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Abstract

:

The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters.
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1. Introduction


An essential task for countries where power generation is done using hydroelectric plants is the monthly seasonal streamflow series forecasting. This step is directly related to energetic planning, water availability, and pricing strategies. The last Hydropower Status Report from the International Hydropower Association reported that 4306 TWh of electricity was generated in the world employing hydroelectric plants in 2019, corresponding to a 2.5% annual increase [1]. This amount represents the single most significant contribution from a renewable energy source in history. The report addresses data from 13,000 stations in 150 countries. The leaders in hydropower installed capacity are China (356.40 GW), Brazil (109.06 GW), United States (102.75 GW), and Canada (81.39 GW). These figures also provide an idea about the productive chain regarding such power source. It is clear that the correct water management can bring substantial benefits in avoiding water or money waste [2].



Many researchers have addressed streamflow series tasks for different countries such as China, Canada, Ecuador, Iraq, Mozambique, United States, Serbia, Norway, Turkey, Sri-Lanka, and Brazil [2,3,4,5,6,7,8,9,10]. It highlights the importance of the problem to the global economy. These series present a particular seasonal component due to the periods of rainfall along the year, being non-stationary series [11,12]. However, most of such studies focus on determining just the best predictor, disregarding some other essential steps of the whole process.



Identifying a system is a task influenced by factors, such as prior knowledge of its characteristics, complexity, presence of noise, and performance metrics to be used [13,14]. The inputs must represent the dynamics of the system, which helps in choosing a forecasting model that is appropriate to the problem and is a fundamental step to obtain an efficient model for time series forecasting [15]. The structure of models also defined by the number of entries. For example, in the case of neural networks, the number of inputs impacts the determination of their structure, since the more entries there are, the more complex the neural network will be, as well as the more costly its training, without a guarantee of a performance improvement [16]. Additionally, the number of inputs influences the surface of the cost function, which tends to have more local minima [17,18].



Among potential benefits of inputs selection, we can mention the facilitation of visualization, data understanding, order reduction, memory requirements, reduction in training time, and computational effort [17].



Variable selection (VS) methods attempt to identify a subset of inputs that assist in forecasting, pattern recognition, and data regression, playing a significant role in the accuracy of the forecasting methods. Additionally, such approaches tend to simplify the final model, as well as to improve the stability of responses, and eliminate redundant inputs [19]. Harrell [20] stated that VS could be subjective because they use a conceptual understanding of the dependent variable to select independent variables. Many times, a small number of inputs is recommended for prediction purposes [21]. Guyon and Elisseeff [17] classified the selection methods as filters, wrappers, and embedded. We can also mention a new category, the bio-inspired metaheuristics for optimization.



Many research fields have addressed the importance of variable selection to improve the accuracy of models in different contexts, as presented in the works below:




	
Li et al. [22]—to increase the estimation of growing stem volume of pine using optical images;



	
Bonah et al. [23]—to quantitative tracking of foodborne pathogens;



	
Xiong et al. [24]—to increase near-infrared spectroscopy quality;



	
Speiser et al. [25]—an extensive investigation with 311 datasets to compare several random forest VS methods for classification;



	
Rendall et al. [26]—extensive comparison of large scale data driven prediction methods based on VS and machine learning;



	
Marcjasz et al. [27]—to electricity price forecasting;



	
Santi et al. [28]—to predict mathematics scores of students;



	
Karim et al. [29]—to predict post-operative outcomes of cardiac surgery patients;



	
Kim and Kang [30]—to faulty wafer detection in semiconductor manufacturing;



	
Furmańczyk and Rejchel [31]—to high-dimensional binary classification problems;



	
Fouad and Loáiciga [5]—to predict percentile flows using inflow duration curve and regression models;



	
Ata Tutkun and Kayhan Atilgan [32]—investigated VS models in Cox regression, a multivariate model;



	
Mehmood et al. [33]—compared several VS approaches in partial least-squares regression tasks;



	
McGee and Yaffee [34]—provided a study on short multivariate time series and many variations of Least Absolute Shrinkage and Selection Operator (LASSO) for VS;



	
Seo [35]—discussed the VS problem together with outlier detection, due to each input affecting the regression task;



	
Dong et al. [36]—to wind power generation prediction;



	
Sigauke et al. [37]—presented a probabilistic hourly load forecasting framework based on additive quantile regression models;



	
Wang et al. [38]—to short-term wind speed forecasting;



	
Taormina and Chau [39]—to rainfall-runoff modeling;



	
Taormina et al. [40]—to river flow forecasting;



	
Cui and Jiang [41]—to chaotic time series prediction;



	
Silva et al. [42]—to predict the price of sugarcane derivatives;



	
Siqueira et al. [12,43,44,45]—applied the partial autocorrelation function linear filter to streamflow series forecasting;



	
Siqueira et al. [2]—use of VS methods, such as wrappers and filters to predict streamflow series; and



	
Kachba et al. [46]—application of wrapper and non-linear filters to estimate the impact of air pollution on human health.








Despite these methodologies not being universal or equally useful in various fields, the presentation of the studies above depicts the importance of variable selection for data processing in many different contexts, methods, and tasks. In streamflow series forecasting from hydroelectric plants, this is even more relevant due to the high magnitude of the energy generated. An increase of a single percentage point in the accuracy of such predictions represents an enormous amount of electric power. However, most of the literature focuses on the definition of the best forecasting model, neglecting a further investigation on the impact in adopting distinct VS approaches.



To fill this gap, we analyzed the use of ten VS methods in the autoregressive (AR) model from the Box and Jenkins methodology and the extreme learning machines neural network. The addressed VS approaches are linear filters (two manners of using the partial autocorrelation function, PACF), non-linear filters (three mutual information-based methods), wrappers (considering three evaluating metrics), and bio-inspired metaheuristics (genetic algorithm and particle swarm optimization).



The remainder of this study is organized as follows: Section 2 presents the main content of the variable selection procedure, as well as the main stages of the seasonal streamflow series forecasting; Section 3 discusses the filters; Section 4 the wrapper; Section 5 the bio-inspired metaheuristics—genetic algorithm and particle swarm optimization (PSO); Section 6 the case study, computational results, and the performance analysis; and Section 7 presents the conclusions.




2. Variable Selection


The variable selection methodologies can use information available a priori, through empirical tests of trial and error, or some information criterion. Puma-Villanueva et al. [47] describe a simple example of how the general process works. Consider set V that represents the space of input variables, here limited to 3. Thus, we define the vector of inputs V = [v1,v2,v3], with which it is possible to form (23 – 1 = 7) subsets of inputs, as depicted in Table 1.



The selection methods’ role is to define which of these subsets is the most appropriate to represent the information in the data, possibly in contrast to the adoption of all inputs. In this case, selecting variables is choosing the subset that allows the best forecast of future values of a time series, that is, selecting the vector     V ¯   ∈  ℜ k    among the possible combinations between the variables of     V ¯   ∈  ℜ l   , such that k ≤ l. This set represents the dependence structure of a stochastic process over time. In Table 1, the goal of the VS methods is to choose one of seven possibilities.



Yu and Liu [48] present some criteria that relate to this procedure:




	
Relevance: the concept associated with the importance of a given variable may have to the problem, since the information it contains will be the basis of the selection process. The relevance is strong or weak depending on how much its removal degrades the performance of the predictor;



	
Redundancy: two or more variables are redundant if their observed values are highly correlated or dependent. The level of this correlation reveals the degree of redundancy; and



	
Optimality: a so-called optimal subset of input variables is when there is no other subset that produces better results.








However, these characteristics, if combined, have no direct implication. For example, a relevant variable does not mean that the optimal subset contains it. Likewise, the inputs that belong to the optimal subset are not necessarily appropriate [47]. Guyon and Elisseeff [17] classify the VS models into embedded, wrappers, and filters, each of them having its own advantages. The particularities for a given problem indicate which method is most appropriate.



It is essential to point out a difference between the variables and feature selection. The understanding of feature is linked to the idea of a set of inputs that is formed from a combination of the original variables or the extraction of some essential characteristics. An example is principal component analysis (PCA), which linearly combines the inputs [49]. Thus, there is a set of new variables, which are in a new space. It differs from as, in this case, the subset is formed by those variables of the original entries that do not undergo any type of transformation.



Variable Selection in Streamflow Series Forecasting


The predictions regarding the monthly seasonal streamflow series follow the stages shown in Figure 1 (adapted from [2]):



The first stage is data acquisition. Sensors are spread to measure the volume of water that passes a transversal section of the rivers. Such water is that which moves the turbines of hydroelectric plants. Due to the nature of the rivers, containing many recesses along their way, the measurement’s uncertainty incidence is inevitable.



The second stage is the pre-processing, which can be summarized in two steps: (a) the application of the deseasonalization procedure to remove the inherent seasonal component present in this kind of series. The transformed data are stationary series, with zero mean and variance equal to one. For linear models of the Box and Jenkins methodology, this step is mandatory, but some investigations have shown that the performance of non-linear methods also increases with this procedure; (b) the input selection step, to determine the lags that lead to the best performances of the predictors. The input selection step is the focus of this investigation.



The next stage is the definition of the forecasting model. Undoubtedly, this is the most usual theme addressed in streamflow series forecasting. Clearly, the definition of the adequate predictor is crucial regarding the accuracy of the estimation of future samples.



The last stage is post-processing, which involves three procedures. After making predictions, the output responses of the predictors are in the deseasonalized domain. Therefore, we reverse the deseasonalization to allow a performance evaluation in the real domain. Then, a statistical test is applied to verify if the results found by the various predictors are distinct, even if they present different numeric values. Finally, the last step is performance analysis.



Despite the specialized literature on this series is related to the forecasting model, it is necessary to elaborate a specific investigation focused on the input selection process due to the impact it presents in the performance of such models. Determining the most suitable set of lags may lead to distinct conclusions. Thus, this theme must be discussed.





3. Filters


The filter selection method is based only on the available data and does not depend on the predictor model. The variables are chosen through linear or non-linear correlation measures between the observations. The main advantage of this method is its generality, as it is not necessary to synthesize the predictor, which tends to make it computationally efficient [17].



However, as this is a previous step, the optimal set of inputs may not be selected, since there is no interaction with the forecasting model. Metrics based on dependency between samples can be useful, but insufficient to ensure that the chosen set is the best possible. Therefore, we recommend using it for problems with a large amount of available data because if the criterion of optimality is not met, the computational cost should be worthwhile.



Figure 2 shows the scheme of the filter type method. Some of the inputs contained in the vector     u  t    will belong to vector     u  t ′    of smaller or equal dimension. The predictions are performed with     u  t ′   .



3.1. Partial Autocorrelation Function


The partial autocorrelation function (PACF) is a widely used filter to identify the order of linear models [11]. The definition of the partial correlation coefficient is directly related to autoregressive models (AR) and the Yule–Walker equations.



The partial autocorrelation coefficient of order k is the last coefficient of an AR(k) model, adjusted for a time series xt and denoted by φkk. This means that an AR process of order p is different from zero to k less than or equal to p, and zero for k > p. Based on this assumption and using the Yule–Walker equations, the relationship between the autocorrelation estimates of a time series in these terms obeys the set of equations described in (1):


   ρ j  =  φ  k 1    ρ  j − 1   +  φ  k 2    ρ  j − 2   + … +  φ  k  (  k − 1  )     ρ  j −  (  k + 1  )    +  φ  k k    ρ  j − k   , j = 1 , 2 ,   … ,   k  



(1)




or, in a matrix form, we have (2) and (3):


     P   k p   =  [     1     ρ 1     ⋯     ρ  p − 1          ρ 1     1   ⋯     ρ  p − 2        ⋮   ⋮      ⋮       ρ  p − 1        ρ  p − 2      ⋯   1     ]    ,  ρ  k p   =  [       ρ 1          ρ 2       ⋮       ρ p       ]    ,     Φ   k p   =  [       φ  k 1           φ  k 2        ⋮       φ  k p        ]  ,   



(2)






    Φ   k p    =    P   k p   − 1    ρ  k p   .  



