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Abstract: Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment
technology to convert waste biomass into highly dense carbonaceous materials that could be used
in a wide range of applications between energy, environment, soil improvement and nutrients
recovery fields. HTC converts residual organic materials into a solid high energy dense material
(hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly
furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct
combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage
or for adsorption of pollutants applications can be also obtained through a further activation stage.
HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular
and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils.
The present review proposes an outlook of the several possible applications of hydrochar produced
from any sort of waste biomass sources. For each of the applications proposed, the main operative
parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to
match the needs for the specific application.

Keywords: HTC; waste biomass; energy recovery; environmental remediation; nutrients recovery;
activated carbon

1. Introduction

The increasing need of finding new renewable energy alternatives to fossil fuels together with
the need to safely dispose of organic waste has pushed, in the last few years, the investigation for
more efficient and reliable technologies for waste biomass energy exploitation and conversion towards
valuable materials. Indeed, the constant rise in the global energy consumption together with the
parallel decrease in the fossil fuel reservoirs, has driven the scientific community toward the research of
more sustainable sources [1]. Waste biomass, and in particular the organic fraction of municipal solid
waste (OFMSW) and industrial and sewage sludges are among the most studied residual feedstocks to
produce energy and valuable carbonaceous materials [2–6].

One of the major drawbacks of choosing waste biomass for energy production, is the need for
one or more pre-treatments before use [7]. The low energy density due to the high moisture content
of waste biomass, makes it often not suitable for a direct energy conversion by combustion and/or
gasification [8–10]. The high moisture in residual biomass raises significantly the operational cost of
transportation and energy consumption for drying [11]. However, due to its great abundance, globally
availability, carbon neutrality and the necessity to find efficient and valuable technologies to treat
and convert it into sustainable energy sources and exploitable materials, waste biomasses has gained
increasing attention and investigation [12].
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Between different valuable alternative treatments for waste biomass, wet thermochemical
technologies for their flexibility and, principle, their low investment and operating costs are receiving
increasing attention in the last years [13,14]. In particular, hydrothermal carbonization (HTC),
also known as wet pyrolysis, is a thermochemical process performed in the presence of sub-critical
water at temperature usually between 180 and 280 ◦C and autogenous saturated vapor conditions
(10–80 bars). Residence time is varied from minutes up to several hours [3,15,16]. At high temperature
and pressure, even at subcritical conditions, water undergoes a dramatic properties change acting more
as an organic solvent and its increased ion product favors reactions that are typically catalyzed by acids
or bases, promoting biomass decomposition through hydrolysis, dehydration and decarboxylation
reactions [17,18]. By means of these reactions, it is possible to increase the carbon content of the initial
feedstock, by removing most of the more volatile oxygenated compounds (furans and low molecular
fatty acids) that are typically moved to the aqueous phase [19]. It is also well documented in the
literature that, during HTC, part of the inorganics are moved to the liquid phase [19–21] thus, on the
one hand, reducing in the solid residue (hydrochar), minerals and ash formation during combustion,
and on the other hand, increasing the high heating values (HHV) [17,22]. This behavior leads to
a reduced risk of slugging and fouling phenomena during combustion of hydrochars in boilers if
compared to the use of pyrochars [2,23,24]. Hydrochar can be used in numerous applications, as a bio
fuel for energy production [1,13,25], as a source of carbon and nutrients in soil application [19,26,27] or
even as starting material for further advanced utilization in supercapacitors or a porous matrix for the
adsorption of pollutants [28,29]. Moreover, the possible scalability of the process up to the industrial
level [30], as well as relatively mild process conditions, make HTC a valid solution for the near future
for the transformation of a wide range of raw biomass into valuable materials [13,30]. In Figure 1
is reported a flowchart of hydrochar production from waste biomass and its possible energetic and
environmental applications.

Since HTC is performed under wet conditions, this technology can find its best application for
biomasses that present high initial moisture content. Indeed, when dealing with direct combustion,
a detrimental overall efficiency was shown when the starting biomass presents high moisture
content [10]. The main reaction pathways involved in the hydrothermal carbonization process
are still under discussion among the scientific community [31]. One possible route was discussed
by Jatzwauck and Schumpe [32], according to which the HTC process is essentially divided into
three steps. The first one is mainly related to the hydrolyzation of cellulose, hemicellulose and part
of the lignin. During the second step, the generated intermediates endure further re-arrangement
resulting in the generation of gaseous products. As an alternative to the formation of the gas phase,
intermediate products can conglomerate to form secondary char, during the third step. The other
mostly discussed route, regarding the evolution of HTC reactions, involves two main pathways:
a solid–solid transformation, according to which hydrochar is directly generated from the dehydration
of the initial biomass, and a vapor–solid reaction in which the dissolved organics present in the solution,
back polymerize to form again a solid material, often named coke or secondary char [33–35].

The present work attempted to review the most relevant research on HTC of the last 5 years,
in order to derive the best operative conditions for the production of valuable hydrochar materials.
Moreover, whenever possible, the present review was integrated with a further pyrolysis or gasification
process in order to evaluate how HTC behaves as a thermo-chemical pre-treatment for the production
of porous material or precursor for energy application purposes.
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2. Effect of HTC Operating Conditions

