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Abstract: In the eastern mining area of Ningxia, China, multi-layered sandstone aquifers are widely
distributed in the underground. However, the water abundance of these aquifers is not clear, which brings
great challenges to the prevention and control of mine water disaster. In this paper, five mining areas in
eastern Ningxia were taken as the study area, and the distribution characteristics of aquifer and the mine
water filling source were analyzed through the analysis of geological data and numerical simulation.
Finally, the lithology influencing index (LII) was constructed, and the water abundance of the aquifer
was evaluated. The results show that the sandstone aquifer III in the lower part of the Jurassic
Zhiluo formation is the main water-source aquifer of the #2 coal seam in the study area, while the
middle aquifer II and the upper aquifer I are indirect water-source aquifers; the areas with extremely
strong and strong water abundance are Maiduoshan, Hongliu, the south of Shicaocun, southeast and
southwest of Meihuajing, and the central and southern areas of Shuangma mining areas; when the
depth of water drainage boreholes in the roof reaches the development height of the water-conducting
fracture zone, the pre-drainage measures can effectively control the mining inrush water of the
working face and ensure the safety production. This research is of great significance to the prevention
and control of mine water disaster.
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1. Introduction

Along with the gradual depletion of high-quality coal resources in eastern China, the focus of coal
mining is gradually shifted to the northwest region [1,2]. Rich in coal resources, the eastern Ningxia is
an important coal production base in China [3]. However, multi-layered sandstone aquifers are widely
distributed in the eastern Ningxia, and their water-abundance characteristics of the multi-layered
sandstone aquifers are unknown, which brings safety risks in mine production in this area. The strain
energy accumulated in the places where rock deformation, caused by mining activities, occurs. When the
stored energy reaches a certain level, a large amount of energy will be released, leading to cracks in
overburden layers [4]. Those longitudinal fractures gradually develop to water-conducting pathways
and connect overburden aquifers and mining space, resulting in the water inrush from aquifers into the
mine [5,6]. When the water inrush is out of control, flooding accidents can be caused, resulting in a large
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number of casualties and huge economic losses. Moreover, owing to the formation of groundwater
depression cone, groundwater continues to flow into the mine under the effect of overflow supply,
which may cause a huge loss of groundwater resources [7,8]. The hydrogeological condition has a
direct effect on the economic benefit of a coal mine company [9]. Hence, the water inrush caused by
coal mining is an important factor restricting the development of the eastern Ningxia mining area,
and the research on the property and instability mechanism of overburden aquifers above the coal
seam is the basis of water disaster control.

Zha Hao et al. [10] researched the fracture development of the sandstone aquifer above a
shallow seam by simulation experiments. Cui et al. [11] utilized the physical similar material
simulation experiment and acoustic emission monitoring method to research the failure rule of
overlying layers. The magnetotelluric method was applied to the analyze the failure features of
aquifers [12]. The evolution processes of rock fracture and mechanisms of water inrush hazards
occurring in Luotuoshan coal mine were analyzed by fracture-hydraulic flow coupling functions [13].
The quantitative relationship between hydraulic properties of overburden aquifer and mining processes
was established, based on in situ continuous measurements [14]. The evolution processes of
permeability of aquifer and self-healing of fractures were studied through experiments carried
out in a laboratory [15,16]. In addition, it was found that the property of the aquitard beneath an
aquifer was a crucial factor of the coal extraction influence on the aquifer [17]. In terms of the sources
of aquifer recharge or water inrush of mines, the combination of hydrochemical analysis with other
analysis methods was an effective instrument [18–20]. Meanwhile, the ascertainment of inrush water
resources can also be achieved by the analysis of fracture development of overburden strata [21,22].

Five mining areas are taken as the research focus in this paper, including Meihuajing,
Shicaocun, Hongliu, Maiduoshan, and Shuangma mining areas. To clearly understand the
characteristics of the water abundance of the roof aquifer in the study area and the mine water
inrush, the development height of the water-conducting fracture zone, the source of the water inrush,
and the characteristics of the water abundance of the aquifer above the coal seam are studied in this
paper. From the perspective of mining safety, the water abundance characteristics of the roof aquifer
are revealed. This research can be taken as an important theoretical basis to guide the long-term mine
water prevention and control method.

2. Overview of the Study Area

2.1. Geographical Location

Five mining areas are contained in the study area and distributed in a north–south strip,
including Meihuajing, Shicaocun, Hongliu, Maiduoshan, and Shuangma mining areas. It extends
about 44 km from north to south and 5.5–11.8 km from east to west, with a total area of about
370.67 km2. The study area is located in the east of Ningxia and the west of Ordos Basin. It belongs to
a typical semi-desert and semi-arid continental climate. The surface of the study area is mostly the
semi-desert and the low hilly area, most of which are covered with vertical and horizontal sand dunes.
The geographical location is shown in Figure 1.
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Figure 1. Geographical location of the study area.