(3)




in which ρ are the coefficients of the autocorrelation [50].



Thus, the AR(p) model of order p = 1, 2, ...,k must be adjusted to find    φ  k k    . Expression (4) shows the coefficients of the first two AR models:



AR(1):    ρ 1  =  φ  11    ρ 0   


     P   1 p   =  [   ρ 0   ]    ,    ρ  1 p   =  [   ρ 1   ]    ,     Φ   1 p   =  [   φ  11    ]  ,   



(4)




being    φ  11   =  ρ 1    the first partial autocorrelation coefficient. Similarly, we have (5):



AR(2):    |         ρ 1  =  φ  11    ρ 0  +  φ  22    ρ 1           ρ 2  =  φ  21    ρ 1  +  φ  22    ρ 0         


     P   1 p   =  [     1     ρ 1         ρ 1     1     ]    ,    ρ  1 p   =  [       ρ 1         ρ 2       ]    ,     Φ   1 p   =  [       φ  21          φ  22        ]  ,   



(5)







Isolating    φ  21     and equating the equations, we have    φ  22   =    (   ρ 2  −  ρ 1 2   )   /   (  1 −  ρ 1 2   )     , the value admitted as the second partial autocorrelation coefficient.



It is noteworthy that the autocorrelation coefficients ρp are problem-dependent. Then, the PACF of a series can be estimated through successive adjustments of the autoregressive models, determining the most appropriate orders of an AR model. In practice, the AR(1) is adjusted, from where we estimate the coefficient    φ  11    . Following, we adjust the AR(2), and we have    φ  21     and    φ  22    , the latter being of interest. We continue in these systematic steps until the required k order is adjusted, from where the coefficients come out the desired    φ  k k    .



For a time series, the highest order is sought such that all estimates    φ  k k     for k > p are not significant. The order of the model is the value corresponding to the selected entry, that is, if the coefficients are selected    φ  11     and    φ  55    , lags 1 and 5 are part of the subset of inputs.



Quenouille [51] showed that for a AR(p) process, the coefficients    φ  k k     estimated for orders greater than p have a Gaussian distribution with a mean equal to zero, variance equal to   V A R  [   φ  k k    ]  ≅  1 / N   , being N the number of samples. Thus, the confidence threshold for the coefficients based on the standard deviation is    |   φ  k k    |  ≅  2 /   N     , considering that the estimate is different from zero in this interval.



However, the method can select non-consecutive delays as model inputs. For example, if V = [v1,v2,v3,v4], it can select V = [v1, v4], which means that    φ  11     and    φ  44     were significant, while    φ  22     and    φ  33     are not. For hydrologic time series, Stedinger [52] states that it makes no sense that a given sample is related to non-consecutive delays and that delays in a non-consecutive hydrological system selected by the PACF have no physical meaning, proposing the suppression of these entries. According to this work, some historical series have an autocorrelation structure relative to both the time between observations and the observed period.



Taking as an example an AR(6) model, if PACF defines that only the inputs weighted by the coefficients    φ  11     and    φ  44     are significant, the latter is considered as spurious data and must be discarded. This means that intermediate values should not be considered. Siqueira et al. [2] used bootstrapping techniques to evaluate the best order of periodic autoregressive models, and reached the same conclusion as Stedinger, with similar orders for streamflow series.



Figure 3 is related to the calculation of the PACF of the monthly streamflow series from Furnas hydroelectric plant, located in Brazil. The data used are from January. The horizontal line is the confidence threshold calculated as a function of the standard deviation. Note that, with 12 delays, the method selected lags 1, 5, and 7. If Stedinger’s proposal is taken into account, only delay 1 is chosen.



The technique is implemented for the selection of inputs in linear simulation models by the Brazilian National Electric System Operator [12].




3.2. Mutual Information


The dependency between two variables is an essential step for selecting model inputs. In this context, a reliable criterion belonging to the scope of information theory can be used, i.e. the mutual information (MI) [53]. The MI is a metric that provides a measure of the degree of dependence between variables; it reflects the amount of information that links them. This filter can be applied as a criterion to select the inputs of forecasting models.



The definition of MI between two random variables can be interpreted as a measure of proximity between the joint probability distribution of the variables x and y, and the product of their marginal distributions. Mathematically, we have (6):


  M I =   ∫   f  x y    (  x , y  )    log  (     f  x y    (  x , y  )     f x   ( x )     f y   ( y )     )    d x   d y    ,  



(6)




in which    f  x y    (  x , y  )    is the joint probability density function (PDF), and    f x   ( x )    and    f y   ( y )    are the respective marginal density functions. The MI criterion presents zero as a result for independent variables, and greater than zero otherwise. If a representative sample of the data is available, one can estimate (6) using (7) [54]:


  M I =  1 N    ∑  i = 1  N   log    [     f  x y    (   x i  ,  y i   )     f x   (   x i   )     f y   (   y i   )     ]  ,  



(7)




where    (   x i  ,  y i   )    is the i-th pair of data from the sample with size N, being i = 1, 2,..., N.



The difficulty in this case is to estimate the probabilities since the distributions are often unknown in practice. Additionally, these estimates may require a large amount of data, which is not always available.



There are several ways to estimate PDFs in the literature. In this work, we use a non-parametric approach based on kernel functions, the absolute distance, or city-block type, which have already been applied in streamflow series forecasting [54]. The choice for this proposal is justified in terms of computational simplicity and absence of data distribution type assumption.



Consider the input and output dataset    [    X  k  ,  y k   ]   , being k = 1, 2,...,N. The approximation of the probability densities of a one-dimensional x variable via non-parametric kernel estimators is given by (8):


    f ^  x  =  1  N λ     ∑  i = 1  N  K   [    x −  x i   λ   ]  =  1 N    ∑  i = 1  N    K λ   (  x −  x i   )    ,  



(8)




in which    K λ   ( t )    is the kernel function, and λ the bandwidth or dispersion parameter.



Therefore, the marginal approximate probability density function of x is given by (9):


    f ^  x   (  x  )  =  1  N    (  2 λ  )   p      ∑  i = 1  N   exp    [  −  1 λ      ∑  i = 1  p    |    x  j  −   x   i j    |     ]  ,  



(9)




with p being the dimension of x.



Equation (9) arises from (8) as a case adapted to multidimensional x, and using the city-block function. The parameter λ is calculated by (10) [55]:


  λ =    (   4  p + 2    )     1   (  p + 4  )       N    − 1    (  p + 4  )      .  



(10)







Finally, the joint probability of    (   x  − y  )   , the latter being a one-dimensional output, is as in (11) [56]:


    f ^   x y    (   x  , y  )  =  1  N    ( λ )    p + 1       ∑  i = 1  N   K  (     x  −   x  j   λ   )    K  (    y −  y j   λ   )    ,  



(11)




or as in (12)


    f ^   x y    (   x  , y  )  =  1  N    ( λ )    p + 1       ∑  i = 1  N   exp  (  −  1 λ   s i   )    .  



(12)







Therefore,    s i    is calculated by (13):


   s i  =   ∑  j = 1  p    |    x  j  −   x   i j    |    +  |  y −  y j   |  .  



(13)







An example that shows the approximation capability of this proposal is its use to build a bi-variable Gaussian distribution function. This function is defined by (14):


   f  x y   =  1  2 π  σ x   σ y    1 −  ρ 2        exp  (  − Γ  )   



(14)




where:


  Γ =  1 2   (  1 −  ρ 2   )   [     (  x −  μ x   )     σ x 2    +    (  y −  μ y   )     σ y 2    + 2 ρ      (  x −  μ x   )   (  y −  μ y   )     σ x 2     σ y 2     ]  .  



(15)




with x and y being the variables used,    μ x    and    μ y    their respective averages,    σ x    and    σ y    the standard deviations, and ρ the correlation coefficient between them.



To exemplify the approximation capability using the city-block function, we generate 2000 samples of x and y with normal distribution and zero mean. With Equation (14), it is possible to plot fxy, represented graphically in Figure 4a together with its diagram in contour lines (Figure 4b). In parallel, we present the approximations using the city-block kernel function of (13) in Figure 4c,d. The proximity of the curves is clear, which illustrates how this function approximates the distributions. The correlation coefficient between them is 0.9932, although the circles are not perfectly concentric.



The final step in applying the MI filter is to define a confidence threshold that determines if an input belongs to the selected subset of explanatory variables. One possibility is to establish a minimum value for the MI and reject entries with a lower MI score. Another option is to use a bootstrapping or resampling technique to test the hypothesis of independence between x and y. For this, several sequences other than x in relation to y are built, in which the independent variable is reordered, and a vector of MIs is obtained. If this value surpasses the threshold at a given level of significance α, x and y are considered dependent. Thus, an input variable x is identified [57]. This work adopts the latter approach.



The example in Figure 5 refers to the calculation of the MI coefficients related to Furnas hydroelectric plant streamflow series. As in Figure 3, the samples are from January. In this case, we adopted p = 100 sequences and α = 5%, and the respective MI values calculated. For 12 lags initially considered as possible explanatory variables, the selected ones are lags 1, 8, and 9.




3.3. Partial Mutual Information


The MI criterion appears advantageous due to the non-parametric nature on identifying explanatory variables, regardless of the model’s nature to adjust afterward. Notwithstanding, two or more explanatory variables may be highly correlated; thus the choice of those variables would insert redundancy and an unnecessary increase in the complexity of the model. It may occur because the criterion does not perform a joint evaluation of the whole set of potential input variables. One way to deal with this is the proposal of [58], who reformulates the MI into what is known as the partial mutual information criterion (PMI). The PMI criterion measures the mutual information between the independent variable x and the dependent variable y, conditioned to a set of inputs z previously selected.



Consider that this set z exists. Next, it is necessary to extract the influence of this set concerning the other potential inputs evaluated yet, to calculate their real contribution, a different from the one already given by z. Thus, following Luna et al. [54] and Sharma [58], Equation (7) can be reformulated as (16):


  P M I =  1 N    ∑  i = 1  N     log  e     [     f   x ′   y ′     (   x i ′  ,  y i ′   )     f  x ′    (   x i ′   )     f  y ′    (   y i ′   )     ]   



(16)




where    x ′  = x − E  (  x  |  z    )    and    y ′  = y − E  (  y  |  z    )   .



Here,   x ′   and   y ′   denote the residuals of x and y, respectively, after removing the conditional expectations given z,   E  (  x  |  z    )    and   E  (  y  |  z    )   . With this transformation,   x ′   and   y ′   can be interpreted as remaining information in both variables: what is yet different from the information in z; and what has not been explained yet from y.



Several approaches have been proposed for estimating expected means [58,59,60]. We opted for simplicity by following the non-parametric approach based on kernel regressions by using the Nadaraya–Watson estimator [61]. According to this, given two variables a and b, a general expected value   E  (  a  | b   )    is defined by (17):


   r ^   ( a )  =   ∑  i = 1  N    w  λ a    (  a ,  a i   )     b i     



(17)




where:


   w  λ a    (  a ,  a i   )    =    K  λ a    (  a −  a i   )      ∑  i = 1  N    K  λ a    (  a −  a i   )      .  



(18)




with    K  λ a    (  a −  a i   )    denoting the kernel function for variable a. As before, we will use the city-block function for this purpose.



Therefore, input selection, in this case, follows an iterative process. At the first iteration, MI scores are calculated for every potential input variable previously defined. The first input selected is the one with the higher MI score as long as its significance is validated, initiating z. In the following steps, PMI scores are calculated for all the potential input variables, updating z at each iteration, until the higher PMI is not statistically significant at all. The bootstrapping technique is once more used to verify the PMI scores significance at a 5% level.




3.4. Normalization of Maximum Relevance and Minimum Common Redundancy Mutual Information


Some studies use the principles of mutual information, extending it in different directions to increase the filers’ selection capability. The work from Che et al. [62] proposed to expand the MI using the maximum relevance and minimum common redundancy (MRMCR) between the inputs of a model (lags). This framework intends to determine the best set of inputs, controlling the redundancy between them.



