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Abstract: In the field of petroleum drilling engineering, passive magnetic ranging technology is
generally used for specialized drilling operations such as connecting relief wells, preventing wellbore
collisions, guiding parallel horizontal wells, etc. Although pre-magnetized casing strings have been
used to improve the detection distance and accuracy, the theoretical mechanism is not well understood.
Based on the equivalent current model of a permanent magnet, a theoretical magnetic field model
around the pre-magnetized casing string was established by using the vector potential method and
vector superposition principle and validated by the COMSOL Multiphysics software. Our results
show that connecting pre-magnetized individual casings with homogeneous magnetic poles can
enlarge the magnetic induction intensity around the total casing string. Furthermore, the magnitude
close to the casing coupling is significantly larger than that close to the middle of the individual
casing. Connecting pre-magnetized individual casings with heterogeneous magnetic poles results in
a low magnetic induction intensity around the total casing string. In order to improve the detection
distance and accuracy of the magnetic ranging, the pre-magnetized individual casings should be
connected with homogeneous magnetic poles. The results of this study can provide guidelines for
the development of passive magnetic ranging technology.

Keywords: passive magnetic ranging method; casing string; magnetizing; magnetic field model;
vector magnetic potential method; magnetic induction intensity; COMSOL multiphysics software

1. Introduction

In the field of oil-drilling engineering, magnetic ranging technology is used in special drilling
operations, such as connecting relief wells [1-3], preventing wellbore collisions [4-6], guiding parallel
horizontal wells or U-shape well [7,8], etc. Existing magnetic ranging methods can be classified into
active method and passive method. For the first method, the relative position of the adjacent casing
string is determined by applying an electromagnetic excitation signal in one well and detecting it
in another well by additional magnetic instrument. Since excitation signals are applied artificially,
this method has some advantages such as high detection accuracy and large detection distance.
However, this method mainly adopts the dual-well operation mode described above and its application
conditions are greatly limited if the adjacent well has been put into production or is suffering a wild
blowout [3-8]. For the second method, the accept instrument is located in the drilling well by detecting
the magnetic field characteristics of the adjacent casing string and no additional instrument need put

Energies 2020, 13, 4226; doi:10.3390/en13164226 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-5501-6382
http://www.mdpi.com/1996-1073/13/16/4226?type=check_update&version=1
http://dx.doi.org/10.3390/en13164226
http://www.mdpi.com/journal/energies

Energies 2020, 13, 4226 20of 11

into the adjacent well. This is to say, this method adopts the single-well operation mode and has great
potential to be used widely. However, the self-induced magnetic field intensity of the adjacent casing
string itself is relatively small and exhibits more uncertainties. Hence, this method is still restricted by
relatively low detection accuracy and small detection distance [1,2,9,10].

In view of the limitations above, an improved passive magnetic ranging method with pre-
magnetized casing string has been introduced [11-15]. Before the current well is drilled, the individual
casing strings are pre-magnetized on the ground and then run into the adjacent drilled well as and
when required. When the current well is being drilled, the magnetic field characteristics of adjacent
casing string is measured in current well by using a Magnetometer. Then, the relative position of the
adjacent casing string is derived. Since no additional excitation signal is required in the adjacent well,
single-well operation mode can provide high efficiency. In addition, because the magnetic field of the
adjacent casing string is due to the remanence produced by the pre-magnetization, and its intensity
and distribution characteristics are known in advance, the detection accuracy is relatively high, and the
detection distance is relatively large. For example, the maximum detection distance has been enlarged
beyond 20 m by the Scientific Drilling Company [9-11,13-15].

Although the pre-magnetized casing string is currently used to improve the passive magnetic
ranging technology, the theoretical studies have not been discussed intensively yet. In order to develop
the passive magnetic ranging technology independently, a robust theoretical magnetic field model
around the pre-magnetized casing string is to be established by the modern electromagnetic theory
and validated by COMSOL Multiphysics software in this article.

2. Magnetic Field Model of Pre-Magnetized Individual Casing

The petroleum drilling casing string is formed by connecting individual casings (high-quality
seamless steel tube, about 12 m each) with specialized casing couplings. A pre-magnetized individual
casing can be considered as a hollow cylindrical permanent magnet; its external magnetic field
distribution can be calculated by using the equivalent current model of the permanent magnet.

