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Abstract: In recent years, the H-rotor vertical-axis turbine has attracted considerable attention in
the field of wind and tidal power generation. After a series of complex spatiotemporal evolutions,
the vortex shed from turbine blades forms a turbulent wake with a multi-scale coherent structure.
An analysis of the wake characteristics of twin turbines forms the basis of array optimisation.
This study aimed to examine the instability characteristics of a twin-turbine wake with two rotational
configurations. The dynamic evolution characteristics of coherent structures with different scales
in the wake were analysed via wavelet analysis. The results show that an inverse energy cascade
process occurs after the high-frequency small-scale coherent structures induced by rotation lose
their coherence. This self-organising characteristic is more apparent in the quasi two-dimensional
wake of a forward-moving counter-rotating turbine (Array 1) than in that of a backward-moving
counter-rotating turbine (Array 2). With greater organisation and coherence, the wake of Array
1 exhibits low-frequency instability characteristics dominated by a large-scale coherent structure.
In addition, the signals reconstructed using wavelet transform show that asymmetric modes exist
between low-frequency large-scale coherent structures. The experimental results provide a new
perspective on the instability mechanism of twin-turbine wakes, as well as important data for
numerical modelling.
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1. Introduction

Wind and tidal power generation technologies have advanced rapidly in recent years. Turbine wake
is a type of unsteady turbulent flow. The wake effect exerts an important influence on the power
generation efficiency of a turbine, fatigue life of a rotor, and stability of a power grid. Therefore, it is
crucial to study the flow characteristics of turbine wake.

H-rotor turbine is the core equipment for vertical-axis wind power generation and tidal power
generation [1,2]. Compared with the horizontal axis turbine, the vertical axis turbine can absorb energy
in any direction of flow without complicated yaw system. The vertical axis turbine has a broad prospect
in offshore wind power generation. The swept surface of a rotating vertical-axis H-rotor turbine
(or horizontal axis turbine) blades is a cylinder (or disk). In many wake calculations, the turbine rotor
can be described by a generalised actuator disk or actuator cylinder. To reduce the calculation for wake
simulation, Rajagopalan et al. [3] used the CFD (Computational Fluid Dynamics) method to solve the
generalised actuator disk rather than the dense blade grid and adopted the aerodynamic force acting
on the wind turbine to the control equation. Wu [4] first described the nonlinear actuator disk model of
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a propeller using a formula. Although real numerical calculations were not conducted, the possibility
of applying the actuator disk model to the numerical simulation of complex shapes was demonstrated.
Conway [5] further studied the numerical analysis method. Madsen [6] was the first to propose a
nonlinear actuator disk model for wind turbine aerodynamics and an actuator cylinder model to
describe the flow field of vertical-axis wind turbines. Sørensen and Shen [7] introduced the actuator
line method as an extension of the actuator disk method for non-uniform force. Shen and Zhang [8]
extended the actuator line method to the actuator surface method and applied it to a vertical-axis
wind turbine. The application of the method based on the actuation theory in the far wake region has
yielded satisfactory results. However, research into the interaction between blade geometry and wake
in this series of methods is still in progress, and the relevant theoretical knowledge requires further
verification and supplementation.

Periodic vortex shedding is an instability that generally occurs in the wake of a typical blunt body,
such as a cylinder or disk. This type of wake instability has also been reported in the wake of turbines.
Medici and Alfredsson [9] detected a low-frequency peak in the wake spectrum. They determined
it to be a manifestation of a blunt body wake mode that had evolved from the turbine’s instability.
Araya et al. [10] compared and analysed the wake of a vertical-axis turbine with the cylinder wake
and linked them quantitatively.