It is well established that the HTC treatment induces some major transformations inside the
biomass particles, in accordance with the severity of the process that is performed. From an operative
point of view, the three main parameters that can be varied in a HTC process are temperature, residence
time and biomass-to-water ratio. It was found that each of these variables can differently influence the
intermediate reaction and the output products in terms of yields and composition [33,36]. The evolution
of the main biomass components (lignin, cellulose and hemicellulose) in relation to the reaction severity
was recently studied and modelled [37,38]. Heidari et al. [37] found almost negligible interactions
between lignin, cellulose and hemicellulose on the final hydrochar properties, while cellulose was
mostly affected by reaction severity. Authors also conducted an evaluation on the optimal proportion
between biomass components to increase carbon content and calorific value of hydrochar, finding
that a cellulose, hemicellulose and lignin content respectively of 40%, 35% and 25%, represents the
optimal starting conditions. Another main parameter that can significantly influence the composition
of the final hydrochar is the origin of the biomass. It is well known that ligno-cellulosic biomass is
mainly composed of lignin, cellulose and hemicellulos, but the extent of their proportion in the overall
biomass composition is strictly related to the nature of the material considered. At the same time
each of these components undergoes degradation processes at different extent in accordance to the
process conditions [39,40]. The first component that is subjected to hydrolyzation is hemicellulose,
which starts to degrade at temperatures of 180–200 ◦C [41], followed by cellulose depolymerization
(above 210 ◦C) [40] and softening of lignin [42]. Complete conversion of hemicellulose for reaction
temperature of 180 ◦C and residence time of 4 h was reported by Olszewski et al., when treating brewer’s
spent grains [43]. Cellulose was found to be the most difficult component to be degraded, as reported
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by Titirici [31]. According to the author, cellulose starts to be converted above 210 ◦C according to
two different pathways, as depicted in Figure 2 [31]. In their experiments, Olszewski et al. [43] and
Volpe et al. [40] reported a complete cellulose conversion at a reaction temperature of 260 ◦C.
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Due to its very complex structure, lignin undergoes decomposition under a wider temperature
range with respect to hemicellulose and cellulose [44]. The deterioration starts at around 200 ◦C, leading
to the disruption of highly reactive alkyl-aryl-ether bonds, which further react with other intermediate
compounds to form highly stable products [45]. Volpe et al. [19], when performing thermos gravimetric
analysis (TGA) on olive mill waste hydrochar, found that while cellulose peak is significantly reduced
for HTC temperature of 250 ◦C, the peak associated to lignin increases [44]. Through the same analysis,
authors also confirmed the production of lower molecular compounds and/or tarry products coming
from the decomposition of lignin. Indeed, a new peak in TGA curve at around 250 ◦C was found for
the sample produced at 220 and 250 ◦C. From these considerations, it can be deduced that different
reaction temperatures lead to different compositions in terms of cellulose, hemicellulose and lignin.
The study conducted by Kim et al. [46] reported the energy retention efficiency (ERE) for each of these
components in relation to reaction temperature. Indeed, as previously reported, as HTC temperature is
raised, the calorific value increases as well, but the mass yield is reduced. It is therefore of paramount
importance to define the best conditions to maximize the ERE, in order to obtain a valuable biochar for
energy purposes. The results of this study showed that ERE for lignin and cellulose was maximized,
respectively, at 200 ◦C and 220 ◦C, while the best temperature for the conversion of biomass into high
energetic medium appeared to be 220 ◦C.

The higher thermal stability of lignocellulosic against non-lignocellulosic biomass was also
confirmed by Zhuang et al. [47], testing herb tea waste (lignocellulosic) and penicillin mycelial
waste (non-lignocellulosic). The analysis performed on the hydrochars produced showed a superior
thermal stability for the tea waste, due to the presence of hemicellulose and lignin which start to
degrade above 210 ◦C, while polysaccharide and protein present in the penicillin mycelial waste were
hydrolyzed at temperatures lower than 180 ◦C. Finally, some considerations should be addressed
regarding the influence of pressure, particle size, and the possibility of water recirculation within
the system. With respect to the first parameter, the autogenous pressure that is developed inside the
reactor maintains the water in the liquid state, favoring its ability to dissolve polar compounds [48].
Higher pressure levels result in smaller hydrochar dimensions and higher pore volume, together with
a mild increase in the HHV. Only when pressure is raised above 100 MPa, significant increases in the
HHV can be achieved, but the higher cost of the reactor can limit the application [48]. Regarding
particle size and water recirculation, Heidari et al. [49] found that when biomass dimension was raised
from <0.25 mm to within the range of 1.25–3 mm, a slight increase in the mass yield was observed,



Energies 2020, 13, 4098 5 of 26

but the calorific value was lower. This condition is explained by the more severe conversion that
biomass endures since water can more easily penetrate and reach the inner core of the biomass particle.
Water recirculation affects almost only the mass yield, increasing it after the first recycle of about 12%,
while the contribution to HHV is almost negligible, since it was raised by just 2%.

Proximate and ultimate analysis have been widely used to characterize the hydrochars properties.
Proximate analysis is used to get an overall picture of the char composition in terms of fixed carbon
(FC), volatile matter (VC), ash and moisture content (M), while the ultimate analysis give the weight
percentages of their major elements (C, H, N, S, O). Although not all the reactions involved in HTC
treatment are well known, the general evolution pathways of the main biomass elements are fairly well
understood. As long as reaction severity is increased, most of the volatile compounds are released,
increasing carbon content and heating value. The main reactions occurring are dehydration and
de-hydrogenation which imply, respectively, the removal of hydroxyl groups and the rupture of the
of the long chain carboxylic acids [50]. Different studies evaluated the effect of residence time and
reaction temperature on the final hydrochar yields and properties [4,17,51,52]. The results of the studies
assert that the main contribution to biomass degradation and increase in the calorific value is reaction
temperature rather than residence time [53]. Lucian et al. [51] reported an increase in the heating value
of olive trimming from 22.6 to 27.8 MJ kg−1 when reaction temperature was raised from 180 to 250 ◦C.
At the same time, increasing the residence time from 1 to 6 h led to a maximum increase in HHV of
+2 MJ kg−1, at the temperature of 220 ◦C, passing from 24.7 to 26.7 MJ kg−1. The increase in the calorific
value is mainly due to the combined effect of the removal of oxygen and volatile compounds and the
parallel rise in carbon content. The evolution of the concentration of carbon, oxygen and hydrogen
is usually represented through the van Krevelen diagram in H/C and O/C ratios which are plotted.
It is fairly stated that an increase in the hydrothermal carbonization temperature boosts dehydration
reactions, removing oxygen from the initial biomass structure, resulting in a decrease in the O/C ratio.
The evolution of the hydrochar composition is represented in the van Krevelen diagram through
a shift toward lower values of O/C, characteristic of highly carbonaceous fuels like lignite or coals.
Ulbrich et al. stated that the removal of oxygen for low HTC temperature is only mildly affected by
residence time, while in the temperature range of 230–280 ◦C a more pronounced connection between
oxygen reduction and residence time was observed [52]. Figure 3 displays the van Krevelen diagrams
for three biomass sources reported in the literature: a sugar rich waste, namely rotten apples and
coming from the fruit industry, a lignocellulosic residue (olive trimming) and a protein based biomass
(Penicillin mycelial waste) [1,51,54]. It can clearly be seen that each waste endures a specific evolution
pathway, in relation to its initial structure and composition. Evidences of the different transformations
that biomass endures during HTC, in relation to its origin process parameters, are reported in Table 1.
Lignocellulosic material, like olive trimming, presents higher thermal stability than proteins and
polysaccharides, resulting in higher mass yield (approx. 50%) and fixed carbon (9%) with respect to
fruit and protein-based wastes.