As per the modern electromagnetic theory, there are no magnetic charges inside a permanent
magnet. The magnetic phenomenon just originates from the molecular current. When the magnetic
medium is not magnetized, all molecule magnetic moments are organized in a random manner and
countered each other. As a result, no macroscopic magnetism phenomenon is observed. If the magnetic
medium is uniformly magnetized, all molecule magnetic moments are directionally aligned, and a
macroscopic magnetism phenomenon is observed. The pre-magnetized individual casing can be
considered as a uniformly magnetized hollow permanent magnet [16].

As shown in Figure 1, all annular molecular currents of the pre-magnetized individual casing are
equivalent to the annular surface currents with inner and outer surface current density J; and
Jo, respectively. The calculation methods to determine the external magnetic field distribution
of a permanent magnet mainly include the scalar and vector magnetic potential methods [17].
According to Maxwell equations, the scalar and vector magnetic potentials are introduced, and the
corresponding differential equations are derived for numeric solution. Although the scalar and vector
magnetic potential methods have the same function, only the latter method matches to the equivalent
current method. In this study, the external magnetic field distribution around the pre-magnetized
individual casing is derived by using the vector magnetic potential method, based on the equivalent
current method [18,19].
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Figure 1. Ampere’s molecular ring current.

As shown in Figure 2, the external magnetic field model of the pre-magnetized individual casing
is established. Here, the coordinate origin O is located at the bottom center of the individual casing;
the total length is set as L; the inner and outer radii are set as R; and R,, respectively. The vector
magnetization intensity is set as M and upward. The corresponding equivalent currents on the inner
and outer walls are set as J; and J,, respectively. The upper and lower ends denote N and S poles,
respectively. A(R;, ¢,z) and B(R,, ¢, z) denote an arbitrary source point on the inner and outer walls,
respectively. P(p, ¢, 1) denotes an arbitrary field point outside the casing string. The vector distances
from source points A and B to the field point P are set as r; and r,, respectively. According to the
equivalent current model, the vector magnetic potential A, at field point P is given by:

_ B MXr _ VxM 1 MXxn
Am(P)_4n9§/ 3 dV_4nS€/—r dV+4ﬂ565 . ds 1)

where, y denotes the relative magnetic conductivity of the formation around the casing string; r denotes
the vector distance from the source point to the field point; S denotes the magnet surface; n denotes the

normal vector of the magnet surface and V denotes the divergence operation.
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Figure 2. Sketch of an axially magnetized individual casing.
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Volume current density is given by:

Jo=VxM @
Surface current density is expressed as:

Js=Mxn 3)

When the individual casing is uniformly magnetized along its axial direction, the magnetization
intensity M is a constant vector. From Equations (2) and (3), it can be seen that in this case the volume
current density [, = 0, the magnitude of surface current density Js is equal to that of the magnetization
intensity M. Its direction is perpendicular to the magnetization intensity M and the unit normal 7.
In other words, there is no volume current density and only the annular surface currents are present
on its inner and outer surfaces. Hence, Equation (1) can be simplified as:

An(P) = £ ) Las = ﬁ Sé Jigs, + ﬁsé Lo s, 4)

S dn Jor ri an Js 1o

where, 5; and S, denote the inner and outer surfaces, respectively.
The magnetic induction intensity B at the field point P is given by:

_ _ Jsgg = B f JiXrige  # L JoXTo
B(P)_VxAm_4n9§Vx ds_4n5§ . ds,+4n9§0 S, )

r T

The equivalent surface current densities J; and ], on inner and outer walls are given by:

Ji = Msinpi— M cos ¢j + Ok ©)
Jo = =M ssin @i + M cos ¢j + Ok
where, i, j and k denote unit vectors along x-axis, y-axis and z-axis, respectively.
The vector distances r; and r, from points A, B to point P are expressed as:
ri = (pcos¢p —Rjcos )i+ (psing — R;sing)j+ (h—z)k @)
to = (pcos¢p —R,cos@)i+ (psing —Rysing)j+ (h—2z)k

When Equations (6) and (7) are combined with Equation (5), the magnetic induction intensity
components By, By and B, at the field point P are obtained as:

L 21 —MR,; cos ¢ (h—z) MR, cos ¢ (h—z)
By =+ . + }d dz 8
g an fo 0 {[pz+Ri2—2pR,- cos(¢—q))+(h—z)2]3/2 [p2+R02—2pR0 cos(qﬁ>—q))+(h—z)2]3/2 ¢ ( )
B — K L 271{ —MR; sin p(h—z) + MR, sin ¢ (h-z) }d dz 9
Y an ‘f(; 0 [p2+Ri2—2pR,- cos(qb—(p)Jr(h—z)zf/2 [p2+Raz—2pRg cos(¢—(p)+(h—z)2]3/2 ¢ ( )
B — K L 27'({ MR;[p cos(¢p—¢)—R;] + MR, [—p cos(p—p)+R,] }d dz 10
FTHD D R 2pRicosop) H 2 (PR 2pRacos(ig) (2 S (10

For columnar permanent magnets, it is still difficult to directly solve Equations (8)-(10) by using
analytical methods, hence numeric integration methods are employed [20-22]. In this study, the above
models are solved by using MATLAB software.

3. Magnetic Field Model of Axially Magnetized Casing String with Couplings

The petroleum drilling casing string is connected by individual casings (about 12 m each) with
specialized casing couplings. There are two connection modes for the two pre-magnetized individual
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casings: the homogeneous pole connection mode (N-N connection or S-S connection) and the
heterogeneous pole connection mode (N-S connection or S-N connection). If the magnetic pole
connection mode is different, the external magnetic field distribution is also different.

3.1. Under the Homogeneous Magnetic Pole Connection Mode

As shown in Figure 3, when the pre-magnetized individual casings are connected by homogeneous
magnetic poles, the N-N and the S-S connections appear alternately, and the magnetic field distribution
patterns of two adjacent individual casings are similar—except that the magnetic field is in the
opposite direction.
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Figure 3. Magnetic field distribution around a casing string with homogeneous magnetic pole
connection. (a) Magnetic field distribution; (b) casing string with N-N connection.

As shown in Figure 3b, a theoretical model of the magnetic field around the axially magnetized
casing string is established by taking the N-N connection mode as an example. In this case, the
coordinate origin O is located at the center of the nearest casing coupling to the field point P, and the
z-axis is along the axis of the casing string and pointed upward. The magnetic induction strengths
at field point P generated by the individual casings above the reference casing coupling are set as
Bi1,Byp, Bis, ... ... e. The others below the reference casing coupling are setas B_1,B_», B_3 ... ...
Compared to the long body of an individual casing, the effect of the casing coupling itself could be
ignored [13]. The total magnetic field induction intensity at field point P is given by:

B(P) = i Byi+ Z B_ (11)
i=1 =1

where, m and n denote the numbers of individual casings above and below the nearest casing coupling
to the field point P, respectively.

Considering the individual casing has large length (mainly 12 m each) and length/diameter ratio
(mainly 20-100), it is sufficient to take four individual casings and three casing couplings nearby
the field point P into account, for which m = n = 2. Considering the reference casing coupling is
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in the N-N connection mode, and the other two adjacent casing couplings are in the S-S connect
mode. The scalar magnetization intensity of each individual casing is set as M and then the vector
magnetization intensities of four individual casings are M, —M, M and —M from top to bottom,
respectively. Substituting Equation (5) into Equation (11), the following expression is obtained:

B(P) = 4= 5@1.,“ ! 5LdSi 1+ 4x 5@”1 e ﬁ,’, s,

T o3 a3
ik f | oSS 4k B dSi )
i, S s + g5 ) S,
i, [X0ds,

In Equation (12), the capital S with double subscripts represents the inner or outer surface of an
individual casing above or below the reference casing coupling. For the double subscripts, i and o
refer to the inner and outer surfaces, respectively; “+” and “~" represent above or below the reference
casing coupling, respectively; 1 and 2 indicate the number of an individual casing, respectively.

The expression of the magnetic induction intensity around the pre-magnetized casing string can

be obtained by substituting Equations (8)—(10) into Equation (12).