Research on twin vertical-axis turbine arrays focuses mainly on the layout and output performance.
Zanforlin and Nishino [11] used two-dimensional numerical simulation to study the aerodynamic
performance of two counter-rotating vertical-axis turbines. It was observed that the overall power
output of staggered turbines was less than that of parallel turbines. The decrease of power
output depended on the direction of flow and the rotation configurations. Chen et al. [12] used
a two-dimensional SST k–ω model based on DES simulation to study the power coefficients of two
vertical-axis turbines by varying five factors. They observed that the five factors influenced the power
factor to different levels (tip speed ratio > inflow direction angle > rotation direction > spacing > blade
angle). The tip speed ratio had the greatest influence on the power output. Furthermore, the power
coefficient of the two turbines was higher during reverse rotation. The power output of the two reverse
rotating turbines was 9.97% higher than that of one turbine.

There are few reports on the study of the wake dynamic characteristics of twin vertical-axis turbines.
Lam and Peng [13] studied the wake characteristics of a twin vertical-axis turbine with a spacing of 1D,
through wind tunnel experiments (T/D = 2; T = distance between the two centres; D = diameter). It was
observed that the method of reverse rotation aided the wake recovery. In particular, they observed
that a pair of counter-rotating vortices in the wake evolution process also contributed to the wake
recovery. Subsequently, they put forward two types of turbine array arrangement. In addition, there are
few reports on the instability characteristics of the wake evolution of twin vertical-axial turbines.
However, there have been substantial achievements in the study of the flow around two parallel
cylinders. Zdravkovich and Pridden [14] divided the flow around two parallel cylinders into three
main flow patterns according to the influence of the distance ratio on the wake: single blunt body
mode (1 < T/D < 1.1–1.2); asymmetric mode (1.1–1.2 < T/D < 2–2.5), and symmetric mode (T/D > 2–2.5).
There were biased flow patterns in the asymmetric mode region (Alam et al. [15], Zhou et al. [16],
Xu et al. [17]). When the fluid flowed between two parallel cylinders, a random oscillating clearance
flow was formed between the two cylinders. When the clearance flow deviated to one of the cylinders,
the width of the wake became narrow and the vortex shedding frequency and drag coefficient increased.
Simultaneously, the wake of the other cylinder widened and the vortex shedding frequency and drag
coefficient reduced.

A relationship exists between the wake of a H-rotor vertical-axis turbine and the cylinder
wake. Furthermore, the two differ owing to the turbine rotation and vortex shedding by the blades.
The differences and relationships between the wake characteristics of the two need to be explored further.
Particularly, the wake instability, which occurs in the flow around two parallel cylinders, has rarely
been reported in studies of the wake evolution of twin vertical-axial turbines. Therefore, wind tunnel
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tests are conducted to examine the space–time evolution characteristics of the wake of counter-rotating
twin turbines with two rotational configurations, particularly the instability characteristics of the
wake. The results of previous experiments [18] showed that with the increase of solidity (for example,
the chord length remained unchanged at 81 mm, and the number of blades changed from three to
five), the vertical axis turbine presented a low-frequency instability mode characterized by large-scale
coherent structure dominating wake development. At 5D, the five-blade turbine evolved into a
low-frequency instability mode, while the wake of the three-blade turbine was still dominated by
the rotation effect. In this study, wavelet analysis is also used to investigate wake instability of twin
three-blade turbines.

The remainder of this paper is organised as follows: Section 2 introduces the experimental methods.
Section 3.1 analyses the time-averaged characteristics of a forward-moving counter-rotating turbine
(Array 1), describes the temporal and spatial evolution characteristics, and reveals the asymmetric
modes between large-scale structures in the wake. Section 3.2 presents the time-averaged characteristics,
evolution characteristics, and self-organisation characteristics of the wake of a backward-moving
counter-rotating turbine (Array 2) and a comparative analysis with the wake of Array 1. Finally, Section 4
summarises the paper.

2. Methods

2.1. Wind Tunnel and Twin Turbine

The test section of the wind tunnel had a length of 18 m, width of 3 m, and height of 2.5 m (Figure 1:
left side). The turbulence intensity at 6 m away from the entrance of the test section was 0.3% when
the wind speed was 7.7 m/s. The distance between the centres of the two turbines was 1.2 times the
diameter of the turbine (T/D = 1.2). The midpoint (O) of the line between the geometric centre points of
the two turbines’ cross-sections coincided with the centre point of the cross-section of the test section.
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Figure 1. H-rotor turbines in the wind tunnel.

