complications with the use of low-emission concretes at low
temperatures in the autumn and winter weather.
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• Longer curing period and concrete humidity care improve the tightness of cement matrix,
which results in an increase in compressive strength and durability. Appropriate selection of
concrete mixture composition (w/c = 0.45, adequate aeration of concrete mixture, the use of
frost-resistant aggregate, proper care) allows to obtain concrete with a high frost resistance both in
the presence of de-icing salts and without them.

• Self-compacting concrete mixtures SCC produced with the use of low-emission cements CEM
II/C-M, CEM III/A, CEM VI and the addition of FA fly ash were characterized by adequate flow,
stability and viscosity of the concrete mixture in the assumed time of 90 min.

• Low-emission cements can be successfully applied into the production of HPC high-performance
concretes (using SF silica fume an additive type II). After 90 days of curing, all analyzed concretes
reached compressive strength above 100 MPa.

• Significant increase in strength in the later period of curing (between 28 and 90 days) is a key
feature of the tested concretes with low-emission cements, leading to a decrease in the level of
emissions associated with obtaining 1 MPa of concretes’ compressive strength.
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