Hydrochar produced from fruit wastes resulted in an increase in fixed carbon as long as reaction
temperature is raised, due to the conversion of glucose which starts at around 225 ◦C [1]. Different
research groups showed that mass yield is mainly affected by reaction temperature, rather than
residence time. For low reaction temperature, residence time can even have a positive effect on the
final mass yield. Chen et al. [55], as well as Lucian et al. [51], reported an increase in mass yield when
reaction temperature was set respectively at 190 and 180 ◦C for a reaction time of 6 h, when compared
to mass yields obtained at 1-h reaction time. The increase in hydrochar mass is associated with a
re-arrangement and back polymerization of organic compounds from liquid to solid phase [55].
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As previously reported, the last parameter that can be varied when performing HTC treatment is
the biomass-to-water ratio (B/W). Volpe et al. [17] found that when biomass is increased in the mix up to
a B/W ratio equal to 0.2, the share of secondary char production is increased as well, boosting the HHV
of the hydrochar. In terms of ash content, HTC presents a huge advantage over other pre-treatment
process such as pyrolysis. In fact, although during “dry” pre-treatment all the inorganics are kept
inside the biomass structure, increasing their content in the final product due to the mass loss during
the heating, in HTC some of the ash forming elements are removed from the biomass and washed
away with the process water [24].



Energies 2020, 13, 4098 7 of 26

Table 1. Effect of HTC reaction parameters on hydrochar composition, calorific value and mass yield, together with coal properties as reference.

Biomass FC
[%]

VM
[%]

C
[%] H [%] O [%] HHVraw

[MJ/kg]
HTC Temp

[◦C]
Res.

Time [h]
FC_HTC

[%]
VM_HTC

[%]
C_HTC

[%]
H_HTC

[%]
O_HTC

[%]
HHV_HC
[MJ/kg]

MY
[%]

Ash_HC
[%] Ref.

Pine 13.1 87.8 48.1 6.6 45.1 19.2 220 4.0 30.8 68.8 66.0 5.9 27.5 25.9 76 0.4 [56]

Straw 14.8 80.9 48.2 6.5 40.6 18.2 220 4.0 25.2 72.6 57.9 5.0 34.4 22.4 56 2.2 [56]

Herb tea waste 17.2 69.4 45.1 5.9 32.7 19.3

150 0.5 15.3 68.8 54.9 6.9 34.8 19.8 84 15.8

[54]180 0.5 16.0 65.8 58.6 6.9 31.6 20.5 69 18.1
210 0.5 16.6 63.4 62.6 6.9 27.6 22.1 63 20.0
240 0.5 19.1 58.4 68.4 6.5 22.1 26.3 53 22.5

Penicillin mycelial waste 14.0 78.3 44.8 6.1 33.4 19.1

150 0.5 14.3 76.9 50.2 7.3 34.4 21.3 71 8.7

[54]180 0.5 15.9 73.6 53.3 7.1 31.6 23.6 38 10.5
210 0.5 17.1 68.2 64.5 7.1 20.6 27.4 29 14.6
240 0.5 18.9 63.8 69.2 7.0 16.5 29.2 23 17.2

Sewage sludge 3.51 39.9 21.5 3.7 14.2 9.3

150 0.5 3.1 31.6 50.4 8.4 33.5 10.4 79 65.4

[54]180 0.5 2.8 24.7 57.1 8.3 27.2 10.2 75 72.5
210 0.5 2.4 19.6 66.4 9.4 16.7 8.1 72 77.9
240 0.5 2.2 16.8 71.5 9.9 11.0 7.7 68 81

Brewer spent grains
(80% moisture) 16 76.2 51.3 6.9 36.5 22.3

180 2.0 17.8 74.9 60.3 7.1 27.8 26.5 68 4.3

[4]

200 2.0 20.8 71.9 62.0 7.0 26.4 27.2 64 4.3
220 2.0 23.7 69.0 65.8 7.3 22.1 29.2 58 4.3
180 4.0 26.7 72.8 62.9 7.0 25.2 27.6 67 4.2
200 4.0 23.0 70.5 61.2 7.1 27.2 26.9 63 4.1
220 4.0 29.6 66.2 67.1 6.9 21.1 29.3 55 4.2

Brewer spent grains
(90% moisture) 16 76.2 51.2 6.9 36.5 22.3

180 2.0 22.4 74.2 60.2 7.4 28.3 26.7 66 3.4

[4]

200 2.0 25.1 71.7 62.3 7.2 26.2 27.5 62 3.2
220 2.0 28.7 68.0 66.5 7.3 21.9 29.6 52 3.2
180 4.0 23.7 73.1 59.9 7.0 29.1 26.2 65 3.1
200 4.0 26.5 70.3 63.5 7.2 24.9 28.0 60 3.2
220 4.0 31.9 64.8 66.6 6. 9 21.8 29.1 51 3.3

Rotten apples 14.8 83.6 43.5 6.2 47.5 17.5
190 0.25 34.2 65.5 62.4 5.4 30.8 24.8 36 0.3

[1]225 0.25 35.9 63.9 64.2 5.3 29.4 25.7 36 0.2
260 0.25 37.9 61.6 66.8 5.0 26.8 26.0 39 0.4
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Table 1. Cont.

Biomass FC
[%]

VM
[%]

C
[%] H [%] O [%] HHVraw

[MJ/kg]
HTC Temp

[◦C]
Res.

Time [h]
FC_HTC

[%]
VM_HTC

[%]
C_HTC

[%]
H_HTC

[%]
O_HTC

[%]
HHV_HC
[MJ/kg]

MY
[%]

Ash_HC
[%] Ref.

Grape pomace 11.6 87.5 44.1 6.2 41.9 17.5
190 0.25 28.8 68.6 55.7 5.5 34.5 21.8 38 2.6

[1]225 0.25 35.4 62.8 61.4 5.1 29.9 24.5 40 1.7
260 0.25 35.0 60.6 64.9 5.0 24.9 24.8 45 4.3

Peat moss 27.4 65.9 51.1 5.4 42.0 21.3 240
0.25 40.5 52.4 59.5 4.8 34.1 25.2 74 7.1

[57]0.5 42.4 51.4 61.5 5.0 31.8 25.3 73 6.2
0.75 41.8 51.5 62.1 4.9 31.3 25.8 70 6.8

Olive trimming 17.6 78.4 48.3 6.1 40 19.8

180 1.0 20.3 76.1 54.3 6.1 34.3 22.6 72 3.5
180 3.0 23.2 72.9 56.7 6.2 31.4 23.4 70 3.9
180 6.0 21.9 73.8 58.9 5.9 29.2 24.1 73 4.3
220 1.0 25.1 70.6 59.4 6.2 28.3 24.7 63 4.3
220 3.0 31.4 64.4 63.0 6.3 24.4 26.4 58 4.2 [51]
220 6.0 28.4 66.9 65.5 6.0 21.8 26.7 57 4.6
250 1.0 29.2 66.8 65.3 6.2 22.2 27.8 52 4.0
250 3.0 35.7 59.6 68.9 6.3 17.6 29.0 48 4.7
250 6.0 39.9 56.3 70.6 5.9 17.5 29.6 50 3.8

Sub-bituminous Coal 35.1 33.1 60.8 5.7 15.6 28.2 8(*) [58]

FC = fixed carbon; VM = volatile matter; MY= mass yield. (*) the value of ash for sub-bituminous coal is referred to the raw material and not the hydrothermally carbonized one.
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3. HTC of Waste Biomass for Energy Production and Storage

Hydrothermal carbonization has been proven to be an effective tool for waste biomass pre-treatment,
to produce highly carbonaceous materials that can be used for energetic applications [59–62]. In the last
5 years, research projects have focused their attention on the possible energetic use of the HTC products as a
carbon-rich material for direct combustion or as a precursor for the realization of supercapacitors [63–66].
Prior to any of its further use, hydrochar must be dried to remove all the moisture.