Three blades with the NACA 0018 airfoil section and a pair of 2-mm-thick struts constituted the
H-shaped rotor of the turbine (Figure 1: right side). The chord length of the blade was 81 mm, and the
installation angle between the blade and strut was 0◦. The diameter of the turbine (D) was 600 mm,
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and the height was 810 mm. The two turbines were combined in different rotational directions to form
two arrays (see Table 1). The direction of rotation of the turbine was observed from above.

Table 1. Description of the two arrays studied.

Array # Turbine 1 Turbine 2

1 Anticlockwise rotation Clockwise rotation
2 Clockwise rotation Anticlockwise rotation

The limited size of the wind tunnel would produce a blocking effect. The following formula is
provided for the solid block ratio:

B =
rotor frontal area
test section area

, (1)

According to Formula (1), the solid blocking ratio was 13%, just above 10%. The blocking
effect is an unavoidable problem in wind tunnel test. However, when the numerical calculation is
compared with the test data, the wind tunnel measurement environment can be well reproduced [19].
Therefore, there was no blocking correction in this study. The blocking correction can refer to the
correction method of Savonius vertical-axis wind turbines in reference [20]. The wake measurement
area of this test was controlled to within five times of the turbine diameter (5D), to minimise the wake
blockage effect.

2.2. Measurements

The cobra probe used for wake measurement was a series 100 model manufactured by TFI.
The sampling frequency selected in this experiment was 100 Hz, which satisfied the scale requirements
of the study. The measurement area is shown in Figure 2. Because the two turbines were arranged
symmetrically, only the wake information of Turbine 1 was collected in the test. The sampling time of
each measuring point was 30 s.
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The system errors (ES) were estimated by measuring the flow inconsistencies in the empty
tunnel. The uncertainty (ESx) of the system errors in the x-direction was estimated by measuring the
streamwise velocity at P111, P211, P311, P411, and P511. The uncertainty (ESy) of the system errors in the
y-direction was determined by collecting the streamwise component of the 21 points from P301 to P321.
The uncertainty (ER) of the random errors was determined by repeatedly collecting the streamwise
component at P304 in the turbine wake. The overall uncertainty was determined according to the
following formula provided in reference [13]:

ET =

√
(ER)

2 + (ESx)
2 + (ESy)

2, (2)

The measurements yielded the following: ESx = 0.9%, ESy = 1.2%, and ER = 0.4%. Thus, the overall
uncertainty was 1.6%.

Moreover, the turbine torque output at different rotation speed was measured. The torque output
curves are given in Figure A1 of the Appendix A. The wake of a turbine depends on its operating
state [21]. The operating state at 500 rpm was selected as a typical condition to collect wake information.

2.3. Wavelet Analysis Method

The wavelet coefficient formula of a signal f(t) can be expressed as

T(a, b) = ( f (t),ψa,b(t)) =
1
√

a

∫ +∞

−∞

f (t)ψ∗(
t− b

a
)dt, (3)

T(a, b) is called the wavelet transform coefficient, and t is the time variable. Here, a is the expansion
variable, and b is the translation variable. Ψ is the mother wavelet, and Ψ* is the conjugate of Ψ .
A Morlet wavelet [22] was used as the mother wavelet in this study. Both wavelet and Fourier are
integral transforms. Expanding a function under a wavelet basis function implies the projection of a
function onto a two-dimensional time-scale plane.

Wavelet analysis is an important method for turbulence research. It compensates for the spectrum
analysis’ dependence on the number of samples and time interval. It can be used for a localisation
analysis. In a wavelet analysis, the Fourier transform basis function is replaced with a ‘wavelet
function’. It has a good time-frequency analysis function, can conduct multi-scale and multi-resolution
analyses of time series signals, and is an effective tool for analysing the energy distribution of various
frequency component signals and for extracting local information. Moreover, the variation in the
wavelet energy spectrum intensity with time and frequency can reveal other physical mechanisms [23].