3.2. Under the Heterogeneous Magnetic Pole Connection Mode

When the heterogeneous pole connection mode is adopted, the magnetic field distribution patterns
of N-S or 5-N connection are similar, with the magnetic field directions being opposite to each other.
Taking the N-S connection mode as an example, the magnetization intensity of each individual casing
has the same orientation. According to the derivation process mentioned above, the equation of the
magnetic induction intensity can be directly obtained and omitted here.

4. Model Validation and Analysis

According to technical specifications, the outer and inner diameters, the length of the individual
casing are set as 177.8 mm, 150.4 mm and 12 m, respectively. Earlier studies have showed that the
magnetic intensity at the end of the pre-magnetized individual casing could exceed 3000 uWb [15].
Based on this magnetization effect, the remanence intensity of each pre-magnetized individual casing is
setas 0.8 T in this study. The numeric solution of Equation (12) is evaluated by using MATLAB software
and numeric simulations are carried out by using the COMSOL Multiphysics package, to validate the
established magnetic field distribution model above.

4.1. Under the Homogeneous Magnetic Pole Connection Mode

To validate the analytical magnetic field model, some test lines were selected, and then the
magnetic induction intensity and its components were calculated as follows:

First, select a profile passing through the axis of the casing string and then select a longitudinal
test line with the same radial distance p = 2 m and longitudinal coordinate z = —6 m—+6 m. Second,
select two cross-sections with the longitudinal coordinates z = 0 (at the center of the reference casing
coupling) and z = 6 m (at the middle of the reference individual casing) and then select a radial test line
on each cross-section. Finally, the magnetic induction intensities along three test lines are calculated by
using Equation (12) and COMSOL Multiphysics software and shown in Figures 4 and 5.

Comparative analyses between theoretical calculations and numeric simulations have showed
that the average error of the total magnetic induction intensity B and its components is 6.85% in
Figure 4, 8.58% in Figure 5a and 6.68% in Figure 5b, respectively, indicating that the magnetic field
distribution model established above is quite accurate. In addition, the magnetic field distribution
pattern of the casing string under this condition is consistent with the relevant experimental results [23],
which further validate the proposed theoretical model.
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Figure 4. Variations of magnetic induction intensity and its components along the longitudinal test line
(radial distance p = 2 m) under N-N connection condition.

From Figure 4, it is also evident that magnetic induction intensity B is numerically distributed
symmetrically above and below the casing coupling, and its magnitude close to the casing coupling is
significantly greater than that close to the middle of the individual casing. The radial component B;
is 0 in the middle of the individual casing and has the maximum value in the middle of the casing
coupling. The longitudinal component B, is 0 in the middle of the casing coupling, and its positive and
negative extreme maximum values are located above and below near the casing coupling, respectively.
From Figure 5, it can also be seen that the magnetic induction intensity decreases rapidly with the
radial distance of the field point. Its magnitude and influence distance close to the casing coupling are
greater than those close to the middle of the individual casing.
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Figure 5. Variations of magnetic induction intensity along two radial test lines (longitudinal positions
z =0 m and z = 6 m) under N-N connection condition. (a) Variation on the cross-section at the
longitudinal position z = 0 m; (b) variation on the cross-section at the longitudinal position z = 6 m.

4.2. Under the Heterogeneous Magnetic Pole Connection Mode

Under N-S connection condition, the magnetic induction intensities along the same three test lines
described above are calculated and shown in Figure 6. It can be seen that all the theoretical calculations
and numeric simulations results are also in reasonable agreement. The magnetic induction intensity
close to the casing coupling is similar to that close to the middle of the casing, and all magnitudes are
much smaller than those under the homogeneous magnetic pole connection mode. This observation
can be explained by the fact that the magnetic fields generated by the N and S poles have cancelled
each other. The pre-magnetized casing string with couplings under the heterogeneous pole connection
mode can be equivalent to an integral casing string without couplings.
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Figure 6. Variations of magnetic induction intensity along three test lines under N-S connection
condition. (a) Variations along two radial test lines (at longitudinal positions z = 0 m and z = 6 m);
(b) variations along the longitudinal test line (at radial distance p = 2 m).

4.3. Comparisons between Tow Magnetic Pole Connection Modes

Comparing all calculation results in Sections 4.1 and 4.2, it can be seen that under the homogeneous
pole connection mode, the magnetic induction intensity around the pre-magnetized casing string and
its influencing range are enlarged, especially close to the casing coupling; under heterogeneous pole
connection mode, they are not enlarged. Clearly, the homogeneous pole connection mode should be
adopted to improve the detection distance and accuracy [24].