2.2. Aquifer Division in the Study Area

The geological data obtained from a total of 629 drilling holes were analyzed. The main coal
seam in the study area is #2 coal seam with an average buried depth of 548 m, on which there
are multi-layer Zhiluo formation aquifers. According to the geological data obtained from drilling,
the lithology and combination structure characteristics, aquifer burial conditions, hydraulic properties,
and other factors are considered, and the strata above the #2 coal seam can be classified into aquifer
and aquiclude (Figure 2). Aquifer III in the lower part of Zhiluo formation is mostly the direct roof
of #2 coal seam in the study area, and is mainly composed of coarse-grained sandstone, followed by
medium-grained sandstone. The stratigraphic development of Aquifer III is relatively stable with
a thickness of 0–165.77 m. Aquifer II in the middle part of Zhiluo formation is mainly composed
of medium-grained sandstone and fine-grained sandstone. The stratigraphy varies greatly, with a
thickness of 0–279.75 m. Aquifer I in the upper part of Zhiluo formation in the study area is mainly
composed of weathered medium-grained sandstone and coarse-grained sandstone with the argillaceous
cementation. The buried depth of the top boundary is 31.35–108.55 m, with an average buried depth
of 68.31 m. It is a shallow buried area, and the buried depth of the groundwater level is 1.97 m.
Besides, a unified aquifer is formed by partial Aquifer I in the upper part of Zhiluo formation and
the aquifer of Anding formation or the Quaternary sedimentary aquifer. Aquiclude III of Zhiluo
formation is mostly composed of silty mudstone, sandy mudstone, and siltstone, with a thickness
of 0–250.8 m. Aquiclude II of Zhiluo formation is mainly composed of mudstone, silty mudstone,
and siltstone, with a thickness of 0–270.18 m. Aquiclude I of Anding formation is far away from #2
coal seam, which has little influence on the coal seam mining. Therefore, Aquiclude I is not discussed
in this study. In the south of Hongliu and the north of Shuangma mining areas, the Zhiluo formation
is denuded owing to the influence of fault uplift. The thickness distribution characteristics of each
aquifer and aquiclude in Zhiluo formation are shown in Figure 3.
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Figure 2. Main aquifers and aquicludes.
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Figure 3. Thickness contour map of aquifers and aquicludes in Zhiluo formation: aquifer I (a), aquifer II
(b), aquifer III (c), Aquiclude II (d), Aquiclude III (e).
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3. Estimation of Development Height of Water-Conducting Fracture Zone in Coal Seam Roof

3.1. Empirical Calculation Method of Development Height of Water-Conducting Fracture Zone

After coal mining, overburden strata are deformed and destroyed. According to the failure mode
and degree of rock strata, the goaf can be divided into three zones, that is, the caving zone, fracture zone,
and bending subsidence zone. A large number of fractures are produced in the strata of the collapse
zone and fracture zone, and become the pathway of water flow. Therefore, the collapse zone and fracture
zone are collectively called the water-conducting fracture zone (Figure 4). The water-conducting
fracture zone, connecting the overburden aquifer and the goaf, is the main pathway for the aquifer
water to enter the goaf or working face. It is very important to judge the development height of the
water-conducting fracture zone to evaluate the influence of aquifer water on coal mining.
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Figure 4. Division diagram of the “upper three zones” of the roof of the mining coal seam: bending
subsidence zone, rock layers bend and subside, but there is no obvious macro fracture caused by mining
activities in this zone; fractured zone, the macro fractures caused by mining activities are numerous,
and the structure of rock layers has been damaged in this zone; caving zone, the roof layers of a coal
seam break up into rock blocks and fall into goaf; water-conducting fracture zone, ground water can
flow in fractures caused by mining activities without restriction in this zone.

The compressive strength of some overburden samples of the main coal seam roof in the study
area is less than 20 MPa, and that of the rest is between 20 and 116 MPa, with an average of 24 MPa.
According to the classification standard in the Regulations for Coal Pillar Retention and Pressed Coal
Mining in Buildings, Water Bodies, Railways, and Main Roadways, the samples are classified into soft
or medium hard categories. Considering that the sample is mainly composed of medium-grained
sandstone, siltstone, mudstone, and argillaceous sandstone, for the sake of safety, the empirical formula
is used for calculating the height of the water-conducting fracture zone of medium hard rock stratum
in this paper. The detailed Equation (1) is expressed as follows [23]:

HW =
100

∑
M

1.6
∑

M + 3.6
±5.6 (1)

where HW is the upper boundary height of water-conducting fracture zone, m;
∑

M is the accumulative
mining thickness, m.

3.2. Numerical Simulation Analysis of Height of Water-Conducting Fracture Zone

The calculation formula of the development height of the water-conducting fracture zone is the
empirical formula obtained by summarizing a large number of measured data of the fracture zone.
The calculation result is reasonable to some extent, and there is a certain deviation from the actual
result. In this paper, based on the actual geological data, the numerical model of mining in the study
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area is established, and the development height of the water-conducting fracture zone is analyzed.
The simulation results are used to modify the values calculated by the empirical formula, so as to obtain
more accurate estimation results of the development height of the water-conducting fracture zone.