3. Results and Discussion

3.1. Forward-Moving Counter-Rotating Turbine

For Array 1, Turbine 1 rotates anticlockwise, and Turbine 2 rotates clockwise (Figure 3b). The blades
passing through the intermediate clearance between the two turbines always move forward (x +) in
the wind direction.

3.1.1. Time-Averaged Wake Characteristics

Figure 3a shows the normalised time-averaged streamwise velocity distribution. Figure 3b
is the interpolated cloud chart of Figure 3a. In this test, the free inflow (U0) was maintained at
7.7 m/s. Both the turbines rotated at 500 rpm. Figure 3 shows that there is a velocity deficit region
downstream of the rotating rotor, owing to momentum extraction and the blocking effect. The speed is
not immediately reduced to the maximum attenuation value when the free inflow passes through the
turbine rotor. It first moves downstream for a certain distance, attains the maximum speed attenuation
value, and then recovers gradually. The interaction between the clearance flow and wake flow results
in the development of the intermediate shear layer, whereas the interaction between the free inflow
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and wake flow results in the development of the lateral shear layer. Figure 3 shows that the shear
layer expands continuously in the process of developing downstream. In addition, wake excursions
induced by the rotor’s rotation can be observed. The above characteristics are in accordance with the
literature [24–26].
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In particular, the velocity information of a few measuring points at 4D and 5D in Figure 3a
is absent. There are a large number of zero values in the velocity time series measured at 4D and
5D. The time series defaults to zero because the cobra probe cannot capture the return velocity.
Although the probe can output the time-averaged velocity information, it cannot reflect the flow
fact. Therefore, the velocity information of the re-circulation region at 4D and 5D in Figure 3a is not
analysed statistically. The re-circulation region had been addressed in accordance with reference [27].
Notably, the negative velocity information of the re-circulation region is not reflected in Figure 3b.
This is because the cloud images in this paper are interpolation cloud images. The cloud charts in this
paper are only for illustration.

Figure 4 shows the distribution of normalised normal Reynolds stress uu/ U0
2 and the interpolated

cloud chart. The maximum value appears at 1D of the intermediate shear layer, where a strong shear is
formed between the clearance flow and wake flow. The secondary maximum value appears in the
lateral shear layer downstream of the re-circulation region. The maximum values are concentrated
in the shear layer with a sharp velocity gradient. The shear layer contains coherent structures of
different scales. These coherent structures develop and brake, which causes the low-speed fluid in
the wake to mix with the high-speed free inflow outside. Thereby, the momentum of the external free
inflow is transferred to the wake, which causes the wake area and shear layer to expand gradually.
Next, the wavelet transform is used to determine the dynamic evolution characteristics.
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3.1.2. Dynamic Characteristics of Evolution

Figure 5b–d shows the wavelet energy spectrum of the measuring points in the lateral shear
layer. Blade vortex shedding (3f ) dominates the wake development at P103 (Figure 5b). In addition, a
coherent structure with a lower frequency appears, which indicates that the blade vortex shedding
begins to lose coherence gradually when the wake reaches 1D. As the wake continues to develop
downstream and reaches 3D P303 (Figure 5c), the blade vortex shedding breaks completely and
disappears. However, the coherent structure induced by rotation still dominates the wake development.
The coherent structure with the rotating frequency f as the dominant frequency can be observed clearly.
Meanwhile, the energy of the low-frequency coherent structure continues to increase, whereas that
of the high-frequency coherent structure continues to decrease. When the wake coherent structure
develops to 4D P402 (Figure 5d), the high-frequency small-scale coherent structure induced by rotor
rotation breaks and disappears. Furthermore, the low-frequency coherent structures are relatively
stable and independent, thereby dominating the wake development. The low-frequency coherent
structure of 4D is the result of the evolution of the coherent structure of 3D. In the evolution process,
the dominant frequency of the coherent structure decreases gradually, and its scale continues to increase.

