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Abstract: The economic emission dispatch (EED) is a highly constrained nonlinear multiobjective
optimization problem with a convex (or nonconvex) solution space. These characteristics and
constraints make the EED a difficult problem to solve. Several approaches for a solution have been
proposed, such as deterministic techniques, stochastic techniques, or a combination of both. This work
presents the use of an algebraic (deterministic) technique, the numerical polynomial homotopy
continuation (NPHC) method, to solve the EED problem. A comparison with the sequential quadratic
programming (SQP) algorithm and the nondominated sorting genetic algorithm II (NSGA-II) is also
presented. Results show that the NPHC algorithm finds all the roots (solutions) of the problem
starting from any initial point and assures an accurate solution with a good convergence time.
In addition, the NPHC algorithm provides a more accurate solution than the SQP algorithm and
the NSGA-II.

Keywords: numerical polynomial homotopy continuation; multiobjective optimization; power
generation; economic emission dispatch

1. Introduction

Power dispatch is a complicated task for the energy industry because a highly variable and
unpredictable load demand from the customers needs to be satisfied using the most suitable
(less expensive) mix of producers [1,2]. The available producers use different types of fuel (including
fossil and renewable energy sources), have different capacities, have different efficiencies, and there
is the need to decide whether to operate them at full- or part-load [3,4]. In addition, the highest
percentage of electricity is generated using fossil fuels, which increases the problem of pollutant
emissions to the environment, of which CO2, SO2, and NOx are of most concern [5,6]. Thus, the goal
of the energy production industry is to simultaneously minimize both, fuel costs and emissions to
the environment [7].
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Fuel costs and emissions to the environment are objectives competing with each other; that is,
the use of a cheap coal-fired power plant produces high amounts of emissions to the environment,
and the use of a clean natural gas power plant is expensive to operate [8,9]. Thus, the optimization
problem is formulated to be multiobjective with competing and non-commensurable objectives,
in which a set of optimum producer configurations is obtained [10]. The problem can be solved
using a fixed load demand (static economic emission dispatch, SEED) [11], or using a variable load
demand (dynamic economic emission dispatch DEED) [12]. The SEED has the limitation that it does not
consider the look ahead variations of the load demand as well as the dynamic behavior of the producers,
something which is fully considered in the DEED. The characteristics of the producers are modeled
by considering linear/nonlinear [11,13] or smooth/nonsmooth [11,14,15] objective functions, and by
including valve point effects [12], ramp rate limits [16], generation limits [17], prohibited operating
zones [18], spinning reserve [13], among others. These characteristics may turn the problem convex or
nonconvex [11,18,19].

Three main different approaches are commonly used to solve the economic emission dispatch
problem, i.e., deterministic techniques, stochastic techniques, and combinations of these two techniques.
Deterministic techniques [3,4,11,15,20] have the advantage that can solve large scale systems with
good accuracy [15,20] in a short convergence time [12,15]. However, these techniques can get stuck at
local optimum points easily, are very sensitive to the starting point [21,22], and have difficulties
with solving nonconvex problems as well as those with nonsmooth objective functions [21,23].
Stochastic techniques have the advantage that can solve nonconvex problems and those with
nonsmooth objective functions [14,16–18,24–30]. However, these techniques find a solution close
to the Pareto set only [31], as opposed to the exact solution [14,16], and require a very long time of
computation, especially when dealing with large problems [1,15,24], and the control parameters and
diversity of the population introduce several degrees of freedom to the solution approach [14,15].
Methods that use a combination of mathematical programming and artificial intelligent techniques
use the best features of both, and have proven to be good methods for the solution of complex
problems [23,32]; however, the number of operations and its associated computational burden are still
areas of improvement.

The Numerical Polynomial Homotopy Continuation (NPHC) method is an analytical
(deterministic) approach based on a combination of the Homotopy Analysis (HA) method and the
fundamental theorem of algebra. The NPHC method finds all possible solutions, even the isolated
ones [33], of a system of non-linear equations, i.e., algebraic, differential, partial differential, etc.,
or a combination of them [34]. This method assures convergence and the finding of the exact solution
independently of the initial point and the constraints associated with a variety of parameters that
affect the system [35,36]. The NPHC method has been applied to solve problems in physics and
mathematics such as in industrial robotics [37], experimental dynamics [38], topology [39], high energy
physics [40,41], among others [42–44].

To the best knowledge of the authors, the NPHC method has been used in power engineering to
solve voltage instabilities [45] and power flow problems [46] only. The novelty of the work presented
here is the use of the NPHC method to solve the economic emission dispatch problem, which deals
with the combined economic and environmental dispatch of a power network. In addition, the solution
of the NPHC algorithm is compared with the solutions of a Sequential Quadratic Programming (SQP)
algorithm [47] and a Nondominated Sorting Genetic Algorithm II (NSGA-II) [48].