The first step of this method is to calculate the common redundancy to evaluate the inputs’ common information. Following, one must apply the normalization of maximum relevance and minimum common redundancy (N-MRMCR-MI). The result presents values in the interval [0,1].



Let S be the subset of chosen inputs, and T the complementary non-selected group. Then, calculate the common mutual information (CI), using (19):


  C I (  x i  , S , y ) =   m a x    x j  ∈   S    {    M I (  x i  ,  x j  )   m a x  [  M I (  x i  ,  x j  ) , M I (  x i  , y ) , M I (  x j  , y )  ]      m i n  [  M I (  x i  , y ) , M I (  x j  , y )  ]   }  ,  



(19)




where i is the index of the variables in T, j the index of the inputs in S, and MI is the mutual information (see (7)):



The complete application of N-MRMCR-MI procedure is according to the following stages [62]:



(1) Initialization: be   T =  (   x 1  ,  x 2  , … ,  x p   )    the full set of inputs, and   S = ∅   (empty);



(2) First input selection: calculate   F  (   x i   )    using (20) for all i = 1, 2, …, p, and set the best on    x i ∗    applying (21):


  F (  x i  ) =   M I (  x i  , y )   M I ( y , y )   ,  



(20)






   x i ∗  =   arg max     i = 1 , 2 , … p    {  F (  x i  )  }   



(21)







(3) Update the groups:   T = T −  {   x i ∗   }   , and   S =  {   x i ∗   }   ;



(4) Greedy selection: repeat steps 1 and 2 until the desired number of features is determined;



(5) Determine the N-MRMCR-MI considering the output variable using (22):


  F (  x i  ) =   M I (  x i  , y )   M I ( y , y )   −   C I (  x i  , S , y )   M I ( y , y )   ,  



(22)







(6) Update   T = T −  {   x i ∗   }   , and   S =  {   x i ∗   }   ;



(7) Output the subset S.



In this work, we again address the bootstrapping to calculate the confidence level [57], and the city-block functions.





4. Wrappers


In the wrapper approach, the central aspect is the interaction between the variable selection mechanism and the forecasting model [63]. Once the model has already been adjusted, the wrapper will evaluate, through some performance criteria, each of the subsets to solve it [47]. However, the computational cost involved is high, as the model needs to be adjusted for each candidate subset [64]. The literature recommends using this method for cases where the number of samples is reduced [17]. Figure 6 shows the scheme of the method.



As shown in Figure 6, the operation of the wrapper is as follows: firstly, the set of entries     u  t    is divided into smaller subsets     u  t ′   ; next, the predictor is trained and executed for each of subset; after the forecasting stage, we calculate a performance score from the evaluator block for each subset. The one with the best value is used.



It is possible not to use the last predictor shown in Figure 6, if the result of each assessment is stored. However, we presented the selection as a separate task of the forecasting process for the sake of simplicity of understanding.



4.1. Progressive Selection


The computational cost of performing an exhaustive search of all possible subsets can be impractical even a relatively small problem since the computational cost is factorial. A proposal to overcome this problem is the wrapper using the progressive selection method. This methodology establishes a manner to build subsets of entries considering each one individually.



The procedure initiates with an empty subset, and we compare each variable with all others. The one presenting best performance measured by the evaluation function is selected, either to improve the result or to least deterioration of this value. After choosing the first entry, fixed in the subset, the others are evaluated to ascend as the second entry. We repeat this procedure until the evaluation of all V variables. The final subset is the one with the best overall result.



Figure 7 presents this idea, considering the Emborcação series, with the adjustment of an Extreme learning machines neural network (ELM) with a fixed number of 20 neurons in the hidden layer, and a maximum of 10 delays as input. As one can note, we selected three entries in this order: 4, 10, and 6, since this was the combination that had the lowest mean square error. In this case, it is noticeable that the selected entries are not consecutive and that the increase in the number of inputs does not necessarily improve performance.



The number of subsets formed in this case is equal to the number V of inputs, and the number of times the predictor needs training obeys     V  (  V + 1  )   / 2   . In the example, above 55 ELMs were adjusted, since V = 10.



It is also interesting to observe the behavior of the mean squared error (see Section 4.2) between iterations 2 and 4 in Figure 7. When adding the lag v6, the error decreased, improving the value of the objective function to be minimized. However, with the insertion of the variable v3, the error increased. This behavior occurs because the search may fall in local minima, which can circumvent at later iterations [47].




4.2. Evaluation Functions


After discussing how the wrapper method works, it is necessary to define a criterion for assessing the quality of forecasting using the previously defined subsets. This step corresponds to the Evaluator block in Figure 7.



The most straightforward criterion is to use some error metric that, for each adjusted set, shows the average of the differences between the desired and the predicted data. The proposal used by Puma-Villanueva et al. [47] is the mean absolute error (MAE), given by (23):


  M A E =  1   N s      ∑  t = 1    N s      |   x t  −   x ^  t   |    ,  



(23)




where    x t    is the desired sample in time t,     x ^  t    is the prediction, and    N s    the number of predicted samples.



Another possibility is to address the mean squared error (MSE), the most common metric used as a cost function in the training of neural networks, and in the estimation of AR model parameters. This metric is defined by (24):


  M S E =  1   N s      ∑  t = 1    N s        (   x t  −   x ^  t   )   2    .  



(24)







Note that these criteria only consider the final result of the adjustment, regardless of the number of inputs. However, there are other types of evaluation functions seek to penalize the number of entries in order to select parsimonious subsets regarding the number of inputs. Criteria widely used are based on information measures [17].



Schwarz [65] proposed the Bayesian Information Criterion (BIC). It is based on linear correlation metrics, and is linked to the optimal orders of the forecasting model, as defined in (25):


  B I C = N   log  e   (    σ ^  a 2   )  + p   log  e   ( N )  .  



(25)




where N is the number of observations, p is the order or number of model entries and     σ ^  a 2    is estimated variance of white noise (or residue).



Thus, the wrapper chooses the set of inputs with the lowest BIC value. Similarly, the Akaike Information Criterion (AIC) [66] is defined by (26):


  A I C = N ln  (    σ ^  a 2   )  + 2 p .  



(26)







In both cases, it is clear that there is a penalty concerning the number of entries so that the inclusion of more inputs depends not only on the performance improvement but also on how much it is increased. Thus, the selected subset must be efficient and parsimonious. The difference between the criteria lies in the fact that the BIC penalizes the inclusion more strongly than the AIC. Observe the BIC last term (25) is the natural logarithm of the number of observations, while the AIC (26) has a multiplication of the order or number of model entries by 2.





5. Bio-Inspired Metaheuristics


Bio-inspired metaheuristics for optimization have been widely applied in VS tasks, especially their binary versions. The genetic algorithm (GA) belongs to the field of evolutionary computation because it is inspired by Darwinian natural selection. Another class of bio-inspired methods is the swarm-based approaches, from which many algorithms were created. The main characteristic of this class is the inspiration based on the collective behavior of groups of animals. Its primary representative is the particle swarm optimization (PSO) [67]. Still, many other algorithms can be cited as artificial bee colony, cat swarm optimization, fish school search, ant colony optimization, among others [68,69].



In this section, we briefly explain the two metaheuristics widely used in the literature for optimization: genetic algorithm and particle swarm optimization. Both techniques simulate multiple agents that evolve/adapt depending on the environment to find better solutions to one fitness function. The flexibility, robustness, and scalability are key advantages of applying metaheuristics to real problems.



5.1. Genetic Algorithm


The genetic algorithm (GA) was introduced by John Holland [70], and the theory of natural evolution inspires it. The population which adapts better to the environment circumstances perpetuates the genes, reproducing other individuals with more likely useful genes. Therefore, GA has a population of individuals that will pass into three processes: selection, crossover, and mutation to reproduce a better population until an a priori constraint is reached. For the binary version, a vector of binary values represents each individual of the population.



In summary, the GA starts generating an initial (generally random) population of individuals with the respective fitness function of their genes. Until the population has not converged, the three processes will be executed, and the fitness function will be updated when the genes are updated. The first process, selection, chooses the individuals that will reproduce new individuals. Then, in the following procedure, crossover, the adopted parents (two) will mix their genes to create a new offspring. Thirdly, the mutation process randomly selects genes to be changed. In general, each process establishes the number of individuals that will be updated. The algorithm is usually greedy (only allowing the update of the new individuals that are better than the current ones).




5.2. Particle Swarm Optimization


Kennedy and Eberhart [67] developed particle swarm optimization (PSO). After two years, the discrete or binary version of PSO was also published by them [71]. The PSO algorithm mimics the behavior of a flock of birds where each bird is a candidate solution. Each candidate solution i is represented by a position xi and a velocity vi. For the binary version, binary values represent the position and the velocity is continuous values between 0 and 1.



In summary, PSO starts generating an initial (generally random) population of birds with their respective fitness function. Then, until reaching a priori condition, all the birds update the velocity and position. The update of the post (flip the position for binary optimization) is performed each time that random value is higher (or smaller) than a transformation function of the velocity   F  ( v )    (such as sigmoid or tangent sigmoid). Using the sigmoid function, we can express that the new position is updated by:


   x i  t + 1   =  {      0   i f   r a n d  (  )  ≥ F  (   v i  t + 1    )        1   i f   r a n d  (  )  < F  (   v i  t + 1    )         



(27)







Moreover, the new velocity is calculated based on the current velocity, and the delta displacement between the personal (   p  b e s  t i   t   ) and global (   g  b e s  t i   t   ) best positions. The    p  b e s  t i   t    is updated every time that a particle finds a better position, and the    g  b e s  t i   t    is the best position between the neighbors’ particle (defined a priori by the topology). The parameters    c 1    and    c 2    are a priori constants that define how altruistic or selfish each particle is, and the parameters    r 1    and    r 2    are random values between 0 and 1. Equation (28) shows the update process in the velocity:


   v i  t + 1   = w  x i t  +  c 1   r 1   (   p  b e s  t i   t  −  x i t   )  +  c 2   r 2   (   g  b e s  t i   t  −  x i t   )  .  



(28)







Until the algorithm is converged, each particle updates the velocity and position. When the position is updated, the fitness function is also updated.





6. Case Study


In this section, we summarize the computational results of the linear model and the Extreme Learning Machines neural networks using the variable selection techniques discussed: filters, wrappers, and bio-inspired metaheuristics. As discussed in Section 1, seasonal streamflow series forecasting is essential for countries presenting hydroelectric plants to power generation. In the Brazilian case, 70% of the electric energy is hydroelectric generated [72]. Additionally, this task is vital to optimize the energetic planning [43,44,45,73].



First, it is paramount to mention the adopted assumptions. We performed the simulations with a maximum of 6 delays, following the literature [2,11,54]. We addressed two forecasting approaches: the use of one predictor to the whole series, and the monthly approach, in which we adjusted 12 different models, one for each month of the year.



Several investigations have shown that monthly streamflows present a seasonal behavior throughout the year, being non-stationary series. Linear models cannot be directly applied, being necessary to remove the seasonal component. In this work, we adopted the deseasonalization procedure to transform the series into stationary, with zero mean and variance equals one [2]. The process is reversed before the performance analysis. Equation (29) describes the deseasonalization procedure:


   z  i , m   =    s  i , m   −   μ ^  m      σ ^  m    .  



(29)




where,     s  n    is the original series formed by the samples    s  i , m    , which is transformed into a new series     z  n   ;     μ ^  m    is the monthly mean;     σ ^  m    the monthly standard deviation; and the month m = 1, 2…,12.



The series addressed are related to five important Brazilian hydroelectric plants: Furnas, Emborcação, Sobradinho, Agua Vermelha, and Passo Real. The datasets are available from 1931 to 2015, totaling 85 years or 1020 monthly samples. Each sample refers streamflow in m³/s. These data are public, being available on the website of the National Operator of the Electric System (ONS) [74]. We separated each series on three groups:




	
Training, from January 1st, 1931 to December 31st, 1995 (780 samples);



	
Validation, from January 1st, 1996 to December 31st, 2005 (120 samples); and



	
Test, from January 1st, 2006 to December 31st, 2015 (120 samples).