Mlustrated by a pre-magnetized casing string with three couplings under the homogeneous pole
connection mode, the magnetic induction intensities along five longitudinal test lines are calculated by
Equation (12) and shown in Figure 7. It can be seen that if the longitudinal test line is close to the casing
string, the magnetic induction intensity is larger and fluctuates visibly and periodically within one
individual casing. If the field point is further from the casing string, the magnetic induction intensity
decreases rapidly and does not visibly fluctuate. For the longitudinal test line at the radial distance
p = 15 m, the magnetic induction intensity is approximate 1 uT. It means that the maximum detectable
distance for most directional drilling instruments can reach to 15 m or so. In fact, the maximum
detection distance was enlarged beyond 20 m by the Scientific Drilling Company [9-11,13-15].
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Figure 7. Variations of magnetic induction intensity along the pre-magnetized casing string under the
homogeneous pole connection condition.
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5. Conclusions

In this study, a mathematical model of magnetic field distribution around a pre-magnetized casing
string is established and validated. Some instructive conclusions and understandings are obtained for
the development of passive magnetic ranging technology.

(1) The theoretical magnetic field model around the pre-magnetized casing string established and
validated in this article can provide foundations to the passive magnetic ranging technology;

(2) When the pre-magnetized individual casings are connected by homogeneous magnetic poles,
the magnetic induction intensity around the casing string is enhanced and its magnitude near to
the casing coupling is larger than that near to the middle of the individual casing;

(3) When the pre-magnetized individual casings are connected with heterogeneous magnetic poles,
the magnetic induction intensity around the casing string is relatively smaller and has smaller
differences along the whole casing string;

(4) The pre-magnetized casing string should adopt the homogeneous magnetic pole connection
mode to improve the detection distance and accuracy.

Author Contributions: All the authors conceived and designed the study. Y.S., Z.G. and W.Y. performed the
formula derivation, model calculation; D.J., Y.X. and D.Z. wrote and edited the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the China National Natural Science Fund Project (Grant Number 51674284)
and China National Important and Special Project (Grant Number 2016Z2X05022-002).

Acknowledgments: This research was also supported by the Key Laboratory of Unconventional Oil & Gas
Development of China University of Petroleum and Key R&D Program of Shandong Province, China (Grant
Number 2019GHZ001).

Conflicts of Interest: The authors declare that there are no conflicts of interests regarding the publication of
this study.

References

1. Robinson, J.D.; Vogiatzis, ].P. Method for Determining Distance and Direction to a Cased Borehole Using
Measurements Made in an Adjacent Borehole. U.S. Patent No. 3,725,777, 3 April 1973.

2. Flores, V;; Dailey, P,; Todd, D.; Mathur, R.; Donadieu, B. Relief well planning. In Proceedings of the IADC/SPE
Drilling Conference and Exhibition, Fort Worth, TX, USA, 4-6 March 2014.

3. Li, C; Gao, D.L.; Diao, B.B.; Liang, Q.M.; Wu, Z.Y. A detection system based on three-electrode array for
connecting a relief well to failure well. Acta Pet. Sin. 2013, 34, 1181-1188.

4. Mallary, C.R.; Williamson, H.S.; Pitzer, R.; Robertson, J. Collision avoidance using a single wire magnetic
ranging technique at Milne Point, Alaska. In Proceedings of the IADC/SPE Drilling Conference, Dallas, TX,
USA, 3-6 March 1998.

5. De Wardt, J.P; Mullin, S.; Thorogood, J.L.; Wright, J.; Bacon, R. Well bore collision avoidance and
interceptions—State of the art. In Proceedings of the SPE/IADC Drilling Conference and Exhibition,
Amsterdam, The Netherlands, 5-7 March 2013.

6. Wu, Z.Y,; Gao, D.L.; Diao, B.B. An investigation of electromagnetic anti-collision real-time measurement for
drilling cluster well. J. Nat. Gas Sci. Eng. 2015, 23, 346-355. [CrossRef]

7. Oskarsen, R.T.; Wright, ].W.; Winter, D.; Fitterer, D.; Nekut, A.G.; Sheckler, ].E. Rotating magnetic ranging
service and single wire guidance tool facilitates in efficient downhole well connections. In Proceedings of the
SPE/IADC Dirilling Conference and Exhibition, Amsterdam, The Netherlands, 17-19 March 2009.