The remainder of this paper is organized as follows: Section 2 presents a description of the
problem; Section 3 presents a description of the NPHC method; Section 4 presents the results and
discussion of the findings; and finally Section 5 concludes the paper.
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2. Problem Description

2.1. Principle of Multiobjective Optimization

The multiobjective optimization problem is formulated as [24]
Minimize:

F(X) = { f1(X), f2(X), . . . , fM(X)} (1)

with respect to nonnegative X, and subject to:

gl(X) = 0 for all l (2)

hk(X) ≤ 0 for all k (3)

where F = { fm} is the set of objective functions and M ∈ Z+, X = {xi} is the set of decision variables,
gl are the equality constraints, and hk are the inequality constraints.

2.2. Economic Emission Dispatch Problem

The economic emission dispatch (EED) problem is expressed as a nonlinear constrained
multiobjective optimization problem with competing and non-commensurable objectives.
Mathematically the problem is formulated as [24,49];

Minimize:

fm =
3

∑
i=1

ai,m + bi,mxi + ci,mx2
i , m = 1, . . . , 3 (4)

with respect to nonnegative xi, and subject to

3

∑
i=1

xi − D− L = 0 (5)

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , 3 (6)

Equation (4) represents the objective functions, where the first objective function (m = 1)
corresponds to the total fuel cost ($/hr), the second objective function (m = 2) corresponds to the
total SO2 emissions (ton/hr), and the third objective function (m = 3) corresponds to the total NOx

emissions (ton/hr); xi is the real power generated by each producer; and ai,m, bi,m, and ci,m are real
non-negative constants particular to each producer which allow the model to account for the part-load
behavior of the producers and to maintain the convexity of the objective functions. Equation (5) is the
equality constraint which represents the real power balance, where D is the fixed load demand and L
the real power flow losses in the transmission lines given as

L = X BXT (7)

where B is the transmission loss matrix and X = [x1 x2 x3] is the row vector formed by the real power
generated by the producers. Equation (6) is the inequality constraint, which represents the generation
limits of the producers.

The values of the characteristics of the producers, the load demand, and the transmission loss
matrix are obtained from [49].

3. Numerical Polynomial Homotopy Continuation Formulation

3.1. Description of the NPHC Method

The NPHC method [50,51] aims to find all the roots (real and imaginary) of a system of
N multivariate polynomial equations P(X) = {pn(X)} in N variables X = {xn}, which has
isolated solutions.
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For the solution of the problem, an upper bound on the number of solutions of this system is
established using the Classical Bézout Theorem. Then, the homotopy is constructed as

H(X, θ) = σ(1− θ)Q(X) + θP(X) = 0 (8)

where σ is a convergence parameter, θ ∈ [0, 1) is the tracking parameter, and Q(X) is a system of
polynomial equations (start system) from which the roots (solutions) are known and selected using the
Classical Bézout Bound (CBB) at H(X, 0) = Q(X) = 0, such as

Q(X) =


xq1

1 − 1
xq2

2 − 1
...

xqN
N − 1

 = 0 (9)

which has a maximum number of ∏N
n=1 qn solutions in CN , where qn is the degree of the n-th

polynomial of P(X) [46]. Finally, the paths corresponding to all the solutions of the system are
tracked through all the solution space starting from H(X, 0) = Q(X) = 0 when θ = 0, and finishing
at H(X, 1) = P(X) = 0 when θ = 1. The tracking of the solutions is developed using the
corrector-predictor method.

3.2. Computational Flow

The NPHC optimization algorithm is shown in Figure 1 and is described in the following steps:
Step 1: Initialize the model parameters.
Step 2: Obtain the start system using Equation (9).
Step 3: Develop a first evaluation of the homotopy, H1(X), using the value of X0 from Step 1.
Step 4: Calculate the values of Newton’s predictor, X̃j+1, using the values of H1(X) from Step 3,

such as [52]

X̃j+1 = xj + ∆z P(Xj) (10)

where j is the corresponding iteration and ∆z is the increment step.
Step 5: Develop a second evaluation of the homotopy, H2(X), using the values of the predictor,

X̃j+1, from Step 4.
Step 6: Adjust the predictor set by means of a corrector. The values of Newton’s corrector, Xj+1,

are calculated using the values of H2(X) from Step 5, such as [52]

Xj+1 = X̃j+1 − P(X̃j+1)J−1
X (11)

where JX is the Jacobian matrix of Equation (8).
Step 7: Evaluate the converge criteria, given as [52]

|Xj+1 − X̃j+1| ≤ ∆Error (12)

where ∆Error is a constant decimal value that defines the precision of the solution.
Step 8: If the converge criteria is not satisfied, the value of the corrector is given to the predictor,

and (i) if the value of θ is smaller than 1.0, the cycle continues at Step 5 using the new value of the
predictor X̃j+1; (ii) if the value of θ is equal or bigger than 1.0 the cycle is considered to be completed,
and the final result is the value of the corrector, Xj+1.