3.1. Direct Combustion

Hydrochar has shown better energetic properties with respect to the raw original biomass. In fact,
the increased heating value and the reduced volatile content ensure a better combustion and exploitation
of the calorific properties of the biomass. Moreover, the lower ash content due to the removal in
the liquid phase of part of the inorganics, reduce fouling and slagging phenomena that can lead to
inefficacy and increased maintenance of the boiler [16,67,68].

Numerous studies investigated the possible use of hydrochar from HTC of sludge for direct
combustion in a boiler. Most of the researches involve sludge from municipal waste water treatment
plants, but recently also industrial sludge, like from a paper mill plant was proposed [69]. Merzari et al.
studied the HTC as a strategy for sewage sludge management [70,71]. Peng et al. [72] tested various
temperatures and residence times for the pre-treatment of sewage sludge from a waste water treatment
plant, before its combustion. Temperature was varied in the range of 180-300 ◦C, with a 40 ◦C interval
with a residence time of 30 min, while, to evaluate the contribution of reaction time authors kept the
temperature fixed at 260 ◦C for 30, 60, 90, 360 and 480 min. Authors found that 260 ◦C and a residence
time between 30 and 90 min, led to the highest increase in the higher heating value (2–10%). A further
prolongation of reaction time up to 360 min, induced only an increment in the ash content up to 69.26%.
The ash-related problems are common issues when dealing with sludges from waste water treatment
plants. Wang et al. [73] studied the behavior of high-ash municipal sewage sludge when subjected
to HTC in the temperature range of 170–350 ◦C. Raw sludge presented poor energetic properties,
due to the very high ash and volatile matter (VM) content and the low fixed carbon amount. Similarly
to what was reported previously by Peng et al. [72] and by Chen et al. [74], a mild HTC treatment
with temperatures below 260 ◦C determines the best hydrochar properties for the further combustion
stage. Indeed, the reduced ash content, the higher dewaterability and the greater HHV with respect
to the other pre-treatment conditions, make this temperature the optimum one at which to process
sludges. A valid practice to obtain hydrochar with better combustion performances, is to perform a
co-HTC with carbon rich biomass, in order to raise the carbon content and the calorific value [57,75,76].
Zheng et al. [77] tested co-HTC of food waste (FW) and municipal sludges (MS) under different ratios
and carbonization temperatures. The share of food waste in the mix was varied between 30, 50 and
70%, while the temperatures tested were 180 ◦C, 230 ◦C and 280 ◦C. The addition of food waste can
partly mitigate the drawbacks related to poor combustion properties of sewage sludge hydrochar by
raising the HHV and the carbon content, while lowering at the same time the ash amount. As long as
the amount of food waste was raised in the feedstock mix, authors reported a drastic increase in the
HHV which passed from 9.62 MJ kg−1 for the hydrochar prepared at 230 ◦C from only MS to 19 and
23 MJ kg−1 when the amount of FW was, respectively, 50 and 70%. At a temperature of 230 ◦C, HTC of
only food waste produced a good quality solid fuel with a HHV of 31 MJ kg−1 and an ash content
of 6%. Another perspective on the possible use of food waste as feedstock for HTC conversion was
presented by Wang et al. [78] and McGaughy et al. [79]. Wang et al. [78] found a similar trend in the
evolution of the calorific value of the hydrochar, with a peak of 31.7 MJ kg−1 when FW was treated at
260 ◦C for 1 h. In addition, fouling and slagging phenomena were reduced. Indeed, as long as reaction
temperature increases, the removal of inorganics like Cl, S and N, together with a great share of alkali
metals, is enhanced which contribute the most to slagging and fouling problems. However, when the
carbonization temperature was raised above 220 ◦C, authors encountered an increased emission of
NOx, which should be avoided during combustion. McGaughy and Reza [79], on the basis of HTC
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experiments with food waste, proposed a simulation model of a plant processing 1 ton of fresh refuse
per day, resulting in a positive net energy balance for the whole process.

Food waste in the form of digestate from biogas plants, was experimented by Cao et al. [80].
The digestion significantly reduced the potential for energy conversion, since it converted a great share
of the carbonaceous content to methane and carbon oxides and increased the ash amount with respect
to the raw material. HTC treatment did not show significant improvement in terms of combustion
potential. Poor energetic properties were also reported in [81] when dealing with the wet fraction of
municipal solid waste digestate, but mostly due to the scarce potential of the initial feedstock.

A good potential for solid fuel conversion was proposed in [82,83] for the lignocellulosic material.
In [82] authors tested the efficacy of a 220 ◦C, 90 min HTC treatment on six different biomasses, namely:
olive pomace, walnut shell, hazelnut shell, apricot seed, tea stalk and wood sawdust. Each of the
biomasses studied, presented better combustion properties with respect to the initial feedstock, in terms
of heating value, carbon content and ignition conditions. The best energetic properties were found to
be related to the olive pomace with an increase in the HHV of up to 25.6 MJ kg-1 and an ash content of
5.5%, while hazelnut husks showed the poorest properties with a HHV of 20.6 MJ kg−1 and an ash
percentage of approximately 12%. Moreover, all the hydrochar presented higher ignition temperatures
with respect to the raw biomasses, which significantly improve the handling and storage properties
of the fuels, reducing the risk of self-ignition and combustion. Similar properties of the obtained
hydrochar were also reported by Chen et al. when dealing with HTC of sweet potato peels [84].