The mean and standard deviation of all series are available in Table 2. Note their distinct statistical and consequent hydrological behavior, enabling a broader analysis of the results.



6.1. Predictors


In this section, we briefly describe the forecasting models used in this work. We consider as predictors two methods: the autoregressive linear model (AR) from the Box and Jenkins methodology [50], and the extreme learning machines neural network (ELM), as the nonlinear representative. Note that when using the approach with 12 predictors, the linear method is called the Periodic Autoregressive model (PAR).



The AR approach linearly weights p past values    u t  =  [   u  t − 1   ,    u  t − 2   ,   … ,    u  t − p    ]    of a time series to provide a future response    y t   . Considering that the values of vector u are stationary, (30) explicates such a process:


   y t  =  φ 1   u  t − 1   +  φ 2   u  t − 2   + … +  φ p   u  t − p   +  a t   



(30)




where    φ p    are the free coefficients of the model.



A significant advantage of this method is the possibility of calculating its coefficients using a close form approach named Yule–Walker equations. This means that, using the same set of inputs, the model always converges to the same output. This method guarantees the minimum MSE between the output and the desired response.



The standard AR considers just one model to predict all values of the time series. However, it is possible to extend the AR to series, which presents variations in its structure [75], using the periodic autoregressive model (PAR). According to Hippel and McLeod [76], some historical series, such as hydrological ones with seasonal behavior, present an autocorrelation structure linked to the time delay between observations, and the observed period. In this sense, we can address one predictor for each month, the core of the PAR model. For monthly streamflow forecasting, we use 12 predictors, each one adjusted to predict the samples for each month [11].



The second forecasting model addressed is the extreme learning machine (ELM). ELMs are feedforward neural networks like the traditional multilayer perceptron (MLP), with only one intermediate layer. However, the training process differentiates them since the weights of the neurons in the hidden layer are randomly and independently determined. The training process does not adjust the weights of this layer, but only those of the output. The optimal values of the weights are typically calculated analytically since the training involves solving a linear regression problem [77]. Thus, there is no need to calculate derivatives, back-propagate error signals, or use iterative algorithms, which reduces the computational cost involved in the training process.



Bartlett [78] obtained an important theoretical result. The author proved that controlling the norm of synaptic weights is more relevant in terms of the generalization capability of a neural model than controlling the number of neurons in the middle layer. This leads to important evidence that an improvement occurs when the parameter vector has a minimum norm, so the effective number of neurons in the intermediate layer will be defined by the configuration of the weights of the output layer.



Given this statement, ELM presents a guarantee of good generalization effectively given by the weights of the output layer, and the weights of the intermediate layer can be defined at random. Because of this, the network’s training becomes linear in relation to the adjustable parameters for supervised training. The generalized Moore–Penrose operator is the most important candidate for solving this problem in the literature [79,80].



In this work, we address the neural network following the same premises of the AR and PAR models: just one ELM for the complete series (annual approach), and 12 ELMs, one adjusted for each month. We highlight that such method was chosen because it presented good results in monthly seasonal streamflow series forecasting, overcoming other neural models [2,12,43,44,45,80].




6.2. Computational Results


This investigation aims to analyze the quality of the predictions regarding the use of the aforementioned variable selection techniques: filters, wrappers, and bio-inspired metaheuristics. We consider as predictor the autoregressive model (AR), periodic autoregressive model (PAR) [50], and the extreme learning machines neural network (ELM) considering the annual and monthly approaches.



The purpose of these simulations is to find the input selection model that is more suitable for a linear and a non-linear methodologies. Note that the wrappers for AR and PAR models take into account the assessment of the fit of the training set, while the training error of ELMs are not as important because we are interested in the smallest generalization error.



The maximum number of inputs or delays allowed is six, as models of higher orders increase the possibility of negative auto-regressive coefficients [11]. Siqueira et al. [2,12] and Stedinger [52] defend this premise.



The computational results regarding the mean square error (MSE) and mean absolute error (MAE) in the real and deseasonalized (MESd and MAEd) domains for one step ahead are in Table 3, Table 4 and Table 5. The acronym “Lf” means the linear filter approach based on the partial autocorrelation function (the traditional PACF and the Stedinger’s approach PACF-Sted.), “Nf” corresponds to the non-linear filters developed using the mutual information principle (MI, PMI, and N-MRMCR-MI), “WR”, the wrapper method considering as evaluation function the BIC, AIC, and MSE, and “M” the metaheuristics, GA and PSO.



In the AR (Table 3) and PAR (Table 4) cases, we presented the error for training and test sets, while for the single and monthly ELM (Table 5), we just show the errors for the test, because we are interested in analyzing the generalization capability of such response. To the ELM, the results are an average of 30 simulations. The best performances in the test set regarding the MSE in the real domain are highlighted using shades of gray. Additionally, in Appendix A we explicate the inputs selected for all case studies in Table A1, Table A2, Table A3, Table A4 and Table A5.



We also applied the Friedman’s test to evaluate if the results are significantly distinct [57]. As expected, for the cases that the same set of inputs are selected, there is no statistical difference between the results for the same model. In almost all the other cases, the p-values achieved were close to zero, indicating that change the inputs leads to different conclusions. We discuss the exceptions below.



The critical analysis regarding the results achieved by the AR model reveals interesting behaviors (Table 3). For Furnas and Emborcação time series, there was no perfect correspondence between the best performance regarding the MSE and MAE in the real and deseasonalized domains’ errors. In such cases, we assumed the best predictor with the smallest MSE in the real space, following the premises already stated in previous works [2,12,80].



The general analysis showed other relevant issues: for training or test, at least two variable methods led to the same performances since they selected the same subset of inputs, except for the Agua Vermelha training set. As the AR optimized by the Yule-Walker equations presents a closed-form solution, the same input vector necessarily leads to the same output responses. This behavior can occur since just one model is adjusted, and the number of inputs is limited to six.



Likewise, these draws happened for the same class of variable selection method. Note, for example, for Emborcação, Sobradinho, and Passo Real, the smallest training error in the MSE sense was related to the non-linear filters, while for Furnas were the wrappers based on BIC and AIC.



However, we observed an intriguing behavior: the best performances were related to distinct variable selection methods for training and test sets (Table 3). Following some literature regarding monthly seasonal streamflow series forecasting [2,12], one should state the best variable selection method related to the error in the test set. However, the analysis of the training set presented the search capability of the methods. Indeed, the ideal behavior would be the same VS approach for both. The training set was better adjusted for MI filters in 4 cases, and the wrapper (BIC and AIC) in one. PACF best fitted the test sets four of five times, and by the MI filters, once.



Analyzing the inputs selected for AR model in Table A1, Table A2, Table A3, Table A4 and Table A5 in Appendix A, one can note that the models that fitted better in training set selected six lags for Emborcação, Sobradinho, and Passo Real. For Furnas and Agua Vermelha, two entries. Considering the test set, the PACF approaches, in general, selected three or four inputs. As expected, the MI methods usually chose more lags than the PACF, since they detect non-linear relations. As the linear approach achieved four of five best results, we can affirm that include all inputs in the AR model may tend to a configuration with less generalization capability.



Although the bio-inspired metaheuristics present an elevated search capability, for the AR neither, PSO nor GA achieved some of the best performances (Table 3).



Unlike the AR case, the PAR model’s results presented a draw just for the training set of Emborcação (Table 4). It happened because both GA and wrapper-MSE found the same set of inputs (see Table A2). Considering the optimization of 12 models simultaneously, totaling up to 72 free parameters, it is more likely that the variable selection models achieve distinct configurations.



To the PAR model (Table 4), the best VS method presented homogeneity regarding the four error metrics. On the other hand, we noted again that the best performance for training did not present correspondence with the test set. In the training set, the GA stood out, achieving the smallest errors for Emborcação, Furnas, and together with wrapper-MSE for Agua Vermelha. For the other scenarios, we highlight the N-MRMCR-MI. In the test set, just filters reached the smallest errors: PACF-Sted. (Furnas and Agua Vermelha), N-MRMCR-MI (Emborcação), and MI for the others.



Table A1, Table A2, Table A3, Table A4 and Table A5 reveal the GA and wrapper-MSE often selected five or six inputs for all months. In the comparison of wrapper methodologies, a pattern could be noticed, since the BIC selected fewer inputs than AIC. In practice, we observed the influence of each type of penalty regarding the insertion of new entries.



The results achieved by the ELM considering the annual approach, summarized in Table 5, must be discussed considering not just the numerical values of the errors, but also the statistical difference between them. Additionally, it is important to highlight that when applying neural networks, there is no interest in evaluating the training error, because we are looking for the configuration to achieve the highest generalization capability. Therefore, we discuss just the error in the test set.



In the annual models, we once again noted some ties for Furnas and Emborcação. In addition to Table 5 presenting distinct numerical values, the obtained p-value for the Friedman test was higher than 0.05, as expected, since the set of selected inputs was the same (see Table A1, Table A2, Table A3, Table A4 and Table A5). As the initialization of the weights of an ELM is random, the outputs are distinct, but the results are close. It is the reason we must run the algorithm at least 30 times.



For Furnas, wrapper (AIC and MSE), and the non-linear filters (MI and PMI) presented the best results, selecting the same entries. For Emborcação, a further discussion must be done. Except for the wrapper-BIC, all methods led to the same performances statistically, according to the Friedman test. However, one can find four distinct sets of inputs in Table A2. It can happen since the approximation capability of a neural network is elevated, and these models are universal approximators. Regarding the inputs, note that lags 1 and 4 belong to all subsets.



For the other series, the AIC stood out for Agua Vermelha and Sobradinho, while the PACF and PACF-Sted., for Passo Real (same set of inputs). The AIC method selected two inputs for all cases.



As observed for the linear prediction models, the MI methods tended to select more lags than the linear filters (see Table A1, Table A2, Table A3, Table A4 and Table A5). The PMI presented fewer inputs than their non-linear counterparts. In general, it seems clear that inserting too many inputs does not necessarily lead to an increase in performance, especially in the test set.



The monthly prediction using ELM, similar to the linear case, showed error values with a standard pattern. For all scenarios, the wrapper-MSE found the best performances, although the smallest MAE for Sobradinho is related to AIC. In a few cases, the best error metrics converge to the same predictor. Except for the tie in Emborcação, the metaheuristics did not achieve the best errors.




6.3. Discussion


Table 6 displays how many times each VS method led to the best performance, according to the models depicted in Table 3, Table 4 and Table 5: AR (training and test), PAR (training and test), annual ELM (test), and monthly ELM (test). Due to the statistical similarity between some of the best results, provided by Friedman test, we indicated the number of VS methods that achieved similar performance regarding each predictor between parentheses. For example, for the AR in the training set, the PMI reached the best result four times, once alone and three times together with two more VS methods. In bold and underlined it is highlighted the number of times some approach was the single best.



The general analysis considering all results allows some interesting observations. In annual approaches, we noted many draws, unlike in the monthly approach. It is plausible since only one predictor is adjusted. The monthly models presented more sprayed performances due to the number of models fitted for each series (see Table 3, Table 4 and Table 5).



In most cases, the PACF and PACF-Sted. presented the same set of inputs (see Appendix A, Table A1, Table A2, Table A3, Table A4 and Table A5). It indicates that, for hydrologic series, the hypothesis of dependency of consecutive delays makes sense. These methods were highlighted to the test set of the AR and PAR models (Table 6).



Considering the non-linear filters for annual models, these approaches presented as inputs all the six lags, except for Agua Vermelha. In general, comparing the MI-methods to the monthly cases, the PMI tended to select fewer inputs, while the N-MRMCR-MI selected more inputs, except for Agua Vermelha (see Table A1, Table A2, Table A3, Table A4 and Table A5). The MI-based approaches are avid for data since the estimation of the probability density function (PDF) gets better; the more data are available. That is why for annual models, such an approach tends to behave better than the monthly models. The AR was better adjusted for the training set using MI. Additionally, the N-MRMCR-MI won alone twice (Table 6).