Figure 6b,c is the wavelet energy spectrum of the measuring points in the intermediate shear layer.
The blade vortex shedding has broken completely and disappeared at 1D P110, unlike in the case of the
lateral shear layer. The small-scale coherent structure with frequency f induced by rotation dominates
the wake development. A low-frequency large-scale coherent structure appears simultaneously. At 2D
P210, the coherence of the low-frequency large-scale structures increases gradually, whereas most of the
small-scale coherent structures induced by rotation have broken.
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The direction of blade movement through the two turbine intervals of Array 1 is identical to that of
the incoming flow. Furthermore, the direction of blade movement on both the sides is opposite to that
of the incoming flow. This rotational configuration promotes the development of clearance flow, which
accelerates the loss of coherence of blade vortex shedding and the occurrence of shear layer instability.
This rotational configuration also causes the wakes of the two turbines to shift outwards relative to each
other. A strong shear is produced by the outward offset wake and the free inflow. In the lateral shear
layer, the blade vortex shedding loses coherence in 2D under strong shear. As the blade vortex shedding
loses coherence, the rotation induction effect disappears gradually and the energy of the high-frequency
small-scale coherent structure decreases gradually. Then, the dominant frequencies (3D and 4D) of
the wake coherent structure gradually decrease and the scale gradually increases. The time-averaged
wake velocity distribution (Figure 3a) indicates the presence of a re-circulation region at 4D and 5D.
In addition to the re-circulation region, 5D P504 (Figure 6a) is selected, and the wavelet energy spectrum
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of its time series signal is shown in Figure 7. As is evident from Figure 7, as the wake development
proceeds, the organisation of the coherent structure is enhanced, and the energy is concentrated in the
low-frequency range of 2–3 Hz. The constant Strouhal number is between 0.16 and 0.23 with respect
to D. The low-frequency instability characteristic of the large-scale coherent structure dominating
the wake development was mentioned in reference [10]. Therein, the wake of a vertical-axis turbine
evolved into a blunt body wake mode, and the Strouhal number was approximately 0.26. However,
the Strouhal number in this study fluctuates in a narrow frequency band.
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As mentioned earlier, the rotating configuration of Array 1 causes the two turbines’ wakes to
diverge away from each other. This promotes the development of clearance flow. It can be inferred
that the clearance flow that is biased towards a turbine causes the wake on this side to narrow with
an increase in the shedding frequency. Simultaneously, the clearance flow causes the wake on the
other side to widen with a decrease in the shedding frequency. That is, there are asymmetric modes
between the large-scale coherent structures in the wake evolution process of the twin turbines in Array
1. Next, wavelet decomposition and reconstruction are applied to demonstrate this flow pattern.

3.1.3. Asymmetrical Mode

Figure 8 is a local enlarged image of Figure 7, which is a typical wavelet energy spectrum
of the scale of dynamic variation, for the period 13–19 s. This figure also reflects the intermittent
process of turbulence effectively. The top of Figure 9 is the original time series signal of P504, and the
frequency range of the original signal is 0–48.4 Hz. The bottom graph in Figure 9 shows the fifth layer
high frequency component u5 after wavelet decomposition and reconstruction of the original signal;
u5 has a frequency range of 1.5–3 Hz. In this study, the db3 wavelet is used for the decomposition
and reconstruction.Energies 2020, 13, x FOR PEER REVIEW 11 of 19 

 

 

Figure 8. The 13–19 s local graph of Figure 7. 

 

Figure 9. Original time series signal of P504 (top) and the reconstructed signal (bottom). 

As is evident from Figure 8, the frequency of the coherent structure is mainly about 2 Hz 
between 14 and 15 s. Furthermore, it is in a state of continuous reduction. The dominant frequency of 
the coherent structure continues to decrease in 15–16 s and attains 1 Hz. That is, in 14–16 s, the 
coherent structure is in a mode where the dominant frequency decreases continuously. The 
continuous decrease in the dominant frequency implies that the scale of the coherent structure 
continues to increase, i.e., the wake continues to widen. The reconstructed velocity time series 
(Figure 9: bottom) also shows the dynamic process of the gradually increasing cycle in 14–16 s. The 
periodicity disappears in 16–17 s. Another mode appears in the coherent structure in 17–18 s (Figure 
8). The dominant frequency of the coherent structure begins to increase, and the scale decreases 
continuously, i.e., the wake continues to narrow. 