3.2. Supercapacitors & Batteries Application

The research on possible use of biomass-derived material as source for electrode fabrication has
recently increased the attention on the use of HTC pre-treatment. The present review will consider
only the methods involving the use of waste biomass as starting material. This consideration is due to
the fact that some studies had focused the attention mostly on the activation step, using synthetized
glucose or lignin as starting material, while in the present work only the biomass-derived precursors
were considered. Agricultural wastes, as well as plant wastes or high lignocellulosic materials were
reported as suitable for energy storage applications [85–88]. Application for supercapacitors has been
more and more studied in recent years. Supercapacitors can deliver great power output, ensuring
at the same time long life and great efficiency after hundreds of cycles [86]. Supercapacitors store
charge reversibly through ions immobilization in the electric double layer, on which non-faradaic and
pseudocapacitive reaction occurs [87]. Hence, carbon-based material for supercapacitors applications
must ensure good electric conductivity, great surface area with possible hierarchical pore distribution,
together with a reasonable cost. For such reason, biomass material represents a greatly attractive
option in this field [87].

Soybean root was tested by Guo et al. [89], resulting in a great electrode capacitance and cycling
stability. Authors performed an acid HTC treatment at 180 ◦C for 18 h by using a 5% w/w H2SO4

solution. The obtained hydrochars were further active with KOH at 800 ◦C for 3 h, under a N2

atmosphere. The Brunauer–Emmet–Teller (BET) and Scanning Electron Microscope (SEM) analysis
showed the formation of a hierarchical interconnected porous structure composed of large macro
and meso-pores on the external surface, which further develop into a capillary net of micropore sites.
These latter spots are the ones that mainly contribute to ions storage [90]. Cyclic voltammetry (CV)
showed great electrical response even at a high scanning rate, reporting an almost rectangular trend of
the curve even at 800 mV s−1, as well as a significant capacitance of 328 F g−1 for a current density of
1 A g−1.

Tests on bamboo shells were reported by [65], resulting in a lower capacitance with respect to the
ones reported by Gou et al. [89], and equal to 209 F g−1 at 0.5 A g−1. Similarly in this case, authors
performed an acid HTC treatment with 1% w/w H2SO4 solution and the obtained hydrochars, before
being activated in KOH at 600–800 ◦C, were carbonized with melamine under N2 at a temperature
of 600 ◦C, with a char-to-melamine ratio of 1:4 w/w. To better understand the effect of melamine
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treatment on the final product, a blank assay was also conducted. The results showed a remarkable
increase in surface area and pore development, as well as in the capacitance properties of the hydrochar.
Melamine for hydrochar activation was also studied by Sevilla et al. [91], mixing it with K2C2O4 and
the hydrochar obtained from eucalyptus sawdust produced at 250 ◦C for 4 h. The use of K2C2O4,
instead of the more frequently used potassium hydroxide, according to the authors, is due to three main
reasons: its lower corrosive potential, the higher obtainable product yield and its less disruptive action
on the morphology of chars. The use of K2C2O4 instead of KOH can almost double the char production,
for the same amount of reactant adopted, while increasing at the same time the electrical properties.
Hydrochar from pine cones, hemp waste, tobacco rods, peony pollen and argy worm-wood were
successfully tested as precursors for supercapacitors application through KOH activation [63,92–95].
Excellent capacitance properties were found by Zhao et al. [63] when working with hydrothermally
carbonized tobacco rods. In this work, authors firstly treated the biomass through HTC at 200 ◦C for
12 h and then activated it at 800 ◦C for 1 h with a char-to-KOH ratio of 1:3 in mass. Results showed
that the activation stage increased the specific surface area up to 2115 m2 g−1, raising significantly
also the specific capacitance. Indeed, the produced electrodes showed superb electrical properties
with a capacitance as high as 286 and 212 F g−1, when the current density was, respectively, 0.5 and
30 A g−1. Higher capacitance was recorded when using malva nut as biomass precursor by Ye et al. [96].
HTC was performed at 200 ◦C for 18 h and hydrochars were further activated at 700 ◦C in a ratio of 3:1
with KOH. Capacitance up to 279 and 219 F g−1 were achieved for current densities of 1 and 20 A g−1,
respectively. Acid HTC with KOH activation resulted in lower performance when pine cones were
used as starting biomass [93]. Manyala et al. tested the addition of 0.5 ml of sulfuric acid into 80 ml of
de ionized (DI) water, as medium for the HTC reaction. The further activation was performed for 1 h at
the temperatures of 600, 700, 800 and 900 ◦C, with a KOH-to-char ratio of 1:1 (w/w). When temperature
reached 900 ◦C a significant reduction in porosity and electrical properties of the char was observed.
This condition is probably due to pore walls collapsing at higher temperature, which enlarge their
average dimensions, reducing at the same time the amount of micropores which act as a storage site
during charging. A wider inspection of the possible activating agent was conducted by Jain et al. [97]
on coconut shells. Biomass was firstly treated in autoclave with H2O2 or ZnCl2, testing different
dosages and temperatures, and further activated under CO2 at 800 ◦C for 2 h. Three different HTC
conditions were tested in this work:

1. Temperature of 315 ◦C, 20 min with a ZnCl2-to-shell ratio of 1:1 (w/w);
2. Temperature of 275 ◦C, 20 min with a ZnCl2-to-shell ratio of 3:1 (w/w);
3. Temperature of 200 ◦C, 20 min in a 10% H2O2 solution with a successive stage at 275 ◦C for 20 min

with a ZnCl2-to-shell ratio of 3:1 (w/w).

Each set of tests was further proposed under a wide range of biomass concentrations in the
solution, ranging from 0.05 to 0.66 mg L−1. For the case of ZnCl2-to-shell ratio of 1:1, authors reported
a decrease in the specific surface area as long as biomass concentration was raised, passing from
1700 m2 g −1 for a biomass concentration of 0.05 mg L−1, to 1350 m2 g −1 when the concentration was
raised to 0.22 mg L−1. The tests using H2O2 presented a similar trend, with an increase in surface area
from 1750 to 2450 m2 g−1 when the biomass concentration was raised from 0.16 to 0.5 mg L−1, but a
further increase up to 0.66 mg L−1 led to an almost 20% reduction in specific surface area. In terms of
electrical properties, the highest energy density as well as the highest capacitance was found to be
related to carbon produced with H2O2 and ZnCl2 with a biomass concentration of 0.5 mg L−1, with a
capacitance of 246 and 221 F g−1 for a current density of 0.25 and 5 A g−1, respectively. Impressive
performances were also reported in [98] when testing ZnCl2-activated hydrocar produced from Coca
Cola®. Authors found one of the highest capacitances ever recorded for waste precursors, equal to
352.7 F g−1 for a current density of 1 A g−1. Table 2 summarizes some of the studies reported above
with also some reference values for synthetized materials used for supercapacitor applications.
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Table 2. Performances of biomass-derived hydrochar for supercapacitors application.

Biomass HTC
Medium

HTC Temp.
[◦C]

HTC
Res. Time

[h]

Activation
Agent

Activation
Temp.
[◦C]

Activation
Time

[h]

Max
Capacitance

[F g−1]
Ref.