Regarding the wrapper methodology, as expected, the MSE-based selected more inputs then BIC and AIC, since there is no penalty in introducing new lags. The BIC selected fewer entries than the AIC, due to its strong penalty function (see Table A1, Table A2, Table A3, Table A4 and Table A5). However, The BIC did not overcome the others by itself, unlike the AIC, which was the winner twice for ELM annual model. In summary, the wrapper approach stood out for the neural networks (Table 6).



Regarding the metaheuristics, just for the PAR in the training set, the GA achieved most of the best performances. These are powerful methods to deal with binary optimization problems like variable selection, and we believe this approach could be competitive [68,69]. Additionally, the computational cost was higher than the wrappers (Table 6). Moreover, we can also notice that for four of five series, the monthly ELM achieved the best general performances (Table 3, Table 4 and Table 5). It is particularly relevant since, in current days, one can still find the massive use of linear models in the literature [2,12].



Finally, we state that variable selection is a complex problem, little explored in the context of monthly seasonal streamflow forecasting. The variety among the responses proves the task’s inherent difficulties, which present elevated economic and environmental impacts. As can be seen, the models’ efficiency is greatly influenced by lags choice. In Figure 8, we present the best predictions achieved by the winner in each scenario: AR for Furnas and monthly ELM for the other cases.





7. Conclusions


This work performed an extensive investigation on the variable selection methods to determine the best subsets of inputs to increase the accuracy in the monthly seasonal streamflow series forecasting tasks. Most of the specialized literature focus on finding the best predictor, but the selection of the inputs presents an essential step for forecasting.



We addressed wrappers, linear and non-linear filters, and bio-inspired metaheuristics. The wrapper methodology can evaluate the quality of this subset under several criteria, including:




	
Mean square error (MSE);



	
Bayesian information criterion (BIC);



	
Bayesian information criterion (AIC).



	
The linear filters used were the:



	
Partial autocorrelation function (PACF);



	
PACF using the Stedinger [52] approach for hydrological series.



	
The nonlinear filters addressed were:



	
Mutual Information (MI);



	
Partial mutual information (PMI); and



	
Normalization of maximum relevance and minimum common redundancy mutual information (N-MRMCR-MI).








Regarding the metaheuristics, we used binary versions of the:




	
Particle swarm optimization (PSO); and



	
Genetic algorithm (GA).








We performed computational tests with the predictions made for five monthly series related to hydroelectric plants using the autoregressive linear model (AR), and extreme learning machine neural network (ELM) as predictors. We also addressed two forecasting approaches, the use of only one predictor for the whole series, and the use of 12 predictors, each one adjusted for each month.



The main findings of this investigation are:




	
The selected lags were very diverse depending on the method, especially for the monthly case;



	
For the annual approaches, some draws could be found;



	
The linear models perform better with filters;



	
The wrapper is the best choice for the neural network; and



	
Regarding the forecasting methods, the monthly ELM achieved the best error values.








These findings are especially important for countries where the power generation is mainly from hydroelectric plants, since this is the most important renewable power source in the world. Additionally, such investigation can contribute to energetic planning, water availability, and pricing strategies for the power productive chains.



Future works can be developed considering these approaches for other series of renewable inputs for power generation, like wind power [36,38]. Other problems related to energy generation as an estimation of methane production and biogas efficiency [81] could be treated and simulated using a similar methodology. Furthermore, other metaheuristics can be addressed, since there is a vast repertoire of possibilities being developed in the last years, such as differential evolution and artificial bee colony, among others.
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Appendix A


In this appendix we present in Table A1, Table A2, Table A3, Table A4 and Table A5 the inputs selected by each VS methodology, regarding the five monthtly seasonal streamflow series from five Brazilian hydroelectric plants. Note that the best performance related to Table 3, Table 4 and Table 5 in the test set are highlighted in bold. For the training set, the best results are in italics and bold.
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Table A1. Furnas.






Table A1. Furnas.





	
Month

	
BIC

	
AIC

	
W-MSE

	
PACF

	
PACF

-Sted.

	
MI

	
PMI

	
N-MRMCR

-MI

	
GA

	
PSO






	
PAR

	
J

	
1(1)

	
1(1)

	
5(1,3,4,5,6)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
3(1,5,6)

	
5(1,3,4,5,6)

	
5(12,3,4,6)




	
F

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(2,4,6)




	
M

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
5(1,2,3,4,5,5)

	
6(1,2,3,4,5,6)

	
2(1,5)




	
A

	
2(1,2)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(1,3,5)




	
M

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
5(1,2,3,4,5)

	
2(1,3)

	
4(1,3,4,6)

	
6(1,2,3,4,5,6)

	
3(1,2,3)




	
J

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,4)




	
J

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
4(1,2,4,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,4,5,6)




	
A

	
1(1)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,3,5,6)




	
S

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,6)




	
O

	
2(3,4)

	
3(3,4,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(2)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
4(1,3,4,6)




	
N

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)

	
4(1,2,4,5)




	
D

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,2,6)

	
2(1,2)

	
4(1,2,3,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(4,5)




	
ELM

	
J

	
1(2)

	
1(2)

	
1(2)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
3(1,5,6)

	
2(1,4)

	
1(1)




	
F

	
1(1)

	
1(1)

	
1(1)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,4)

	
5(1,3,4,5,6)




	
M

	
1(1)

	
1(1)

	
2(3,6)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
5(1,2,3,4,5,5)

	
5(1,2,3,4,5)

	
3(1,3,4)




	
A

	
1(5)

	
1(5)

	
1(5)

	
2(1,2)

	
2(1,2)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
4(1,2,4,5)




	
M

	
1(2)

	
1(2)

	
1(2)

	
3(1,2,3)

	
3(1,2,3)

	
5(1,2,3,4,5)

	
2(1,3)

	
4(1,3,4,6)

	
2(2,3)

	
3(1,2,3)




	
J

	
1(1)

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)




	
J

	
1(1)

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
4(1,2,4,5)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)




	
A

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,5)

	
1(3)




	
S

	
1(1)

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
2(1,3)




	
O

	
1(1)

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(2)

	
6(1,2,3,4,5,6)

	
1(1)

	
3(1,2,6)




	
N

	
1(5)

	
1(5)

	
2(2,5)

	
2(1,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
3(2,3,5)




	
D

	
1(2)

	
1(2)

	
1(2)

	
3(1,2,6)

	
2(1,2)

	
4(1,2,3,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(2)

	
2(2,6)




	
AR

	
2(1,2)

	
2(1,2)

	
4(1,2,3,5)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,5)

	
4(1,2,3,5)




	
ELM

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,5)

	
5(1,2,4,5,6)











[image: Table] 





Table A2. Emborcação.






Table A2. Emborcação.





	
Month

	
BIC

	
AIC

	
W-MSE

	
PACF

	
PACF

-Sted.

	
MI

	
PMI

	
N-MRMCR

-MI

	
GA

	
PSO






	
PAR

	
J

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)

	
1(6)

	
1(6)

	
1(1)

	
6(1,2,3,4,5,6)

	
3(4,5,6)




	
F

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
4(1,2,4,5)




	
M

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
2(1,2)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(3,4)




	
A

	
3(1,2,5)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
3(1,2,5)

	
2(1,2)

	
3(1,2,3)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(4)




	
M

	
4(1,2,3,5)

	
4(1,2,3,5)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
1(1)

	
5(1,2,3,4,5)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(5,6)




	
J

	
3(1,3,5)

	
4(1,2,3,5)

	
5(1,2,3,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
3(1,2,5)

	
2(1,2)

	
5(1,2,3,5,6)

	
2(1,2)




	
J

	
3(1,2,6)

	
3(1,2,6)

	
3(1,2,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
3(1,2,6)

	
1(1)




	
A

	
1(1)

	
1(1)

	
1(1)

	
2(1,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
1(1)

	
1(1)

	
2(1,2)




	
S

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
4(1,2,3,4)

	
2(1,2)

	
2(1,2)




	
O

	
1(1)

	
1(1)

	
3(1,2,3)

	
4(1,3,4,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
4(1,2,3,4)

	
3(1,2,3)

	
1(2)




	
N

	
2(1,2)

	
2(1,2)

	
4(1,2,3,4)

	
3(1,2,5)

	
2(1,2)

	
1(1)

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
2(4,5)




	
D

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
3(1,5,6)

	
1(1)

	
2(1,2)

	
2(1,6)

	
2(1,2)

	
5(1,2,3,4,5)

	
3(1,2,3)




	
ELM

	
J

	
1(2)

	
1(2)

	
3(1,2,6)

	
2(1,6)

	
1(1)

	
1(6)

	
1(6)

	
1(1)

	
4(1,2,3,5)

	
3(4,5,6)




	
F

	
1(1)

	
1(1)

	
2(1,5)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
2(1,4)

	
2(1,3)




	
M

	
1(1)

	
1(1)

	
2(2,3)

	
1(1)

	
1(1)

	
2(1,2)

	
1(1)

	
1(1)

	
1(2)

	
5(1,2,4,5,6)




	
A

	
1(5)

	
1(5)

	
1(5)

	
3(1,2,5)

	
2(1,2)

	
3(1,2,3)

	
2(1,2)

	
2(1,2)

	
1(3)

	
1(5)




	
M

	
1(2)

	
1(2)

	
1(2)

	
2(1,3)

	
1(1)

	
5(1,2,3,4,5)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
2(1,4)

	
2(1,5)




	
J

	
1(1)

	
1(1)

	
3(1,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
3(1,2,5)

	
2(1,2)

	
2(1,5)

	
5(1,2,3,4,5)




	
J

	
1(1)

	
1(1)

	
2(1,2)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
2(1,6)

	
4(1,3,4,6)




	
A

	
1(1)

	
1(1)

	
3(1,4,5)

	
2(1,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
1(1)

	
2(1,6)

	
4(1,2,3,5)




	
S

	
1(1)

	
1(1)

	
3(1,5,6)

	
2(1,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
4(1,2,3,4)

	
5(1,2,4,5,6)

	
3(2,5,6)




	
O

	
1(1)

	
1(1)

	
3(1,3,4)

	
4(1,3,4,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
4(1,2,3,4)

	
5(1,2,3,4,5)

	
4(1,2,4,6)




	
N

	
1(5)

	
1(5)

	
3(1,4,5)

	
3(1,2,5)

	
2(1,2)

	
1(1)

	
1(1)

	
1(1)

	
2(1,3)

	
3(1,2,3)




	
D

	
1(2)

	
1(2)

	
2(2,5)

	
3(1,5,6)

	
1(1)

	
2(1,2)

	
2(1,6)

	
2(1,2)

	
3(1,2,5)

	
4(2,4,5,6)




	
AR

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)




	
ELM

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,4,5,6)
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Table A3. Sobradinho.






Table A3. Sobradinho.





	
Month

	
BIC

	
AIC

	
W-MSE

	
PACF

	
PACF

-Sted.