Step 9: If the converge criteria is satisfied, the values of the start system, X, are substituted by
the values of the corrector, Xj+1, the value of θ is increased by ∆θ, and (i) if the value of θ is smaller
than 1.0, the cycle continues at Step 3 using the new value of X; (ii) if the value of θ is equal or bigger
than 1.0, the cycle is considered to be completed, and the final result is the value of the corrector, Xj+1.
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Figure 1. Computational flow of the numerical polynomial homotopy continuation (NPHC) methodology.

3.3. Application of the Algorithms to the EED Problem

The NPHC method works with closed systems of equations only. That is, the number of equations
of the system must equal to the number of unknown variables. Thus, for the EED problem, the objective
functions and equality constraints are grouped in a linear combination form, such as [21]

f = φ1 f1 + (1− φ1)(φ2ω2 f2 + φ3ω3 f3)− λg (13)

where fm are the objective functions; φm are weights of the linear combination corresponding to each
of the objective functions, where 0 ≤ φm ≤ 1; ω2 = 600 and ω3 = 50, 000 are scaling factors to
convert SO2 and NOx emission units to cost units, respectively, selected to have the result of the
three objective functions at the same order of magnitude to avoid numerical instabilities during the
computational process; g is the equality constraint which represents the real power balance; λ is the
Lagrange multiplier of the problem associated with the equality constraint [31], i.e., Equation (5).

For the SQP algorithm, the multiobjective optimization is developed in a constrained manner;
that is, the first objective function is used as a constrain to obtain the minimum of a second objective
function, and the results of the first and second objective functions are used as constraints to minimize
a third objective function.

For the NSGA-II algorithm, the objective functions are evaluated at the same time, as a true
multiobjective optimization, obtaining the solution of all the objective functions in a single run of the



Energies 2020, 13, 4281 6 of 15

algorithm. The crossover and mutation probabilities are 0.99 and 0.01, respectively; the distribution
index for crossover and mutation are 5 and 50, respectively; the algorithm is run for 20,000 generations,
as suggested in [49].

The simulations are run in a computer with 16 GB of RAM and 8 cores Intel i7 6700-K at 4 GHz.

4. Results and Discussion

For the present work, the NPHC searching space is reduced to real positive roots only, which are
related to the physical aspect of the power generated by the producers. This physical assumption
helps to reduce considerably the computational effort.

An independence analysis for the homotopy parameters, ∆Error and ∆θ, is developed based on
the criteria [53] ∣∣∣∣∣X j̃−1 − X j̃

X j̃−1

∣∣∣∣∣ < 5× 10−3 (14)

where X j̃ is the result of the current optimization and X j̃−1 the result of the previous optimization,
finding that the values of ∆Error = 0.01 and ∆θ = 0.1 do not alter the final result of the
NPHC optimizations.

4.1. Using 25 Elements to Construct the Pareto Set

The results of the optimization of a single objective function using 25 elements or individuals to
construct the Pareto set are given in Table 1 for the fuel cost, Table 2 for the SO2 emissions, and Table 3
for the NOx emissions. It is observed that the NPHC and the SQP algorithms provide the best result for
the minimization of fuel cost and SO2 emissions, and the NSGA-II algorithm provides the worst result.
For the minimization of NOx emissions, the NPHC algorithm provides the best result, followed by the
SQP algorithm, and the NSGA-II algorithm provides the worst result.

Figure 2 shows the trajectory of the minimization of the fuel cost objective function using the
NPHC algorithm with respect to the tracking parameter. It is observed that the trajectory of the
solution is very smooth, which helps to reduce the time of computation. It is observed that the solution
is always reached at θ = 1. Figure 3 shows the trajectory of the roots (solutions) corresponding to
the three producers, for the minimization of the fuel cost objective function. It is observed that the
trajectory of the roots is also very smooth, following a similar shape than the objective function towards
the solution at θ = 1. This smoothness is a characteristic of the NPHC method to avoid getting stuck at
local optimums, assuring the finding of the global optimum.

Table 1. Minimization of fuel cost.

Method Value ($/h) Producers (MW) Time

SQP 8344.593 435.198, 299.970, 130.661 0.090
NSGA-II 8357.559 473.832, 244.248, 146.605 57.442
NPHC 8344.593 435.198, 299.970, 130.661 0.006

Table 2. Minimization of SO2 emissions.

Method Value (ton/h) Producers (MW) Time

SQP 8.9659 550.603, 220.760, 93.160 0.341
NSGA-II 8.9786 575.635, 236.714, 52.971 57.065
NPHC 8.9659 552.112, 219.444, 92.960 0.010
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Table 3. Minimization of NOx emissions.

Method Value (ton/h) Producers (MW) Time

SQP 0.095925 493.075, 265.802, 106.127 0.394
NSGA-II 0.096389 540.950, 225.798, 97.766 57.467
NPHC 0.095924 508.580, 250.443, 105.723 0.007
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Figure 2. Trajectory of the minimization of the fuel cost objective function with the NPHC algorithm.
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Figure 3. Trajectory of the roots (solutions) during the minimization of the fuel cost objective function
with the NPHC algorithm. Red squares represent x1, blue triangles represent x2, and green circles
represent x3.