8.  Diao, B.B,; Gao, D.L.; Chen, PJ. Uncertainty analysis method for intersecting process of U-shaped horizontal
wells. Arab. ]. Sci. Eng. 2015, 40, 615-625.

9.  Hanak, EC; Estes, R. High speed, continuous single well magnetic ranging. In Proceedings of the SPE/IADC
Drilling Conference and Exhibition, London, UK, 17-19 March 2015.

10. Duncan, L. MWD ranging-a hit and a miss. Oil Gas-Eur. Mag. 2013, 1, 24-26.

11.  McElhinney, G.A. Magnetization of Target Well Casing Strings Tubulars for Enhanced Passive Ranging. U.S.
Patent No. 7,656,161, 2 February 2010.


http://dx.doi.org/10.1016/j.jngse.2015.02.016

Energies 2020, 13, 4226 11 of 11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Eatough, O.; Alahmad, M.; Momot, E; Sikal, A.; Reynaud, D. Advanced well positioning with magnetic
interference based on passive magnetic MWD ranging: Case study. In Proceedings of the SPE Russian
Petroleum Technology Conference, Moscow, Russia, 15-17 October 2018.

Stenerson, K.; Ceh, L.; McElhinney, G.A. Method for Magnetizing Casing String Tubulars. U.S. Patent No.
7,679,480 B2, 16 March 2010.

McElhinney, G.A. Method of Magnetizing Casing String Tubulars for Enhanced Passive Ranging. U.S. Patent
No. 8,026,722 B2, 27 September 2011.

Steenwyk, D.H.V.; Towle, ].N. Method for Magnetizing Wellbore Tubulars. U.S. Patent No. 6,698,516 B2,
2 March 2004.

Liang, C.B.; Qin, G.R.; Liang, Z.]. Electromagnetism; Higher Education Press: Beijing, China, 2012.

Cheng, D.K. Electromagnetics Field and Wave; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1989.

Li, J.T.; Song, Y.D.; Zheng, Q.H.; Liu, ]. H. Computation of the magnetic field of permanent magnet with
equivalent magnetic charge method. J. Yunnan Norm. Univ. 1999, 2, 33-36.

Liu, Z.L.; Liu, L.T.; Zhang, J. Signal feature extraction and quantitative evaluation of metal magnetic memory
testing for oil well. Abstr. Appl. Anal. 2014, 4, 1-9.

Li, J.; Zheng, X.L.; Hou, W.S,; He, ]J.; Fang, X. Simulation and experimental research of magnetic field
produced by permanent magnet used in magnetic localization. J. Syst. Simul. 2009, 18, 5919-5922.

Zhang, K.T.; Wang, H.M. Analysis of magnetic field and force of permanent column. Mach. Build. Autom.
2010, 3, 161-164.

Varga, E.; Beyer, A. Magnetic field of a uniformly magnetized hollow cylinder. IEEE Trans. Magn. 1998, 34,
613-618. [CrossRef]

Tang, S.Q.; Shen, J.; Chen, X.K.; Cai, G.W. Finite-element analysis and calculation on spatial magnetic field
emanated from permanent magnet based on magnetic-charge model. J. China Three Gorges Univ. (Nat. Sci. Ed.)
2003, 5, 452-455.

Zhong, H.; Bai, W.S.; Hou, Z.].; Dong, ].J. Research of increasing the magnetic field strength by connecting
the same pole together. China Mod. Educ. Equip. 2014, 3, 67-69.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/20.668053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Magnetic Field Model of Pre-Magnetized Individual Casing 
	Magnetic Field Model of Axially Magnetized Casing String with Couplings 
	Under the Homogeneous Magnetic Pole Connection Mode 
	Under the Heterogeneous Magnetic Pole Connection Mode 

	Model Validation and Analysis 
	Under the Homogeneous Magnetic Pole Connection Mode 
	Under the Heterogeneous Magnetic Pole Connection Mode 
	Comparisons between Tow Magnetic Pole Connection Modes 

	Conclusions 
	References