The previous evolution process reveals that the low-frequency large-scale coherent structure 
dominates the wake development of Array 1. In addition, the low-frequency instability fluctuates in 
a narrow frequency band. Asymmetric modes exist between the large-scale coherent structures. 

3.2. Backward-Moving Counter-Rotating Turbine 

For Array 2, Turbine 1 rotates clockwise, and Turbine 2 rotates anticlockwise (Figure 10b). The 
direction of blade movement through the intermediate clearance of the two turbines is always 
backward (x is negative) against the wind. 

3.2.1. Time-Averaged Wake Characteristics 

As shown in Figure 10a,b, the degree of expansion of the intermediate shear layer in the wake of 
Array 2 is less than that of Array 1. This is because the two turbines’ wakes in Array 2 are close to 

Figure 8. The 13–19 s local graph of Figure 7.



Energies 2020, 13, 4310 11 of 18

Energies 2020, 13, x FOR PEER REVIEW 11 of 19 

 

 

Figure 8. The 13–19 s local graph of Figure 7. 

 

Figure 9. Original time series signal of P504 (top) and the reconstructed signal (bottom). 

As is evident from Figure 8, the frequency of the coherent structure is mainly about 2 Hz 
between 14 and 15 s. Furthermore, it is in a state of continuous reduction. The dominant frequency of 
the coherent structure continues to decrease in 15–16 s and attains 1 Hz. That is, in 14–16 s, the 
coherent structure is in a mode where the dominant frequency decreases continuously. The 
continuous decrease in the dominant frequency implies that the scale of the coherent structure 
continues to increase, i.e., the wake continues to widen. The reconstructed velocity time series 
(Figure 9: bottom) also shows the dynamic process of the gradually increasing cycle in 14–16 s. The 
periodicity disappears in 16–17 s. Another mode appears in the coherent structure in 17–18 s (Figure 
8). The dominant frequency of the coherent structure begins to increase, and the scale decreases 
continuously, i.e., the wake continues to narrow. 

The previous evolution process reveals that the low-frequency large-scale coherent structure 
dominates the wake development of Array 1. In addition, the low-frequency instability fluctuates in 
a narrow frequency band. Asymmetric modes exist between the large-scale coherent structures. 

3.2. Backward-Moving Counter-Rotating Turbine 

For Array 2, Turbine 1 rotates clockwise, and Turbine 2 rotates anticlockwise (Figure 10b). The 
direction of blade movement through the intermediate clearance of the two turbines is always 
backward (x is negative) against the wind. 

3.2.1. Time-Averaged Wake Characteristics 

As shown in Figure 10a,b, the degree of expansion of the intermediate shear layer in the wake of 
Array 2 is less than that of Array 1. This is because the two turbines’ wakes in Array 2 are close to 

Figure 9. Original time series signal of P504 (top) and the reconstructed signal (bottom).

As is evident from Figure 8, the frequency of the coherent structure is mainly about 2 Hz between
14 and 15 s. Furthermore, it is in a state of continuous reduction. The dominant frequency of the
coherent structure continues to decrease in 15–16 s and attains 1 Hz. That is, in 14–16 s, the coherent
structure is in a mode where the dominant frequency decreases continuously. The continuous decrease
in the dominant frequency implies that the scale of the coherent structure continues to increase,
i.e., the wake continues to widen. The reconstructed velocity time series (Figure 9: bottom) also shows
the dynamic process of the gradually increasing cycle in 14–16 s. The periodicity disappears in 16–17 s.
Another mode appears in the coherent structure in 17–18 s (Figure 8). The dominant frequency of the
coherent structure begins to increase, and the scale decreases continuously, i.e., the wake continues
to narrow.