In terms of the time of computation, the NPHC algorithm provides the shortest time for
the individual minimization of the three objective functions. Compared with the SQP algorithm,
the response of the NPHC algorithm is one order of magnitude faster for the minimization of fuel cost,
and SO2 emissions, and two orders of magnitude faster for the minimization of NOx emissions.
Compared with the NSGA-II algorithm, the response of the NPHC algorithm is four orders of
magnitude faster for the individual minimization of the three objective functions.

Figure 4 shows the Pareto set for fuel cost and SO2 emissions. It is observed that the NPHC and
SQP algorithms provide an accurate solution, as well as a good distribution of the elements on the
solution space. Also, the figure shows that the NSGA-II algorithm has problems in obtaining both,
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a good solution and a good distribution of the results on the solution space. In terms of the time of
computation, the SQP algorithm needs 14.229 s to obtain the Pareto set, the NSGA-II algorithm needs
58.212 s to obtain the Pareto set, and the NPHC algorithm needs 0.150 s only to obtain the Pareto set.

Figure 5 shows the Pareto set for fuel cost and NOx emissions. The figure shows that the NPHC
and SQP algorithms provide an accurate solution, as well as a good distribution of the elements on
the solution space. The figure shows that the NSGA-II algorithm provides a good solution, although
some individuals are still far from the Pareto set. It is also observed that the NSGA-II algorithm
does not populate the solution space for values of fuel cost higher than 8357. In terms of the time of
computation, the SQP algorithm needs 25.711 s to obtain the Pareto set, the NSGA-II algorithm needs
57.679 s to obtain the Pareto set, and the NPHC algorithm needs 0.156 s only to obtain the Pareto set.
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Figure 4. Pareto front for fuel cost and SO2 emissions constructed using 25 elements. Red squares
represent the sequential quadratic programming (SQP), green circles represent NSGA-II , and black ×
represent NPHC.
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Figure 5. Pareto front for fuel cost and NOx emissions constructed using 25 elements. Red squares
represent SQP, green circles represent NSGA-II , and black × represent NPHC.

Figure 6 shows the Pareto set for fuel cost, SO2 emissions, and NOx emissions. The figure shows
that the NPHC and SQP algorithms provide an accurate solution as well as a good distribution of
the elements on the solution space. It is also observed that the NSGA-II algorithm populates well the
Pareto set for high fuel cost only, but leaves unpopulated the other part of the Pareto set. In terms
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of the time of computation, the SQP algorithm needs 17.580 s to obtain the Pareto set, the NSGA-II
algorithm needs 59.063 s to obtain the Pareto set, and the NPHC algorithm needs 0.174 s only to obtain
the Pareto set.
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Figure 6. Pareto front for fuel cost, SO2 emissions, and NOx emissions constructed using 25 elements.
Red squares represent SQP, green circles represent NSGA-II , and black × represent NPHC.

4.2. Using 500 Elements to Construct the Pareto Set

The results of the optimization of a single objective function using 500 elements or individuals to
construct the Pareto set are given in Table 4 for the fuel cost, Table 5 for the SO2 emissions, and Table 6
for the NOx emissions. It is observed that the result of the NPHC and the SQP algorithms are as accurate
as those obtained using 25 elements or individuals, with the only difference that the solution space is
more populated because of the increase in the number of elements used. Also, the NSGA-II algorithm
obtains a very close solution to those provided by the NPHC and SQP algorithms, increasing the
accuracy when compared with the results obtained using 25 individuals only. However, this increase
in accuracy of the NSGA-II algorithm comes with the price of a longer time of computation, increasing
it from about 57 s to more than 400 s for each of the optimizations. The time needed by the NPHC and
the SQP algorithms is the same as the case when 25 elements are used.

Table 4. Minimization of fuel cost.

Method Value ($/h) Producers (MW) Time

SQP 8344.593 435.198, 299.970, 130.661 0.090
NSGA-II 8344.832 431.532, 307.204, 127.289 403.250
NPHC 8344.593 435.198, 299.970, 130.661 0.006

Table 5. Minimization of SO2 emissions.

Method Value (ton/h) Producers (MW) Time

SQP 8.9659 550.603, 220.760, 93.160 0.341
NSGA-II 8.9662 557.153, 211.829, 95.463 432.091
NPHC 8.9659 552.112, 219.444, 92.960 0.010
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Table 6. Minimization of NOx emissions.