	
MI

	
PMI

	
N-MRMCR

-MI

	
GA

	
PSO






	
PAR

	
J

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
3(1,2,3)

	
1(1)

	
4(1,4,5,6)

	
6(1,2,3,4,5,6)

	
2(3,6)




	
F

	
3(1,3,5)

	
3(1,3,5)

	
6(1,2,3,4,5,6)

	
3(1,4,5)

	
1(1)

	
4(1,2,4,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,4)




	
M

	
1(1)

	
1(1)

	
5(1,2,3,4,6)

	
1(1)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
3(1,2,5)




	
A

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,6)

	
1(5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(2,4,6)




	
M

	
1(1)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
2(1,3)

	
5(1,2,4,5,6)

	
6(1,2,3,4,5,6)

	
3(1,3,4)




	
J

	
5(1,2,3,5,6)

	
5(1,2,3,5,6)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)




	
J

	
5(1,2,3,4,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
5(1,2,3,5,6)

	
2(1,3)




	
A

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,5,4)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)

	
4(1,2,3,5)




	
S

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)




	
O

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,2,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)




	
N

	
1(1)

	
2(1,3)

	
2(1,3)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
1(1)




	
D

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)

	
1(6)




	
ELM

	
J

	
1(2)

	
1(2)

	
1(3)

	
1(1)

	
1(1)

	
3(1,2,3)

	
1(1)

	
4(1,4,5,6)

	
1(3)

	
3(1,3,5)




	
F

	
1(1)

	
1(1)

	
3(1,2,6)

	
3(1,4,5)

	
1(1)

	
4(1,2,4,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
4(1,2,5,6)




	
M

	
1(1)

	
1(1)

	
2(1,3)

	
1(1)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
3(1,5,6)

	
3(1,4,6)




	
A

	
1(5)

	
1(5)

	
3(1,2,4)

	
1(1)

	
1(1)

	
5(1,2,3,4,6)

	
1(5)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
5(1,2,3,5,6)




	
M

	
1(2)

	
1(2)

	
1(1)

	
1(1)

	
1(1)

	
4(1,2,3,4)

	
2(1,3)

	
5(1,2,4,5,6)

	
2(1,3)

	
1(1)




	
J

	
1(1)

	
1(1)

	
2(1,4)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,4,5,6)

	
3(1,3,6)




	
J

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
2(1,4)




	
A

	
1(1)

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,5,4)

	
6(1,2,3,4,5,6)

	
1(1)

	
2(1,2)




	
S

	
1(1)

	
1(1)

	
2(1,5)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
3(1,4,5)




	
O

	
1(1)

	
1(1)

	
5(1,2,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,2,6)

	
6(1,2,3,4,5,6)

	
1(3)

	
4(1,4,5,6)




	
N

	
1(5)

	
1(5)

	
2(1,3)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(3)

	
4(1,4,5,6)




	
D

	
1(2)

	
1(2)

	
4(2,3,5,6)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(2)

	
5(1,2,3,4,5)




	
AR

	
2(1,3)

	
2(1,3)

	
2(1,3)

	
2(1,3)

	
3(1,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
2(1,3)




	
ELM

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
1(1)

	
3(1,3,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,4)
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Table A4. Agua Vermelha.






Table A4. Agua Vermelha.





	
Month

	
BIC

	
AIC

	
W-MSE

	
PACF

	
PACF

-Sted.

	
MI

	
PMI

	
N-MRMCR

-MI

	
GA

	
PSO






	
PAR

	
J

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,5)

	
1(1)

	
3(1,5,6)

	
1(1)

	
1(1)

	
5(1,3,4,5,6)

	
3(3,4,6)




	
F

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(5,6)




	
M

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
3(3,5,6)




	
A

	
3(1,2,6)

	
3(1,2,6)

	
4(1,2,5,6)

	
2(1,2)

	
2(1,2)

	
3(1,2,4)

	
1(1)

	
2(1,2)

	
4(1,2,5,6)

	
2(2,3)




	
M

	
4(1,2,3,5)

	
4(1,2,3,5)

	
5(1,2,3,4,5)

	
3(1,2,3)

	
3(1,2,3)

	
5(1,2,3,4,5)

	
2(1,2)

	
3(1,2,3)

	
5(1,2,3,4,5)

	
3(2,5,6)




	
J

	
1(1)

	
1(1)

	
5(1,2,4,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
5(1,2,4,5,6)

	
4(2,3,4,5)




	
J

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(3)




	
A

	
1(1)

	
5(1,2,3,4,6)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(2,3,4,5,6)




	
S

	
2(1,3)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(1)




	
O

	
2(1,3)

	
3(1,3,6)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
1(1)




	
N

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
4(1,2,5,6)




	
D

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(4)




	
ELM

	
J

	
1(2)

	
1(2)

	
2(1,6)

	
2(1,5)

	
1(1)

	
3(1,5,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,6)

	
4(1,2,4,6)




	
F

	
1(1)

	
1(1)

	
1(1)

	
2(1,6)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
4(1,2,3,6)

	
4(1,2,4,5)




	
M

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,6)

	
1(1)

	
2(1,2)

	
1(1)

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)




	
A

	
1(5)

	
1(5)

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
3(1,2,4)

	
1(1)

	
2(1,2)

	
2(1,2)

	
4(1,2,3,5)




	
M

	
1(2)

	
1(2)

	
1(1)

	
3(1,2,3)

	
3(1,2,3)

	
5(1,2,3,4,5)

	
2(1,2)

	
3(1,2,3)

	
4(1,2,4,6)

	
4(2,3,5,6)




	
J

	
1(1)

	
1(1)

	
3(1,2,6)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(2,5)

	
3(1,2,4)




	
J

	
1(1)

	
1(1)

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
3(1,2,5)




	
A

	
1(1)

	
1(1)

	
3(1,2,5)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
1(1)

	
5(1,2,3,4,5)

	
2(1,2)




	
S

	
1(1)

	
1(1)

	
2(4,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
4(1,2,3,4)

	
2(2,6)

	
2(5,6)




	
O

	
1(1)

	
1(1)

	
2(1,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)

	
3(1,3,4)

	
3(1,2,5)




	
N

	
1(5)

	
1(5)

	
1(6)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
1(1)

	
1(1)

	
2(2,5)

	
4(2,3,5,6)




	
D

	
1(2)

	
1(2)

	
3(2,3,4)

	
1(1)

	
1(1)

	
5(1,2,3,4,5)

	
1(1)

	
2(1,2)

	
1(2)

	
2(2,6)




	
AR

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)




	
ELM

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,4)
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Table A5. Passo Real.






Table A5. Passo Real.





	
Month

	
BIC

	
AIC

	
W-MSE

	
PACF

	
PACF

-Sted.

	
MI

	
PMI

	
N-MRMCR

-MI

	
GA

	
PSO






	
PAR

	
J

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
3(1,5,6)

	
1(1)

	
3(1,2,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,4,5,6)




	
F

	
2(1,3)

	
3(1,3,5)

	
5(1,3,4,5,6)

	
1(1)

	
1(1)

	
3(1,2,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(1,3,4,5,6)

	
3(2,5,6)




	
M

	
1(1)

	
2(1,6)

	
5(1,2,3,4,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
2(2,5)




	
A

	
1(2)

	
1(2)

	
6(1,2,3,4,5,6)

	
3(1,2,4)

	
2(1,2)

	
5(1,2,3,4,5)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(1,5,6)




	
M

	
1(1)

	
2(1,5)

	
4(1,3,5,6)

	
5(1,2,3,4,6)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
6(1,2,3,4,5,6)

	
4(1,3,5,6)

	
2(2,3)




	
J

	
1(1)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,5)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(1,3,5)




	
J

	
3(1,2,4)

	
3(1,2,4)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(3,4,5,6)




	
A

	
1(1)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)

	
2(1,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(2,3,6)




	
S

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
3(2,4,5)




	
O

	
1(1)

	
3(1,2,4)

	
5(1,2,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,4)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
5(1,2,4,5,6)

	
2(3,4)




	
N

	
3(1,2,3)

	
4(1,2,3,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(5,6)




	
D

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
4(1,2,3,4)

	
3(1,2,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
5(1,3,4,5,6)

	
1(1)




	
ELM

	
J

	
1(2)

	
1(2)

	
1(2)

	
3(1,5,6)

	
1(1)

	
3(1,2,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,4)

	
3(1,3,4)




	
F

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
1(1)

	
3(1,2,3)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
5(1,2,3,4,6)




	
M

	
1(1)

	
1(1)

	
2(3,6)

	
2(1,2)

	
2(1,2)

	
6(1,2,3,4,5,6)

	
1(1)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
3(1,3,6)




	
A

	
1(5)

	
1(5)

	
1(5)

	
3(1,2,4)

	
2(1,2)

	
5(1,2,3,4,5)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
3(1,3,4)




	
M

	
1(2)

	
1(2)

	
1(2)

	
5(1,2,3,4,6)

	
4(1,2,3,4)

	
6(1,2,3,4,5,6)

	
2(1,6)

	
6(1,2,3,4,5,6)

	
1(4)

	
4(1,2,3,6)




	
J

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,5)

	
3(1,2,5)

	
6(1,2,3,4,5,6)

	
2(2,5)

	
1(1)




	
J

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,6)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
3(2,3,6)

	
2(1,5)




	
A

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
5(1,2,3,4,5)

	
2(1,5)

	
6(1,2,3,4,5,6)

	
3(3,4,5)

	
3(2,3,5)




	
S

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
4(1,2,4,5)

	
3(2,3,5)




	
O

	
1(1)

	
1(1)

	
1(1)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,4)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
3(1,4,5)

	
3(2,4,6)




	
N

	
1(5)

	
1(5)

	
2(2,5)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,3)

	
2(1,3)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
1(1)




	
D

	
1(2)

	
1(2)

	
1(2)

	
5(1,2,3,4,6)

	
4(1,2,3,4)

	
3(1,2,4)

	
1(1)

	
6(1,2,3,4,5,6)

	
3(1,4,5)

	
2(1,3)




	
AR

	
2(1,2)

	
2(1,2)

	
2(1,2)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
2(1,2)

	
2(1,2)




	
ELM

	
1(1)

	
2(1,4)

	
6(1,2,3,4,5,6)

	
3(1,2,3)

	
3(1,2,3)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
6(1,2,3,4,5,6)

	
4(1,2,3,6)
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Figure 1. Block diagram of monthly streamflow series prediction. 
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Figure 2. Schematic of the filter model for variable selection. 
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Figure 3. Example of partial autocorrelation function. 
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Figure 4. Original bi-variable Gaussian function (a) and (b), and the approximation (c) and (d). 
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Figure 5. Example of mutual information values. 
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Figure 6. Schematic of the wrapper method. 
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Figure 7. Error behavior with the progressive selection method. 
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Figure 8. Best prediction by plant for p = 1. 






Figure 8. Best prediction by plant for p = 1.



[image: Energies 13 04236 g008a][image: Energies 13 04236 g008b]







[image: Table] 





Table 1. Possible subsets for the input vector V.
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	Subsets
	Selected Inputs





	1
	v1



	2
	v2



	3
	v3



	4
	v1,v2



	5
	v1,v3



	6
	v2,v3



	7
	v1,v2,v3
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Table 2. Mean and standard deviation of each series.






Table 2. Mean and standard deviation of each series.





	

	
Complete Series

	
Test Set




	
Series

	
Mean

(m³/s)

	
S. Deviation (m³/s)

	
Mean (m³/s)

	
S. Deviation (m³/s)






	
Furnas

	
912.1225

	
613.5036

	
803.6833

	
611.6814




	
Emborcação

	
480.6578

	
360.3957

	
447.7333

	
355.7428




	
Sobradinho

	
2.6062 × 103

	
1.9412 × 103

	
1.9607 × 103

	
1.5001 × 103




	
Agua Vermelha

	
2.0773 × 103

	
1.2957 × 103

	
1.9635 × 103

	
1.2668 × 103




	
Passo Real

	
208.6216

	
169.7734

	
228.0083

	
167.1326
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Table 3. Results of the variable selection using the AR model.
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Variable Selection

	
Test

	
Training




	
MSE

	
MAE

	
MSEd

	
MAEd

	
MSE

	
MAE

	
MSEd

	
MAEd






	
FURNAS

	
WR

	
BIC

	
109,014

	
210.77

	
0.4330

	
0.5078

	
96,033

	
196.58

	
0.4490

	
0.4907




	
AIC

	
109,014

	
210.77

	
0.4330

	
0.5078

	
96,033

	
196.58

	
0.4490

	
0.4907




	
WRAPPER-MSE

	
107,962

	
208.81

	
0.4224

	
0.4992

	
97,037

	
195.55

	
0.4459

	
0.4859




	
Lf

	
FACPPe

	
107,551

	
209.32

	
0.4259

	
0.5043

	
96,646

	
195.75

	
0.4464

	
0.4871




	
FACPPe-Sted.