The previous evolution process reveals that the low-frequency large-scale coherent structure
dominates the wake development of Array 1. In addition, the low-frequency instability fluctuates in a
narrow frequency band. Asymmetric modes exist between the large-scale coherent structures.

3.2. Backward-Moving Counter-Rotating Turbine

For Array 2, Turbine 1 rotates clockwise, and Turbine 2 rotates anticlockwise (Figure 10b).
The direction of blade movement through the intermediate clearance of the two turbines is always
backward (x is negative) against the wind.

3.2.1. Time-Averaged Wake Characteristics

As shown in Figure 10a,b, the degree of expansion of the intermediate shear layer in the wake of
Array 2 is less than that of Array 1. This is because the two turbines’ wakes in Array 2 are close to each
other. The Reynolds normal stress in the intermediate shear layer (Figure 10c,d) first increases and
then decreases.

The normal stress distribution of the lateral shear layer (Figure 10c,d) has the maximum value
at 1D. Thereafter, it shows a weakening trend. This is because Turbine 1 rotates clockwise and the
direction of blade movement through the lateral shear layer is identical to that of the incoming flow.
The normal stress distribution trend of the lateral shear layer of Array 1 (Figure 4a,b) is contrary to that
of Array 2 owing to the different rotational configurations.
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3.2.2. Dynamic Characteristics of Evolution

In the intermediate shear layer 1D P110 (Figure 11b) of the wake of Array 2, the blade vortex
shedding interaction increases. However, the wake development continues to be dominated by
the blade vortex shedding with a frequency of 3f. However, the blade vortex shedding of Array 1
completely disappears at 1D P110 (Figure 6b). At 3D P311 (Figure 11c), the rotation induction effect still
exists. While the wake of Array 1 is in 2D (Figure 6c), most of the coherent structures with frequency f
have broken. At 5D P503 (Figure 11d), although the energy of the low-frequency large-scale coherent
structures has increased, their energy is not concentrated, and their organisation and coherence are not
strong. In addition, the high-frequency small-scale coherent structure induced by rotation still exists.

It is evident from the evolution process of the coherent structure that the interaction between the
lateral shear and free inflow is weaker than that of Array 1 because the wakes of the two turbines in
Array 2 are close to each other. The high-frequency small-scale coherent structure passing through
the lateral shear layer loses coherence after that of Array 1. This rotation configuration also hinders
the development of clearance flow. The high-frequency small-scale coherent structure induced by
rotation passing through the clearance also loses coherence after that of Array 1. In conclusion, the
Array 2 turbine does not exhibit the low-frequency instability characteristic of the large-scale coherent
structure dominating the wake development.
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Figure 11. Wavelet transform analysis of time series at different measuring points in the shear layer:
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3.2.3. Self-organisation Characteristics

Previous research has shown that the high-frequency small-scale coherent structures (frequency 3f
and f ) induced by rotation dominate the wake development in the near wake. As shown in Figure 12b
(local part of Figure 12a), at 1D P103 of the lateral shear layer of Array 2, the coherent structure
with the frequency of 3f gradually loses coherence and disintegrates. Thereby, it draws energy from
the average flow and transfers it to the smaller scale vortex structure (down arrow in Figure 12b).
This process is consistent with the energy cascade phenomenon. In addition, the vortex structures
merge, the frequency decreases, and the scale increases (the up arrow in Figure 12b).Energies 2020, 13, x FOR PEER REVIEW 15 of 19 
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At 1D P103 of the lateral shear layer of Array 1, the adjacent small-scale coherent structures
interact with each other, the dominant frequency decreases gradually, and the scale increases gradually
(the up arrow in Figure 12c). It is evident from the previous research that, as the wake continues
to develop downstream, the organisation and coherence of large-scale coherent structures become
stronger. Furthermore, the energy is gradually transferred to the low-frequency structure. Finally, at 5D
P504 (Figure 7), the background small-scale coherent structure is very weak.