Method Value (ton/h) Producers (MW) Time

SQP 0.095925 493.075, 265.802, 106.127 0.394
NSGA-II 0.095926 510.543, 248.199, 105.969 430.515
NPHC 0.095924 508.580, 250.443, 105.723 0.007

Figure 7 shows the Pareto set for fuel cost and SO2 emissions. As for the case of 25 elements,
the NPHC and SQP algorithms provide an accurate solution as well as a good distribution of the
elements on the solution space. The figure also shows that the NSGA-II algorithm provides a very
close solution to those of the NPHC and SQP algorithms, and covers well the solution space except
for fuel cost values higher than 8391. In terms of the time of computation, the SQP algorithm needs
an average of 0.569 s to obtain a single point, thus it needs 284.580 s to obtain the 500 elements of
the Pareto set; the NSGA-II algorithm needs 379.879 s to obtain the Pareto set using 500 individuals;
the NPHC algorithm needs 2.844 s only to obtain the Pareto set using 500 elements.
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Figure 7. Pareto front for fuel cost and SO2 emissions constructed using 500 elements. Red squares
represent SQP, green circles represent NSGA-II , and black × represent NPHC.

Figure 8 shows the Pareto set for fuel cost and NOx emissions. As for the case of 25 elements,
the NPHC and SQP algorithms provide an accurate solution as well as a good distribution of the
elements on the solution space. The figure also shows that the NSGA-II algorithm provides a very
close solution to those of the NPHC and SQP algorithms, and covers well the solution space except
for fuel cost values smaller than 8345. In terms of the time of computation, the SQP algorithm needs
an average of 1.0284 s to obtain a single point; thus, it needs 514.220 s to obtain the 500 elements of
the Pareto set; the NSGA-II algorithm needs 385.152 s to obtain the Pareto set using 500 individuals;
the NPHC algorithm needs 2.877 s only to obtain the Pareto set using 500 elements.

Figure 9 shows the Pareto set for fuel cost, SO2 emissions, and NOx emissions. It is observed
that the NPHC and SQP algorithms provide an accurate solution as well as a good distribution of
the elements on the solution space. It is observed that again the NSGA-II algorithm covers well the
solution space, although it has problems to reach the exact solution for small fuel cost values. In terms
of the time of computation, the SQP algorithm needs an average of 0.703 s to obtain a single point;
thus, it needs 351.6 to obtain the 500 elements of the Pareto set; the NSGA-II algorithm needs 474.36 s
to obtain the Pareto set using 500 individuals; the NPHC algorithm needs 3.206 s only to obtain the
Pareto set using 500 elements.
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Figure 8. Pareto front for fuel cost and NOx emissions constructed using 500 elements. Red squares
represent SQP, green circles represent NSGA-II , and black × represent NPHC.
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Figure 9. Pareto front for fuel cost, SO2 emissions, and NOx emissions constructed using 500 elements.
Red squares represent SQP, green circles represent NSGA-II, and black × represent NPHC.

4.3. Time of Computation Required by the NPHC Algorithm

Figure 10 shows the time of computation used by the NPHC algorithm to obtain a simultaneous
solution of two and three objective functions with respect to the number of elements or individuals
used. For the three cases, i.e., fuel cost–SO2, fuel cost–NOx, and fuel cost–SO2–NOx, the time of
computation increases as a linear function of the number of elements used. It is also observed that the
optimizations are obtained very fast, even when a large number of elements or individuals are used.
This result shows that the NPHC is a very efficient algorithm.
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Figure 10. Time of computation required by the NPHC algorithm in terms of the number of elements
or individuals used to construct the Pareto set. Red squares represent minimization of fuel cost–SO2,
and black × represent minimization of fuel cost–NOx, and green circles represent minimization of fuel
cost–SO2–NOx.

5. Conclusions

In this work, the Numerical Polynomial Homotopy Continuation (NPHC) method has been
successfully applied to solve the Economic Emission Dispatch problem. The NPHC algorithm
is compared with the SQP algorithm, which is based on a deterministic approach, and the
NSGA-II algorithm, which is based on a stochastic approach.

The work shows that the NPHC algorithm performs well at obtaining an accurate solution of the
multiobjective optimization problem by guaranteeing to find all the roots (solutions) of the problem
by searching through all the solution space. The NPHC algorithm is very easy to implement because
it is constructed based on the Homotopy Analysis method and the fundamental theorem of algebra.
The NPHC algorithm obtains the solution of the problem in a very short period of time when compared
to other deterministic and probabilistic algorithms. For the minimization of a single objective function,
the time of computation required by the NPHC algorithm is independent of the number of elements
used because the trajectory of a single objective function is followed through the optimization process.
For the simultaneous minimization of two and three objective functions, the time of computation
required by the NPHC algorithm varies linearly with respect to the number of elements used to
construct the Pareto set, suggesting that the NPHC is a very efficient algorithm.