	
107,551

	
209.32

	
0.4259

	
0.5043

	
96,646

	
195.75

	
0.4464

	
0.4871




	
Nf

	
MI

	
108,083

	
209.65

	
0.4252

	
0.5015

	
96,702

	
195.43

	
0.4452

	
0.4856




	
PMI

	
108,083

	
209.65

	
0.4252

	
0.5015

	
96,702

	
195.43

	
0.4452

	
0.4856




	
N-MRMCR-MI

	
108,083

	
209.65

	
0.4252

	
0.5015

	
96,702

	
195.43

	
0.4452

	
0.4856




	
M

	
GA

	
107,962

	
208.81

	
0.4224

	
0.4992

	
97,037

	
195.55

	
0.4459

	
0.4859




	
PSO

	
107,962

	
208.81

	
0.4224

	
0.4992

	
97,037

	
195.55

	
0.4459

	
0.4859




	
EMBORCAÇÃO

	
WR

	
BIC

	
51,745

	
139.36

	
0.5487

	
0.5716

	
40,456

	
119.79

	
0.4838

	
0.5131




	
AIC

	
51,745

	
139.36

	
0.5487

	
0.5716

	
40,456

	
119.79

	
0.4838

	
0.5131




	
WRAPPER-MSE

	
51,745

	
139.36

	
0.5487

	
0.5716

	
40,456

	
119.79

	
0.4838

	
0.5131




	
Lf

	
FACPPe

	
50,408

	
138.01

	
0.5353

	
0.5613

	
39,953

	
119.40

	
0.4790

	
0.5102




	
FACPPe-Sted.

	
50,408

	
138.01

	
0.5353

	
0.5613

	
39,953

	
119.40

	
0.4790

	
0.5102




	
Nf

	
MI

	
50,559

	
138.24

	
0.5397

	
0.5602

	
39,880

	
119.20

	
0.4768

	
0.5081




	
PMI

	
50,559

	
138.24

	
0.5397

	
0.5602

	
39,880

	
119.20

	
0.4768

	
0.5081




	
N-MRMCR-MI

	
50,559

	
138.24

	
0.5397

	
0.5602

	
39,880

	
119.20

	
0.4768

	
0.5081




	
M

	
GA

	
51,745

	
139.36

	
0.5487

	
0.5716

	
40,456

	
119.79

	
0.4838

	
0.5131




	
PSO

	
51,745

	
139.36

	
0.5487

	
0.5716

	
40,456

	
119.79

	
0.4838

	
0.5131




	
SOBRADINHO

	
WR

	
BIC

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
AIC

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
WRAPPER-MSE

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
Lf

	
FACPPe

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
FACPPe-Sted.

	
863,796

	
577.30

	
0.3196

	
0.4515

	
1,020,492

	
578.13

	
0.3910

	
0.4403




	
Nf

	
MI

	
828,142

	
566.45

	
0.3043

	
0.4375

	
994,408

	
573.77

	
0.3837

	
0.4350




	
PMI

	
828,142

	
566.45

	
0.3043

	
0.4375

	
994,408

	
573.77

	
0.3837

	
0.4350




	
N-MRMCR-MI

	
828,142

	
566.45

	
0.3043

	
0.4375

	
994,408

	
573.77

	
0.3837

	
0.4350




	
M

	
GA

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
PSO

	
836,738

	
568.04

	
0.3071

	
0.4408

	
1,032,181

	
580.83

	
0.3895

	
0.4366




	
AGUA VERMELHA

	
WR

	
BIC

	
417,720

	
404.35

	
0.4097

	
0.4826

	
378,866

	
394.30

	
0.4095

	
0.4780




	
AIC

	
417,720

	
404.35

	
0.4097

	
0.4826

	
378,866

	
394.30

	
0.4095

	
0.4780




	
WRAPPER-MSE

	
417,720

	
404.35

	
0.4097

	
0.4826

	
378,866

	
394.30

	
0.4095

	
0.4780




	
Lf

	
FACPPe

	
409,613

	
401.00

	
0.4052

	
0.4803

	
379,329

	
392.98

	
0.4078

	
0.4752




	
FACPPe-Sted.

	
409,613

	
401.00

	
0.4052

	
0.4803

	
379,329

	
392.98

	
0.4078

	
0.4752




	
Nf

	
MI

	
415,465

	
404.50

	
0.4062

	
0.4828

	
378,197

	
392.12

	
0.4065

	
0.4749




	
PMI

	
413,991

	
403.40

	
0.4119

	
0.4886

	
369,658

	
393.50

	
0.4149

	
0.4819




	
N-MRMCR-MI

	
413,991

	
403.40

	
0.4119

	
0.4886

	
378,197

	
392.12

	
0.4065

	
0.4749




	
M

	
GA

	
415,465

	
404.50

	
0.4062

	
0.4828

	
378,197

	
392.12

	
0.4065

	
0.4749




	
PSO

	
415,465

	
404.50

	
0.4062

	
0.4828

	
378,197

	
392.12

	
0.4065

	
0.4749




	
PASSO REAL

	
WR

	
BIC

	
14,996

	
88.65

	
0.6570

	
0.5969

	
16,637

	
86.70

	
0.6490

	
0.5718




	
AIC

	
14,996

	
88.65

	
0.6570

	
0.5969

	
16,637

	
86.70

	
0.6490

	
0.5718




	
WRAPPER-MSE

	
14,996

	
88.65

	
0.6570

	
0.5969

	
16,637

	
86.70

	
0.6490

	
0.5718




	
Lf

	
FACPPe

	
14,523

	
87.74

	
0.6397

	
0.5914

	
16,497

	
86.32

	
0.6415

	
0.5696




	
FACPPe-Sted.

	
14,523

	
87.74

	
0.6397

	
0.5914

	
16,497

	
86.32

	
0.6415

	
0.5696




	
Nf

	
MI

	
14,632

	
88.16

	
0.6447

	
0.5956

	
16,478

	
86.08

	
0.6398

	
0.5676




	
PMI

	
14,632

	
88.16

	
0.6447

	
0.5956

	
16,478

	
86.08

	
0.6398

	
0.5676




	
N-MRMCR-MI

	
14,632

	
88.16

	
0.6447

	
0.5956

	
16,478

	
86.08

	
0.6398

	
0.5676




	
M

	
GA

	
14,996

	
88.65

	
0.6570

	
0.5969

	
16,637

	
86.70

	
0.6490

	
0.5718




	
PSO

	
14,996

	
88.65

	
0.6570

	
0.5969

	
16,637

	
86.70

	
0.6490

	
0.5718
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Table 4. Results of the variable selection using PAR model.
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Variable Selection

	
Test

	
Training




	
MSE

	
MAE

	
MSEd

	
MAEd

	
MSE

	
MAE

	
MSEd

	
MAEd






	
FURNAS

	
WR

	
BIC

	
117,347

	
207.37

	
0.4096

	
0.4819

	
94,879

	
190.77

	
0.4124

	
0.4725




	
AIC

	
120,629

	
211.50

	
0.4343

	
0.4957

	
93,403

	
189.09

	
0.4041

	
0.4677




	
WRAPPER-MSE

	
128,415

	
215.49

	
0.4546

	
0.5046

	
87,842

	
183.45

	
0.3846

	
0.4556




	
Lf

	
PACF

	
118,744

	
211.52

	
0.4113

	
0.4882

	
102,317

	
198.26

	
0.4499

	
0.4899




	
PACF-Sted.

	
117,144

	
206.70

	
0.4055

	
0.4788

	
94,824

	
190.41

	
0.4112

	
0.4709




	
Nf

	
MI

	
120,121

	
211.57

	
0.4302

	
0.4963

	
92,821

	
187.35

	
0.3973

	
0.4620




	
PMI

	
122,682

	
215.72

	
0.4442

	
0.5055

	
96,930

	
193.12

	
0.4502

	
0.4822




	
N-MRMCR-MI

	
135,260

	
224.64

	
0.4811

	
0.5271

	
95,500

	
187.39

	
0.3999

	
0.4619




	
M

	
GA

	
128,680

	
216.09

	
0.4601

	
0.5073

	
87,837

	
183.33

	
0.3845

	
0.4550




	
PSO

	
133,171

	
228.39

	
0.4794

	
0.5279

	
109,291

	
201.15

	
0.4856

	
0.5007




	
EMBORCAÇÃO

	
WR

	
BIC

	
46,356

	
128.98

	
0.5034

	
0.5350

	
35,421

	
112.66

	
0.4377

	
0.4817




	
AIC

	
46,356

	
129.00

	
0.5034

	
0.5352

	
35,415

	
112.57

	
0.4370

	
0.4806




	
WRAPPER-MSE

	
51,529

	
134.64

	
0.5460

	
0.5489

	
33,362

	
109.12

	
0.4188

	
0.4702




	
Lf

	
PACF

	
50,251

	
134.96

	
0.5526

	
0.5612

	
42,622

	
123.54

	
0.5596

	
0.5418




	
PACF-Sted.

	
46,195

	
129.23

	
0.5093

	
0.5444

	
35,710

	
113.81

	
0.4535

	
0.4914




	
Nf

	
MI

	
47,918

	
130.25

	
0.5094

	
0.5353

	
39,096

	
115.99

	
0.4588

	
0.4851




	
PMI

	
48,392

	
129.72

	
0.5183

	
0.5361

	
40,967

	
118.63

	
0.4913

	
0.5010




	
N-MRMCR-MI

	
46,088

	
128.22

	
0.4982

	
0.5343

	
35,593

	
113.05

	
0.4419

	
0.4836




	
M

	
GA

	
51,529

	
134.64

	
0.5460

	
0.5489

	
33,362

	
109.12

	
0.4188

	
0.4702




	
PSO

	
58,768

	
153.16

	
0.9161

	
0.6795

	
48,079

	
136.61

	
0.8187

	
0.6266




	
SOBRADINHO

	
WR

	
BIC

	
650,374

	
507.00

	
0.2791

	
0.4097

	
850,140

	
530.47

	
0.3560

	
0.4133




	
AIC

	
642,631

	
496.61

	
0.2706

	
0.3972

	
847,763

	
528.97

	
0.3530

	
0.4118




	
WRAPPER-MSE

	
675,439

	
510.13

	
0.3071

	
0.4194

	
829,497

	
523.19

	
0.3450

	
0.4061




	
Lf

	
PACF

	
724,099

	
546.38

	
0.3361

	
0.4462

	
1,021,024

	
577.88

	
0.4665

	
0.4523




	
PACF-Sted.

	
666,690

	
513.82

	
0.2896

	
0.4175

	
886,340

	
540.87

	
0.3671

	
0.4207




	
Nf

	
MI

	
628,672

	
495.94

	
0.2923

	
0.4124

	
847,892

	
530.37

	
0.3519

	
0.4104




	
PMI

	
665,958

	
511.55

	
0.2948

	
0.4171

	
886,511

	
544.87

	
0.3852

	
0.4340




	
N-MRMCR-MI

	
682,074

	
513.84

	
0.3034

	
0.4180

	
824,000

	
519.21

	
0.3399

	
0.4010




	
M

	
GA

	
675,494

	
510.64

	
0.3074

	
0.4207

	
829,499

	
523.20

	
0.3450

	
0.4061




	
PSO

	
755,372

	
564.36

	
0.3402

	
0.4509

	
1,181,095

	
632.30

	
0.5290

	
0.4889




	
AGUA VERMELHA

	
WR

	
BIC

	
438,074

	
401.41

	
0.4075

	
0.4729

	
357,604

	
380.46

	
0.3774

	
0.4614




	
AIC

	
439,586

	
402.88

	
0.4161

	
0.4769

	
356,951

	
379.09

	
0.3742

	
0.4587




	
WRAPPER-MSE

	
473,968

	
409.23

	
0.4437

	
0.4881

	
335,448

	
366.74

	
0.3564

	
0.4461




	
Lf

	
PACF

	
469,836

	
407.75

	
0.4179

	
0.4732

	
404,467

	
393.70

	
0.4056

	
0.4728




	
PACF-Sted.