The above evolution process illustrates that there is an inverse energy cascade process in the
wakes of Array 1 and Array 2 and that the inverse energy cascade process of Array 1 is more apparent.
In [28], it was indicated for the first time that there is a series of inverse energy cascade processes
in two-dimensional isotropic turbulence, i.e., the energy transferred from a small- to a large-scale
structure in the development process of two-dimensional turbulence. Subsequently, many scholars
studied two-dimensional turbulence by numerical simulation or experimental methods and further
verified the existence of two-dimensional turbulent inverse energy cascade. It was observed that the
adjacent small-scale vortices in the flow field interacted with each other and merged into larger vortices.
Finally, one or several relatively stable self-organised large vortices with the same size as that of the
physical domain could be formed. These are the self-organisation characteristics of two-dimensional
turbulence [29–34]. In essence, turbulence is a completely three-dimensional nonlinear fluid motion.
However, certain specific flows display apparent quasi two-dimensional characteristics [28]. This is
mainly because the scale of such a flow in one direction is significantly smaller than that in the other
two directions.

Figure 13 shows the profiles of the six components of Reynolds stress at 1D and 5D for the wakes
of Array 1 and Array 2. The three components of Reynolds normal stress (uu, vv, ww) in the wake of
Array 1 (Figure 13a) are almost identical at 1D, whereas the Reynolds shear stress component (uw, vw)
is essentially zero. For Array 2 (Figure 13b), the streamwise direction and vertical direction in the
1D lateral shear layer have an apparent correlation (uw), and a shear effect is observable. That is,
the three-dimensional characteristics of the wake of Array 2 are more apparent than those of Array 1 at
1D. This is true at 5D as well (Figure 13c,d).
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of Array 1 and Array 2.

In the quasi two-dimensional wake of Array 1, the small-scale structure continuously transfers
energy to the large-scale structure in accordance with the principle of inverse energy cascade. Therefore,
the wake flow is constantly modified to carry more energy. However, in the three-dimensional wake of
Array 2, the coherent structure continuously absorbs energy from the free inflow to transfer it to the
smaller turbulence structure. Finally, the energy is dissipated from the smallest turbulence vortex and
is converted to the internal energy of the fluid. As a result, the time-averaged streamwise velocity
profile of Array 2 (Figure 10a) is flatter than that of Array 1 (Figure 3a).

4. Conclusions

This paper focuses on the wake instability characteristics of two types of counter-rotating twin
turbines with a spacing of 0.2D (T/D = 1.2). The rotational configuration of Array 1 (forward-moving
counter-rotating turbine) causes the formation of strong shear in the lateral shear layer and promotes
the development of clearance flow. This, in turn, results in the formation of strong shear in the
intermediate shear layer. The high-frequency small-scale coherent structure in the near wake induced
by rotation gradually loses coherence in the intermediate and lateral shear layers. This causes the shear
layers to become unstable. The instability mechanism is induced earlier in the wake of Array 1 than
it is in the wake of Array 2 (backward-moving counter-rotating turbine). After the high-frequency
small-scale coherent structure loses coherence, energy is transferred to the smaller-scale coherent
structure according to the energy cascade principle. Meanwhile, the small-scale coherent structure
transfers energy to the low-frequency coherent structure to form a self-organised large-scale coherent
structure. This type of self-organisation characteristics is more apparent in the quasi two-dimensional
wake of Array 1 than that in the wake of Array 2. With the development of the wake downstream,
the organisation, coherence, and scale of the low-frequency structure in the wake of Array 1 is enhanced
gradually. Ultimately, low-frequency large-scale coherent structures dominate the wake development.
In addition, there are asymmetric modes between the large-scale coherent structures in the wake of
Array 1, which causes the Strouhal number to fluctuate between 0.16 and 0.23.

These results have certain reference significance for studying wake flow mechanism and optimizing
turbine array layout. The self-organised large-scale coherent structure has a positive role in promoting
turbulent mixing and entrainment, but also has a negative effect on fatigue load and power fluctuation.
Further studies can consider the flow control of wake large-scale coherent structure.
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