These findings show that the NPHC method is a good alternative to solve multiobjective
optimization models to help the power industry to deal with the dispatch of electricity considering the
reduction of both, fuel cost and emissions to the environment.
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Abbreviations

EED Economic emission dispatch
SEED Static economic emission dispatch
DEED Dynamic economic emission dispatch
NPHC Numerical polynomial homotopy continuation
HA Homotopy Analysis
SQP Sequential quadratic programming
NSGA-II Nondominated sorting genetic algorithm II
CBB Classical Bézout Bound

References

1. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]

2. Xing, H.; Lin, Z.; Fu, M.; Hobbs, B.F. Distributed algorithm for dynamic economic power dispatch with
energy storage in smart grids. IET Control. Theory Appl. 2017, 11, 1813–1821. [CrossRef]

3. Cano-Andrade, S.; von Spakovsky, M.R.; Fuentes, A.; Lo Prete, C.; Mili, L. Upper Level of a Sustainability
Assessment Framework for Power System Planning. J. Energy Resour. Technol. 2015, 137, 041601. [CrossRef]

4. Vargas-Jaramillo, J.R.; Montanez-Barrera, J.A.; von Spakovsky, M.R.; Mili, L.; Cano-Andrade, S. Effects of
producer and transmission reliability on the sustainability assessment of power system networks. Energies
2019, 12, 546. [CrossRef]

5. De Gouw, J.A.; Parrish, D.D.; Frost, G.J.; Trainer, M. Reduced emissions of CO2, NOx, and SO2 from US
power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future
2014, 2, 75–82. [CrossRef]

6. Lee, C.Y.; Zhou, P. Directional shadow price estimation of CO2, SO2 and NOx in the United States coal
power industry 1990–2010. Energy Econ. 2015, 51, 493–502. [CrossRef]

7. Nwulu, N.I.; Xia, X. Multi-objective dynamic economic emission dispatch of electric power generation
integrated with game theory based demand response programs. Energy Convers. Manag. 2015, 89, 963–974.
[CrossRef]

8. Pfenninger, S.; Keirstead, J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system
considering costs, emissions and energy security. Appl. Energy 2015, 152, 83–93. [CrossRef]

9. Covert, T.; Greenstone, M.; Knittel, C.R. Will we ever stop using fossil fuels? J. Econ. Perspect. 2016, 30, 117–38.
[CrossRef]

10. Florios, K.; Mavrotas, G. Generation of the exact Pareto set in Multi-Objective Traveling Salesman and Set
Covering Problems. Appl. Math. Comput. 2014, 237, 1–19. [CrossRef]

11. Bayon, L.; Grau, J.M.; Ruiz, M.M.; Suarez, P.M. The exact solution of the environmental/economic
dispatch problem. IEEE Trans. Power Syst. 2012, 27, 723–731. [CrossRef]

12. Wang, M.Q.; Gooi, H.B.; Chen, S.X.; Lu, S. A mixed integer quadratic programming for dynamic economic
dispatch with valve point effect. IEEE Trans. Power Syst. 2014, 29, 2097–2106. [CrossRef]

13. Han, X.S.; Gooi, H.B. Effective economic dispatch model and algorithm. Int. J. Electr. Power Energy Syst.
2007, 29, 113–120. [CrossRef]

14. Basu, M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. Int. J.
Electr. Power Energy Syst. 2008, 30, 140–149. [CrossRef]

15. Xia, X.; Elaiw, A.M. Optimal dynamic economic dispatch of generation: A review. Electr. Power Syst. Res.
2010, 80, 975–986. [CrossRef]

16. Zaman, M.F.; Elsayed, S.M.; Ray, T.; Sarker, R.A. Evolutionary Algorithms for Dynamic Economic
Dispatch Problems. IEEE Trans. Power Syst. 2016, 31, 1486–1495. [CrossRef]

17. Mason, K.; Duggan, J.; Howley, E. Multi-objective dynamic economic emission dispatch using particle
swarm optimisation variants. Neurocomputing 2017, 270, 188–197. [CrossRef]

18. Hooshmand, R.A.; Parastegari, M.; Morshed, M.J. Emission, reserve and economic load dispatch problem
with non-smooth and non-convex cost functions using the hybrid bacterial foraging-Nelder-Mead algorithm.
Appl. Energy 2012, 89, 443–453. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2015.04.065
http://dx.doi.org/10.1049/iet-cta.2016.1389
http://dx.doi.org/10.1115/1.4030154
http://dx.doi.org/10.3390/en12030546
http://dx.doi.org/10.1002/2013EF000196
http://dx.doi.org/10.1016/j.eneco.2015.08.010
http://dx.doi.org/10.1016/j.enconman.2014.11.001
http://dx.doi.org/10.1016/j.apenergy.2015.04.102
http://dx.doi.org/10.1257/jep.30.1.117
http://dx.doi.org/10.1016/j.amc.2014.03.110
http://dx.doi.org/10.1109/TPWRS.2011.2179952
http://dx.doi.org/10.1109/TPWRS.2014.2306933
http://dx.doi.org/10.1016/j.ijepes.2006.05.007
http://dx.doi.org/10.1016/j.ijepes.2007.06.009
http://dx.doi.org/10.1016/j.epsr.2009.12.012
http://dx.doi.org/10.1109/TPWRS.2015.2428714
http://dx.doi.org/10.1016/j.neucom.2017.03.086
http://dx.doi.org/10.1016/j.apenergy.2011.08.010