Soybean root 5% H2SO4
solution 180 18 KOH 800 3 328 * [89]

Bamboo shell 1% H2SO4
solution 200 24 KOH+

melamine 600–800 1 209 ** [65]

Tobacco rods H2O 200 12 KOH 800 1 287 ** [63]
Malva nuts H2O 200 18 KOH 700 1.5 279 * [96]

Pine cones 1% H2SO4
solution 160 12 KOH 600–800 1 78 ** [93]

Self-stacked solvated graphene - - - 245 ** [99]
PANI nanowires through electrochemical deposition - - - 818 ** [100]

* Capacitance calculated at 0.5 A g−1. ** Capacitance calculated at 1 A g−1.

Aside from applications for supercapacitors, hydrochar has been successfully used for the
production of electrode material in lithium or sodium ion batteries as well as in the vanadium redox
ones [101–104]. In [101], authors used corn stalk as substrate for the production of a bio-based
lamellar molybdenum disulfide electrode to be used as anode in a lithium ion battery. To obtain the
desired material, a thiourea and ammonium molybdate solution was used as reaction medium for the
hydrothermal carbonization of cornstalks. Hydrochars were further treated in a furnace at 1000 ◦C in
N2 atmosphere and then placed into an ammonium chloride solution at 60 ◦C, to separate the excess of
calcium. The obtained material presented a discharge capacity, after 100 cycles, for a current density of
0.1 and 1 A g−1 of, respectively, 1129 and 339 mAh g−1. A lithium ion battery anode was also produced
from a cellulose-derived carbon nanosphere obtained from corn straw by Yu et al. [102]. A sulfuric
acid bath and a following sodium hydroxide bath were used to extract cellulose from corn straw.
The obtained products were hydrothermally carbonized at 200 ◦C for 24, 36, 48 and 60 h before being
further carbonized at 600 ◦C in Ar, to obtain carbon nanospheres. Authors found that if reaction time
is too long, it can induce particles agglomeration, reducing the available specific area and, therefore,
the storage capacity. The best carbonization time was found to be 36 h, which showed a specific
discharge capacity after 100 cycles of 577 mA g−1 for a current density of 74 mA g−1. Aside from lithium
ion, also applications for sodium ion batteries were studied. In [103], authors tested lath-shaped carbon
made through HTC followed by a 800 ◦C carbonization step produced from peanut shells, to be used as
anode in Sodium ion battery. In this case, the discharge capacity was found to be equal to 265 mA g−1

at 30 mA g−1 after 100 cycles. Moreover, tests for a possible cathode material were performed by
Palomares et al. [105], using waste from vine shoots and eucalyptus wood as precursor to realize a
sodium vanadium fluorophosphate electrode. Authors found that when hydrochar is further subjected
to a flash thermal treatment (700 ◦C, 10 min in N2), its electrochemical properties reached a specific
capacity of more than twofold that of pristine hydrochar.

Promising results were also achieved in vanadium redox flow batteries when testing activated
hydrochar [104] as electrode material.

4. Environmental Remediation

4.1. Adsorption of Contaminants

Waste biomass has been widely experimented for the realization of activated carbons for air or
water remediation [106]. Indeed, as already seen for the preparation of supercapacitors, biomass can
be transformed into a highly carbonaceous porous media, with superior properties in term of specific
area and surface composition. Contaminants are adsorbed within the carbon matrix both through
physical trapping on the internal surface or chemical bonding on the charged surface of the porous
material. Moreover, depending on the characteristics needed for the final material, the HTC treatment
and activation step can be further tailored by adjusting the operative parameters.
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Two studies involving the use of digestate material as precursor for the realization of activated
carbon for the adsorption of contaminants were found in the literature [107,108]. The research
conducted by Bernardo et al. [108] on the use of hydrochar from digestate of municipal solid waste,
showed a promising perspective for its application on the removal of phosphate from waste water.
Digestate was hydrothermally carbonized at 250 ◦C for 1 h, in acid (with addition of H2SO4) or native
conditions, before being activated at 600 ◦C for 2 h with a KOH-to-hydrochar ratio of 3:1 in mass.
Despite the reduction in specific surface area when biomass is subjected to acid treatment, the two
sets of chars present the same adsorption capacity of 12 mg of orthophosphate for each gram of
carbon. Results indicate that morphological properties do not play a significant role in orthophosphate
adsorption. According to the authors, the presence of Al3+, Ca2+, Fe2+/3+ and Mg2+ ions in the acid
hydrochar, can boost the formation of mineral complexes with phosphate ions, reducing its content.
Similar behaviors were also reported in [109–111], when operating with bio-chars for the removal of
phosphate from aqueous streams.

Hydrochars were also successfully used to remove CO2 from gaseous streams by using
agro-industrial waste or Coca Cola® [98,107,112]. Bio chars from agro-industrial waste were produced
at different temperatures (190–250 ◦C), carbonization times (3 and 6 h) and pH levels (5 and 7),
in order to evaluate the optimal reaction conditions [107]. Activated carbons were then realized by
mixing hydrocarbons (HCs) with KOH in a mass ratio of 1:4 and then heated up to 600 ◦C for 2 h.
Activation considerably boosted surface area and micro-meso porosity of the material. When testing the
adsorption capacity, authors found a much greater affinity toward CO2 than CH4, with an adsorption
capacity of 8.8 molCO2 kg−1, for the carbon produced at 250 ◦C for 6 h at a pH of 5. Tests on the
adsorption of CO2 were also performed with activated carbons realized from the HTC of garlic peel
and Coca Cola® [98,112]. Hydrochar from garlic peels [112] were activated under different activation
temperatures (600, 700 and 800 ◦C) and KOH-to-char ratios (0:1; 2:1 and 4:1) in order to investigate their
effect on porosity development and adsorption capacity. Tests revealed that an increase in activation
temperature and KOH amount led to a rise in specific surface area and pore volume. However,
CO2 adsorption is mainly driven by micropores availability, resulting in lower adsorption capacity
as long as temperature and potassium hydroxide increases. Indeed, too severe activation conditions
can induce pore enlargement, as well as pore walls collapse, reducing the possible sites for CO2

immobilization. Superior performances were achieved when using Coca Cola® as precursor in the
HTC treatment [98]. The work conducted by Boyjoo et al. showed outstanding capacity when Coca
Cola® was hydrothermally carbonized at 200 ◦C for 4 h and further activated either with ZnCl2 or
KOH. This latter condition induced the highest increment in the adsorption ability, leading to an
adsorption capacity of 5.22 mmol g−1 at 25 ◦C and 1 Atm, which is one of the highest ever recorded for
biomass precursors.