	
432,799

	
393.57

	
0.3960

	
0.4611

	
359,174

	
382.19

	
0.3817

	
0.4645




	
Nf

	
MI

	
459,970

	
408.37

	
0.4300

	
0.4836

	
379,638

	
380.90

	
0.3817

	
0.4566




	
PMI

	
443,387

	
399.30

	
0.4188

	
0.4711

	
360,565

	
384.67

	
0.3838

	
0.4673




	
N-MRMCR-MI

	
436,274

	
395.68

	
0.4029

	
0.4664

	
357,410

	
380.80

	
0.3781

	
0.4618




	
M

	
GA

	
476,365

	
409.64

	
0.4450

	
0.4884

	
335,047

	
366.40

	
0.3561

	
0.4459




	
PSO

	
775,418

	
560.05

	
0.7722

	
0.6972

	
627,743

	
500.78

	
0.7843

	
0.6385




	
PASSO REAL

	
WR

	
BIC

	
16,793

	
93.49

	
0.7945

	
0.6449

	
15,864

	
85.70

	
0.6228

	
0.5684




	
AIC

	
15,601

	
88.50

	
0.7664

	
0.6198

	
15,299

	
84.28

	
0.6022

	
0.5590




	
WRAPPER-MSE

	
15,584

	
91.70

	
0.7454

	
0.6395

	
14,770

	
82.82

	
0.5797

	
0.5474




	
Lf

	
PACF

	
15,924

	
90.39

	
0.8031

	
0.6296

	
15,012

	
84.05

	
0.6062

	
0.5605




	
PACF-Sted.

	
15,522

	
89.04

	
0.7557

	
0.6151

	
14,976

	
83.78

	
0.6018

	
0.5576




	
Nf

	
MI

	
14,982

	
90.73

	
0.7152

	
0.6300

	
16,107

	
85.61

	
0.6336

	
0.5671




	
PMI

	
15,282

	
87.41

	
0.7423

	
0.6038

	
16,013

	
85.63

	
0.6344

	
0.564




	
N-MRMCR-MI

	
15,474

	
90.55

	
0.7402

	
0.6306

	
14,638

	
82.25

	
0.5724

	
0.5428




	
M

	
GA

	
15,779

	
92.12

	
0.7551

	
0.6424

	
14,769

	
82.99

	
0.5796

	
0.5486




	
PSO

	
17,895

	
101.47

	
0.8774

	
0.7130

	
22,018

	
103.18

	
0.8769

	
0.6816
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Table 5. Results of the variable selection using ELM.






Table 5. Results of the variable selection using ELM.





	
Variable Selection

	
Monthly Approach

	
Annual Approach




	
MSE

	
MAE

	
MSEd

	
MAEd

	
MSE

	
MAE

	
MSEd

	
MAEd






	
FURNAS

	
WR

	
BIC

	
124,391

	
212.47

	
0.4320

	
0.4943

	
123,754

	
220.19

	
0.4597

	
0.5307




	
AIC

	
123,550

	
210.02

	
0.4264

	
0.4878

	
126,426

	
219.67

	
0.4503

	
0.5195




	
WRAPPER-MSE

	
119,067

	
206.45

	
0.4060

	
0.4809

	
123,745

	
217.80

	
0.4455

	
0.5171




	
Lf

	
PACF

	
126,594

	
222.32

	
0.4623

	
0.5236

	
129,323

	
219.72

	
0.4451

	
0.5138




	
PACF-Sted.

	
121,806

	
212.11

	
0.4433

	
0.4997

	
126,768

	
216.79

	
0.4509

	
0.5110




	
Nf

	
MI

	
130,637

	
230.24

	
0.5115

	
0.5656

	
124,105

	
220.33

	
0.4665

	
0.5279




	
PMI

	
126,445

	
217.60

	
0.4769

	
0.5207

	
126,349

	
221.97

	
0.4611

	
0.5287




	
N-MRMCR-MI

	
140,451

	
238.15

	
0.5424

	
0.5842

	
126,507

	
222.67

	
0.4650

	
0.5330




	
M

	
GA

	
137,304

	
230.58

	
0.5063

	
0.5448

	
135,978

	
232.35

	
0.4963

	
0.5594




	
PSO

	
132,599

	
228.87

	
0.4829

	
0.5377

	
131,426

	
226.52

	
0.4823

	
0.5435




	
EMBORCAÇÃO

	
WR

	
BIC

	
38,143

	
114.51

	
0.4495

	
0.4956

	
48,513

	
130.03

	
0.5333

	
0.5586




	
AIC

	
41,110

	
116.21

	
0.4657

	
0.4944

	
45,459

	
127.26

	
0.5158

	
0.5501




	
WRAPPER-MSE

	
37,551

	
118.56

	
0.4335

	
0.5001

	
44,936

	
129.15

	
0.5137

	
0.5557




	
Lf

	
PACF

	
44,227

	
124.36

	
0.5122

	
0.5355

	
45,994

	
130.15

	
0.5153

	
0.5563




	
PACF-Sted.

	
48,543

	
130.42

	
0.5395

	
0.5526

	
44,690

	
129.01

	
0.5095

	
0.5556




	
Nf

	
MI

	
49,315

	
131.44

	
0.5641

	
0.5662

	
45,169

	
130.89

	
0.5126

	
0.5565




	
PMI

	
52,571

	
132.20

	
0.5707

	
0.5564

	
44,094

	
128.54

	
0.5061

	
0.5511




	
N-MRMCR-MI

	
47,931

	
129.26

	
0.5398

	
0.5459

	
45,707

	
129.50

	
0.5169

	
0.5558




	
M

	
GA

	
54,659

	
142.88

	
0.6225

	
0.6017

	
45,434

	
128.47

	
0.5166

	
0.5515




	
PSO

	
50,211

	
130.82

	
0.5667

	
0.5644

	
45,298

	
130.20

	
0.5170

	
0.5595




	
SOBRADINHO

	
WR

	
BIC

	
642,185

	
519.69

	
0.2954

	
0.4329

	
669,441

	
534.37

	
0.3209

	
0.4632




	
AIC

	
590,254

	
492.20

	
0.2979

	
0.4298

	
657,405

	
530.22

	
0.3166

	
0.4532




	
WRAPPER-MSE

	
587,680

	
495.73

	
0.2945

	
0.4250

	
672,783

	
531.90

	
0.3229

	
0.4567




	
Lf

	
PACF

	
696,480

	
530.92

	
0.3376

	
0.4506

	
718,719

	
549.40

	
0.3366

	
0.4676




	
PACF-Sted.

	
747,932

	
550.63

	
0.3561

	
0.4591

	
690,307

	
549.76

	
0.3510

	
0.4872




	
Nf

	
MI

	
692,277

	
533.35

	
0.3526

	
0.4587

	
668,656

	
531.83

	
0.3187

	
0.4527




	
PMI

	
746,916

	
546.82

	
0.3647

	
0.4621

	
694,596

	
540.00

	
0.3234

	
0.4549




	
N-MRMCR-MI

	
828,437

	
582.14

	
0.4819

	
0.3842

	
710,649

	
542.32

	
0.3316

	
0.4583




	
M

	
GA

	
728,468

	
563.81

	
0.3400

	
0.4674

	
698,381

	
555.96

	
0.3501

	
0.4869




	
PSO

	
773,147

	
571.99

	
0.3657

	
0.4738

	
712,829

	
558.87

	
0.3655

	
0.4920




	
AGUA VERMELHA

	
WR

	
BIC

	
408,982

	
384.66

	
0.3646

	
0.4528

	
443,959

	
394.45

	
0.4055

	
0.4727




	
AIC

	
411,485

	
387.40

	
0.3701

	
0.4583

	
436,790

	
393.10

	
0.3946

	
0.4661




	
WRAPPER-MSE

	
374,264

	
375.43

	
0.3412

	
0.4429

	
436,981

	
394.69

	
0.3952

	
0.4664




	
Lf

	
PACF

	
436,494

	
412.25

	
0.4109

	
0.4864

	
439,692

	
401.17

	
0.4025

	
0.4759




	
PACF-Sted.

	
419,472

	
401.62

	
0.4040

	
0.4813

	
458,381

	
406.68

	
0.4131

	
0.4813




	
Nf

	
MI

	
423,961

	
426.85

	
0.4565

	
0.5274

	
453,903

	
420.36

	
0.4288

	
0.5065




	
PMI

	
434,519

	
410.82

	
0.4420

	
0.5026

	
432,417

	
394.64

	
0.3955

	
0.4687




	
N-MRMCR-MI

	
417,154

	
397.18

	
0.4020

	
0.4787

	
458,725

	
422.00

	
0.4344

	
0.5076




	
M

	
GA

	
502,689

	
437.62

	
0.4673

	
0.5201

	
449,919

	
405.97

	
0.4142

	
0.4874




	
PSO

	
478,617

	
440.21

	
0.4526

	
0.5271

	
439,377

	
402.75

	
0.4022

	
0.4806




	
PASSO REAL

	
WR

	
BIC

	
12,768

	
79.70

	
0.6382

	
0.5549

	
15,859

	
89.78

	
0.7367

	
0.6079




	
AIC

	
12,964

	
78.81

	
0.6592

	
0.5490

	
15,866

	
89.78

	
0.7366

	
0.6078




	
WRAPPER-MSE

	
11,828

	
78.42

	
0.6033

	
0.5488

	
15,435

	
87.80

	
0.7277

	
0.5962




	
Lf

	
PACF

	
16,288

	
91.41

	
0.7772

	
0.6218

	
15,257

	
86.40

	
0.7278

	
0.5884




	
PACF-Sted.

	
16,435

	
89.65

	
0.7850

	
0.6116

	
15,351

	
86.55

	
0.7320

	
0.5893




	
Nf

	
MI

	
15,059

	
86.49

	
0.7196

	
0.5944

	
16,074

	
89.96

	
0.7612

	
0.6170




	
PMI

	
15,400

	
87.35

	
0.7517

	
0.5979

	
16,146

	
91.00

	
0.7584

	
0.6207




	
N-MRMCR-MI

	
16,635

	
91.48

	
0.7723

	
0.6274

	
16,208

	
90.10

	
0.7683

	
0.6168




	
M

	
GA

	
17,035

	
90.31

	
0.8134

	
0.6140

	
16,258

	
91.15

	
0.7626

	
0.6206




	
PSO

	
15,589

	
86.86

	
0.7344

	
0.5964

	
16,270

	
91.04

	
0.7731

	
0.6217
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Table 6. Number of best results by approach.






Table 6. Number of best results by approach.





	

	
Models




	
VS Method

	
AR Train

	
AR Test

	
PAR Train

	
PAR Test

	
ELM Annual

	
ELM Monthly






	
BIC

	
1(+1)

	
-

	
-

	
-

	
1(+3)

	
-




	
AIC

	
1(+1)

	
-

	
-

	
-

	
2; 1(+8)

	
-




	
WRAPPER-MSE

	
-

	
-

	
1(+1)

	
-

	
1(+3); 1(+8)

	
5




	
PACF

	
-

	
1(+1); 1(+1);

1(+1); 1(+1)

	
-

	
-

	
1; 1(+8)

	
-




	
PACF-Sted.

	
-

	
1(+1); 1(+1);

1(+1); 1(+1)

	
-

	
2

	
1(+8)

	
-




	
MI

	
1(+2); 1(+2); 1(+2)

	
1(+2)

	
-

	
2

	
1(+3); 1(+8)

	
-




	
PMI

	
1; 1(+2);

1(+2); 1(+2)

	
1(+2)

	
-

	
-

	
1(+3); 1(+8)

	
-




	
N-MRMCR-MI

	
1(+2); 1(+2); 1(+2)

	
1(+2)

	
1

	
1

	
1(+8)

	
-




	
GA

	
-

	
-

	
3; 1(+1)

	
-

	
1(+8)

	
-




	
PSO

	
-

	
-

	
-

	
-

	
1(+8)

	
-
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