Energies 2020, 13, 4281 14 of 15

19. Binetti, G.; Davoudi, A.; Naso, D.; Turchiano, B.; Lewis, F.L. A distributed auction-based algorithm for the
nonconvex economic dispatch problem. IEEE Trans. Ind. Inform. 2014, 10, 1124–1132. [CrossRef]

20. Bansal, R.C. Optimization methods for electric power systems: An overview. Int. J. Emerg. Electr. Power Syst.
2005, 2, 1–23. [CrossRef]

21. Nanda, J.; Hari, L.; Kothari, M.L. Economic emission load dispatch with line flow constraints using a
classical technique. IEEE Proc. Gener. Transm. Distrib. 1994, 141, 1–10. [CrossRef]

22. Noman, N.; Iba, H. Differential evolution for economic load dispatch problems. Electr. Power Syst. Res.
2008, 78, 1322–1331. [CrossRef]

23. Victoire, T.A.A.; Jeyakumar, A.E. Deterministically guided PSO for dynamic dispatch considering
valve-point effect. Electr. Power Syst. Res. 2005, 73, 313–322. [CrossRef]

24. Qu, B.Y.; Zhu, Y.S.; Jiao, Y.C.; Wu, M.Y.; Suganthan, P.N.; Liang, J.J. A survey on multi-objective evolutionary
algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol. Comput. 2018,
38, 1–11. [CrossRef]

25. Rezaie, H.; Abedi, M.; Rastegar, S.; Rastegar, H. Economic emission dispatch using an advanced particle
swarm optimization technique. World J. Eng. 2019, 16, 23–32. [CrossRef]

26. Rezaie, H.; Kazemi-Rahbar, M.H.; Vahidi, B.; Rastegar, H. Solution of combined economic and emission
dispatch problem using a novel chaotic improved harmony search algorithm. J. Comput. Des. Eng. 2019, 6,
447–467. [CrossRef]

27. Hussain, S.; Al-Hitmi, M.; Khaliq, S.; Hussain, A.; Asghar Saqib, M. Implementation and comparison of
particle swarm optimization and genetic algorithm techniques in combined economic emission dispatch of
an independent power Plant. Energies 2019, 12, 2037. [CrossRef]

28. Qu, B.; Qiao, B.; Zhu, Y.; Liang, J.; Wang, L. Dynamic power dispatch considering electric vehicles and
wind power using decomposition based multi-objective evolutionary algorithm. Energies 2017, 10, 1991.
[CrossRef]

29. He, L.; Lu, Z.; Pan, L.; Zhao, H.; Li, X.; Zhang, J. Optimal economic and emission dispatch of a microgrid
with a combined heat and power system. Energies 2019, 12, 604. [CrossRef]

30. Mei, P.; Wu, L.; Zhang, H.; Liu, Z. A hybrid multi-objective crisscross optimization for dynamic
economic/emission dispatch considering plug-in electric vehicles penetration. Energies 2019, 12, 3847.
[CrossRef]

31. Arora, J.S. Introduction to Optimum Design; Elsevier: Amsterdam, The Netherlands, 2016.
32. Titus, S.; Jeyakumar, A.E. A hybrid EP-PSO-SQP algorithm for dynamic dispatch considering prohibited

operating zones. Electr. Power Components Syst. 2008, 36, 449–467. [CrossRef]
33. Sommese, A.J.; Verschelde, J.; Wampler, C.W. Introduction to numerical algebraic geometry. In Solving

Polynomial Equations; Springer: Berlin/Heidelberg, Germany, 2005; pp. 301–337.
34. Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis,

Shanghai Jiao Tong University, Shanghai, China, 1992.
35. Li, T.Y. Numerical solution of multivariate polynomial systems by homotopy continuation methods.

Acta Numer. 1997, 6, 399–436. [CrossRef]
36. Liao, S.J. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci.

Numer. Simul. 2009, 14, 983–997. [CrossRef]
37. Lee, E.; Mavroidis, C. Solving the geometric design problem of spatial 3R robot manipulators using

polynomial homotopy continuation. J. Mech. Des. 2002, 124, 652–661. [CrossRef]
38. Sommese, A.J.; Verschelde, J. Numerical homotopies to compute generic points on positive dimensional

algebraic sets. J. Complex. 2000, 16, 572–602. [CrossRef]
39. Alexander, J.C.; Yorke, J.A. The homotopy continuation method: Numerically implementable topological

procedures. Trans. Am. Math. Soc. 1978, 242, 271–284. [CrossRef]
40. Mehta, D. Finding all the stationary points of a potential-energy landscape via numerical polynomial-

homotopy-continuation method. Phys. Rev. 2011, 84, 025702. [CrossRef]
41. Martinez-Pedrera, D.; Mehta, D.; Rummel, M.; Westphal, A. Finding all flux vacua in an explicit example.