Bernardo et al. produced activated carbon by hydrothermal carbonization of digested sludge
and tested their activity toward phosphorous adsorption. They demonstrated that the high porosity
together with a high concentration of cations as in Ca, Al, Fe etc., favored phosphates removal from
wastewater [108].

Experiments for heavy metals removal were also conducted starting from agro-industrial wastes
as reported in [113–115]. In [114], authors tested the removal capacity of Antimony (III) and Cadmium
(II) on pyro-char and hydrochar realized from animal manure. The results of the adsorption tests
showed higher yields when pyrolytic chars were used, as well as an increase in the removal capacity as
long as pH was raised from 3 to 6. The total adsorption potentials for Antimony were 2.24–3.98 and
4.44–16.28 mg g−1, respectively, for hydrochar and pyrochar, while higher capacities were reported
for the case of Cadmium, achieving a removal of 19.80–27.18 and 33.48–81.32 mg g−1. Aside from
Cadmium removal, promising results on the adsorption of heavy metals contaminants such as
lead (Pb) [116,117], copper (Cu) [118–120], Zinc (Zn) [55,113,115] as well as pharmaceutical and
chemical waste were obtained in different researches [106,121–124]. For copper removal, different
studies proved that surface charge, pH and adsorbent dosage were the main parameters affecting
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the adsorption capacity, while for lead superior efficiency (>99.5%) was achieved with Ni/Fe-doped
hydrochar [125]. Additionally, organic compounds like methylene blue, methyl orange and Congo
red were removed from contaminated solutions through the adsorption on hydrochar produced from
biomass waste [126–132]. Up to 655.7 mg of methylene blue for each gram of hydrochar was absorbed
when bamboo sawdust was carbonized into 1 M hydrochloric acid solution, before being further
treated with NaOH for 1 h. Acid modification led to 100%–200% increase in the adsorption capacity
when the solution was kept in the pH range of 10–12 [127].

The removal of Congo red and 2-naptol was studied by Li et al. in two following works,
using bamboo sawdust as starting material [133,134]. Both the two pollutants can have toxic effects on
both aquatic life and human organisms and, therefore, need to be removed from the water stream.
Moreover, due to their recalcitrant behavior to biological and thermal treatment, the use of adsorbent is
more and more studied. In both the studies published by the authors, they found that pore development
and the presence of oxygen functional groups on the surface can positively influence the adsorption
capacity of the activated carbon. HTC reaction was conducted according to three main procedures:
with pure water, with acid medium (HNO3, H2SO4 and H3PO4) or through a two-stage operation with
a first hydrothermal carbonization in a 5% weight NaOH solution followed by an acid one in HNO3,
H2SO4 or H3PO4. The two-stage process was used to perform a first delignification in order to favor
the penetration of the acid inside the material and enhance pore development. The results showed
that, among all, the best adsorption performances were achieved in a two-stage process, with H2SO4

or H3PO4 as acid medium and were equal to 90.51 and 72.93 mg g−1, respectively, for Congo red
and 2-naphtol.

Adsorption of crystal violet (C25H30IN3) and malachite green was also investigated in
biomass-derived hydrochar in [135–137]. For both contaminants, pH represents a key factor for
adsorption since it is responsible for the surface charge modification of the hydrochars and the ionic
charge modification of the contaminants. It was found that for crystal violet, the optimum pH was 10,
while for malachite green it was found to be 7. Food leftovers were also transformed in adsorbent
material to remove rare earth ions [138] and toluene [139] from contaminated streams.

Magnetic modified hydrochar, produced from different biomasses through the addition of iron
compounds in the reaction media, were also used to remove tetracycline, roxarsone and persistent
free radicals from waste water [140–142]. The magnetic properties of the obtained material can reduce
the whole purification process time, by shortening the time needed to remove the adsorbent from
the solution and saving costs of operation. In Table 3, some of the presented works are reviewed,
according to the starting biomass, HTC condition and contaminant removed.

Table 3. Biomass type and HTC condition for removal of contaminants from waste waters.

Biomass HTC Reaction
Conditions

HTC Modifying
Agent

Contaminant
Removed Reference

Digestate 250 ◦C, 1 h H2SO4 Orthophosphate [108]

Coca Cola® 200 ◦C, 4 h KOH, ZnCl2 CO2 [98]

Animal manure 250 ◦C -
Anthimony

(III), Cadmium
(II)

[114]

Bamboo sawdust 200 ◦C, 24 h HCl + NaOH Methylene blue [127]

To sum up, the last five years of studies on the possible use of hydrochar material as precursor for
the realization of the adsorption of different contaminants, showed interesting potential for the further
development of substrates with enhanced capacities that could represent, in the near future, cheaper
and more environmentally friendly options with respect to artificially synthetized materials.
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4.2. Phosphorous Recovery

Waste biomass as OFMSW and sewage and agro-industrial sludge contain large amounts of
phosphorous. Phosphorous (P) is a “critical raw material” for Europe [143] meaning that this element
is of strategical importance but reserves of P rock are limited and mostly concentrated in Morocco,
USA and China. As stated above, European legislation is pushing and financing for an increase in
recovery of P from waste streams [144]. Hydrothermal carbonation of waste biomass, and in particular
of sewage sludge containing up to 4% by weight on a dry basis, has demonstrated the possibility
of recovering up to 95% of the total phosphorous content [70,145–147]. It has been demonstrated
that during HTC, the phosphorous element segregates into the solid phase and treatment of the
recovered hydrochar by an acidic leaching leads to the removal of P which moves to the aqueous
phase. Phosphorous element in sewage sludge could be found in different forms depending on the
reaction conditions [148]. P can be then precipitated by alkalization of the aqueous solution by adding
CaO [145] or sodium hydroxide solution[146]. The addition of magnesium chloride and ammonium to
the acidic phosphorous solution prior to alkalization led to the precipitation of struvite directly usable
as solid fertilizer [146].

4.3. Soil Conditioning

Char addition in soil has been widely recognized as an good practice to favor plant growth,
enhancing soil properties in terms of available nutrients, soil porosity and water retention
capacity [149–153]. In terms of plant growth, positive outcomes regarding roots nodulation and
biomass production were reported in [154,155]. Moreover, different studies demonstrated also the
positive effect of hydrochar on the retention of pesticides, allowing an optimized utilization and
reducing the possible risk of leakage and contamination of ground waters [156–158]. The fast
mineralization of the carbon contained in the char leads to a short-term release of nutrients in the soil,
reducing the carbon content by 30–40% within the first 12–19 months [159–161].