J. High Energy Phys. 2013, 6, 110. [CrossRef]
42. Leykin, A.; Plaumann, D. Determinantal representations of hyperbolic curves via polynomial homotopy

continuation. Math. Comput. 2017, 86, 2877–2888. [CrossRef]

http://dx.doi.org/10.1109/TII.2013.2287807
http://dx.doi.org/10.2202/1553-779X.1021
http://dx.doi.org/10.1049/ip-gtd:19949770
http://dx.doi.org/10.1016/j.epsr.2007.11.007
http://dx.doi.org/10.1016/j.epsr.2004.07.005
http://dx.doi.org/10.1016/j.swevo.2017.06.002
http://dx.doi.org/10.1108/WJE-04-2018-0126
http://dx.doi.org/10.1016/j.jcde.2018.08.001
http://dx.doi.org/10.3390/en12112037
http://dx.doi.org/10.3390/en10121991
http://dx.doi.org/10.3390/en12040604
http://dx.doi.org/10.3390/en12203847
http://dx.doi.org/10.1080/15325000701735256
http://dx.doi.org/10.1017/S0962492900002749
http://dx.doi.org/10.1016/j.cnsns.2008.04.013
http://dx.doi.org/10.1115/1.1515796
http://dx.doi.org/10.1006/jcom.2000.0554
http://dx.doi.org/10.1090/S0002-9947-1978-0478138-5
http://dx.doi.org/10.1103/PhysRevE.84.025702
http://dx.doi.org/10.1007/JHEP06(2013)110
http://dx.doi.org/10.1090/mcom/3194


Energies 2020, 13, 4281 15 of 15

43. Verschelde, J.; Yu, X. Polynomial homotopy continuation on GPUs. Acm Commun. Comput. Algebra 2016, 49,
130–133. [CrossRef]

44. Akoglu, T.A.; Hauenstein, J.D.; Szanto, A. Certifying solutions to overdetermined and singular polynomial
systems over Q. J. Symb. Comput. 2018, 84, 147–171. [CrossRef]

45. Iba, K.; Suzuki, H.; Egawa, M.; Watanabe, T. Calculation of critical loading condition with nose curve using
homotopy continuation method. IEEE Trans. Power Syst. 1991, 6, 584–593. [CrossRef]

46. Mehta, D.; Nguyen, H.D.; Turitsyn, K. Numerical polynomial homotopy continuation method to locate all
the power flow solutions. IET Gener. Transm. Distrib. 2016, 10, 2972–2980. [CrossRef]

47. Lawrence, C.T.; Zhou, J.L.; Tits, A.L. User’s Guide for CFSQP Version 2.5: A C Code for Solving (Large
Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality
Constraints; Technical Report TR-94-16r1; Electrical Engineering Department and Institute for Systems
Research, University of Maryland: College Park, MD, USA, 1997. Available online: https://www.
researchgate.net/profile/Andre_Tits (accessed on 1 July 2020 ).

48. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

49. Ah King, R.T.F.; Rughooputh, H.C.S. Elitist multiobjective evolutionary algorithm for environmental/
economic dispatch. In Proceedings of the 2003 Congress on Evolutionary Computation, CEC’03, Canberra,
Australia, 8–12 December 2003; Volume 2, pp. 1108–1114.

50. Sommese, A.; Wampler, C. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science;
World Scientific Publishing Company: London, UK, 2005.

51. Li, T.Y. Solving Polynomial Systems by the Homotopy Continuation Method. In Handbook of Numerical
Analysis; Gulf Professional Publishing: London, UK, 1993.

52. Allgower, E.L.; Georg, K. Introduction to Numerical Continuation Methods; Society for Industrial and Applied
Mathematics (SIAM); Springer: Berlin/Heidelberg, Germany, 2003.

53. Stern, F.; Wilson, R.V.; Coleman, H.W.; Paterson, E.G. Comprehensive approach to verification and validation
of CFD simulations—Part 1: Methodology and procedures. J. Fluids Eng. 2001, 123, 793–802. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2893803.2893810
http://dx.doi.org/10.1016/j.jsc.2017.03.004
http://dx.doi.org/10.1109/59.76701
http://dx.doi.org/10.1049/iet-gtd.2015.1546
https://www.researchgate.net/profile/Andre_Tits
https://www.researchgate.net/profile/Andre_Tits
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1115/1.1412235
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description
	Principle of Multiobjective Optimization
	 Economic Emission Dispatch Problem

	Numerical Polynomial Homotopy Continuation Formulation
	 Description of the NPHC Method
	Computational Flow
	Application of the Algorithms to the EED Problem

	Results and Discussion
	Using 25 Elements to Construct the Pareto Set
	Using 500 Elements to Construct the Pareto Set
	Time of Computation Required by the NPHC Algorithm

	Conclusions
	References