The nature of the biomass used to produce the biochar, as well as the operating conditions,
can significantly influence the final char composition and, therefore, the possible interaction with the
soil [162,163]. A possible drawback of hydrochar addition can be represented by the release of organic
compounds that can have toxic effects on soil. To minimize this effect, simple washing, aerobic or low
temperature thermal treatment had been reported as further options to reduce the phytotoxic effect
of pristine hydrochar [164,165]. Particular attention must be paid also when using HC from sewage
sludges, due to the high content and release of heavy metal in the soil [166].

Tests to control ammonia volatilization and optimize nitrogen use for plant growth were proposed
in [167–169]. Chu et al. tested the addition of algae-derived hydrochar to increase yield and
mitigate N2O and NH3 emission [167]. Conversely to the main goal of the work, results showed a
significant increase in grain yield up to approximately 25%, together with a rise in N2O emission
and ammonia volatilization. The increased released of nitrogen compounds could be due to the low
C/N ratio of the biomass and hydrochar, which could further prompt microbial activities, facilitating
nitrogen gasification. Similar results related to emission of N-containing compounds were reported by
Subedi et al. [169], as well as by Andert and Mumme [170] when adding pyro or hydro char into soil.
On the same aspect, good results with high nitrogen retention, together with a significant decrease
in ammonia volatilization was reported in [168] when using acid-modified hydrochar obtained from
sewage sludge. Magnesium citrate or magnesium citrate with sulfuric acid were tested as potential
additives in the reaction media for the HTC process. In the author’s opinion, the acidity of the
chars could reduce the ammonia volatilization, while the high porosity of the carbons can favor the
adsorption of NH4

+. Moreover, the presence of surface functional groups rich in anion exchange sites
can further reduce the nitrification rate, increasing N retention.

Base-modified hydrochars were also successfully tested on the removal of heavy metals like Lead
(Pb) and Cadmium (Cd) [171,172]. In [171], authors evaluated the possible addition of 0, 10, 20 and
30% (w/w) of lime in the solution, before the HTC treatment. The obtained hydrochars were mixed
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with the contaminated soil in a proportion equal to 1, 2.5 and 5% by weight to evaluate the effect on
leaching and contaminants immobilization. Results of the trials showed a remarkable increase in the
removal of contaminants as long as the share of hydrochar was raised, achieving an improvement
in the immobilization efficiency of 95.1% (Pb) and 64.4% (Cd), with respect to pristine hydrochar.
Indeed, as long as hydrochar amount and lime content were raised, pH of soil shifted toward basic
values, increasing electrostatic interaction between positively charged metals ions and the anions in
hydrochar. Moreover, the formation of precipitates like metal (hydr)oxide or carbonate at high soil pH
helped to further reduce the amount of Pb and Cd ions in the samples. Copper was also successfully
removed from contaminated soil by Xia et al. [172], by using amino-functionalized hydrochar derived
from pinewood sawdust. Authors reported an efficiency in Cu removal from the soil equal to 96.2%,
together with a reduction of 98.1% in Cu amount in the leachate.

5. Hydrochar for Biorefinery

HTC products were recently proposed, from lab scale up to pilot plant unit, as precursor for the
production of many organic compounds that were traditionally synthetized from fossil fuel-derived
hydrocarbons [173–176]. Most of the efforts are focused on the production of ethanol, furfural
compounds and glucose. During HTC, biomass endures significant modifications leading to the
production of a vast amount of different chemical components, both in solid or liquid forms. Ethanol
was successfully produced from the cellulose extracted from agave and sugarcane bagasse hydrochar
in [177] and [178], achieving a production up to 145 L of ethanol from 1 ton of raw sugarcane
bagasse. In order to maximize cellulose production, low temperature HTC (180–190 ◦C) is preferred.
The obtained hydrochar is further treated trough enzymatic hydrolysis and fermentation to obtain
ethanol. Through the enzymatic hydrolysis of both liquid and solid products of the HTC, glucose was
produced from palm oil waste by Zakaria et al. [179].

Furfural and 5-hydroxymethylfurfural (HMF) were also produced from Miscanthus, corncob
wastes and hemp [180–183]. HMF was successfully generated from both hydrolyzed cellulose or
hemicellulose contained in the original biomass. In both cases, acid treatment through H2SO4 or
catalytic conversion were necessary to produce HMF.

6. Conclusions

HTC represents a valid pre-treatment technology to convert waste biomass into new valuable
products which could find applications in a wide range of fields, from energy production to environment
remediation and soil conditioning. Since HTC operates in aqueous medium, it is perfectly suitable to
convert wet biomass, without any drying step. The most common waste biomass materials include
those produced by agro-industries, municipalities (organic fraction of municipal solid waste and
sewage sludge) but also from forestry and paper mill industries. The removal of part of the volatile
compounds and ashes increases the combustion properties of the hydrochar, making them suitable for
direct combustion in energy production applications. Chemical and physical activation, by using KOH
or CO2, respectively, were successfully proposed to increase the surface area and internal porosity
of the material. By modifying the morphology and chemical surface, activated hydrochar can be
successfully used for the production of energy storage devices for the immobilization of pollutants
in gaseous or liquid streams. Pores development as well as elemental and surface composition can
be tailored by changing the carbonization and activation parameters. Finally, the addition in soil can
induce important benefits on pant growth, increasing water retention and reducing at the same time
possible leaching of contaminants into ground water.

Recently, some researchers focused their attention on how to mitigate the energetic impact of
the hydrothermal carbonization process by coupling it with renewable energy production systems.
Indeed, biochar can represent a valuable product to increase the efficiency of co-digestion systems,
with respect to its pristine composition. HC produced from coffee spent, rice straw or microalgae,
as well as the liquid phase produced from the hydrothermal carbonization, induced higher biogas
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production as well as an increased methane content [184–188]. In such a way, the energy content of the
produced biogas can be used to run the HTC reactor, ensuring cleaner combustion with respect to the
hydrochar itself. Another option that has recently been studied is to couple the HTC reactor with a
solar concentration system which can satisfy the thermal load. Linear parabolic and parabolic disc
concentrators ensured a carbonization temperature up to 200 and 250 ◦C respectively, ensuring heating
conditions of traditional systems [189,190].

Nevertheless, there are still some mechanisms in the HTC process that need further study to be
completely understood, in order to gain a stronger control over the process parameters, their influence
on the final product properties and thus their possible applications. Depending on the HTC operating
conditions and the nature of the feedstock, the technology still presents some limitations for its full
development. Between them, the correct process liquid treatment and management often present
challenges due to the presence of toxic hydrocarbons (such as polycyclic aromatic hydrocarbons (PHAs)
and high heavy metals concentrations. The presence of toxic compounds severely limits the possibility
to use such residue (as for example in agriculture as a possible source of nutrients) increasing the
overall costs of the HTC process. Investigations related to toxic hydrocarbons removal and heavy
metals recovery represent a necessary step for further development of the HTC technology.
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