#2 coal seam is the main coal seam in the study area, with multiple aquifers and aquicludes.
To study the development height of the water conducting fracture zone in the five mining areas,
five numerical models are respectively established and simulated according to the geological data
of the five mines. The development process of the water-conducting fracture zone is similar in each
mining area. For simplicity, only the numerical simulation results of Hongliu mine are analyzed in
this paper.

The sedimentary relationship of Hongliu mine is shown in Figure 5. According to the actual
geological conditions of the strata, the length, width, and height (i.e., Y, X, and Z directions) of the
model are 1000 m, 300 m, and 446.50 m, respectively. The numerical simulation software FLAC3D (5.00,
Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA) was used. The established numerical
model is shown in Figure 6. The rock core obtained was tested, and the mechanical parameters of each
stratum were obtained, as shown in Table 1.
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According to the above design scheme, the model is used to simulate the excavation of #2 coal
seam, and the development height of water-conducting fracture after mining is analyzed. Figure 7
shows the change of the failure range of the roof and floor during the advance process.
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Table 1. Physical and mechanical parameters of rock mass of each formation in the simulation area.

Number Bulk Modulus/MPa Shear Modulus/MPa Cohesion/MPa Internal Friction Angle/◦ Tensile Strength/MPa Density/kg/m3 Lithology Description

10 1770 1800 2.95 36.13 2.2 2570 Siltstone
9 2280 2230 4.7 39.71 2.7 2440 Medium-grained sandstone
8 1770 1800 2.95 36.13 2.2 2570 Siltstone
7 2280 2230 4.7 39.44 2.8 2440 Medium-grained sandstone
6 1770 1800 2.95 36.13 2.2 2570 Siltstone
5 2170 2250 1.95 32.81 1.8 2380 Coarse-grained sandstone
4 350 260 3.2 28.0 0.8 1290 #2 coal seam
3 2280 2230 4.7 39.44 1.9 2320 Medium-grained sandstone
2 1770 1800 2.95 36.13 2.2 2680 Siltstone
1 2750 2375 2.03 34.94 1.8 2410 Coarse-grained sandstone
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As shown in Figure 7, when the working face advances to 50 m, the height of the roof fracture
zone reaches 35 m; when the working face advances to 150 m, the height of the roof fracture zone
reaches 57 m; when the working face advances to 200 m, the height of the roof fracture zone increases
to about 68 m. As the working face continues to advance, the height of the overburden fracture zone
develops slowly and does not increase after reaching the maximum of 73 m.

3.3. Correction and Calculation of Development Height of Water-Conducting Fracture Zone

Through the numerical simulation analysis, the development height of the water-conducting
fracture zone of each mining area is determined: 72.2 m of Meihuajing, 83 m of Shicaocun, 73 m
of Hongliu, 66 m of Maidongshan, and 67.6 m of Shuangma. According to the empirical formula,
the maximum fracture height of each mine is 52.8 m in Meihuajing, 54.5 m in Shicaocun, 57.3 m in
Hongliu, 53.7 m in Maidongshan, and 51.8 m in Shuangma. The results of numerical simulation are
compared with that of empirical formula, and a ratio coefficient k is obtained. The empirical formula is
modified by proportion, and the development height H’W of the water-conducting fracture zone after
the modification of each mine is obtained (Figure 8).
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Figure 8. Calculation equation of development height of water-conducting fracture zone after correction.

According to the modified calculation formula of the development height of the water-conducting
fracture zone and the thickness of the coal seam of each mine obtained from the drilling data,
the development height of the water-conducting fracture zone after the mining is calculated for each
mining area, and the corresponding contour map is shown in Figure 9.

According to Figure 9, the development heights of the roof water-conducting fracture zone are
beyond the total thickness of aquifer III and aquiclude III, except in the southern part of Maduoshan
mine. There is no effective water-resisting layer between the aquifer III in the lower part of Zhiluo
formation and the main mining coal seam. There are high development heights of the water-conducting
fracture zone in the northeast of Meihuajing, the west of Shigoucun, the north of Hongliu, the north
of Maiduoshan, and the south of Shuangma mining areas. Therefore, in the study area, aquifer III
in the lower part of Zhiluo formation is mostly the direct overburden roof of #2 coal seam, partial
or the total thickness of aquifer III enters the water fracture zones, forming the direct water-source
aquifer of #2 coal seam. However, owing to the thick aquiclude III of Zhiluo formation in most
areas, the water-conducting fracture zone is not developed to the aquifer II and aquifer I of Zhiluo
formation. Therefore, under the action of overflow recharge, the aquifers II and III of Zhiluo formation
are indirect water-inrush aquifers. In some areas, owing to the thin aquifer III and aquiclude III of
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Zhiluo formation, the aquifer II of Zhiluo formation is also channeled by fractures and becomes a
direct water-source aquifer.Energies 2020, 13, x FOR PEER REVIEW 9 of 16 
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Figure 9. Contour map of the development height of the roof water-conducting fracture zone of the
main coal seam in the study area after correction.

4. Evaluation of the Water Abundance of the Sandstone Aquifer of the Roof within the
Development Height of the Water-Conducting Fracture Zone

4.1. Variation Characteristics of Sandstone Aquifer Thickness within the Development Height of
Water-Conducting Fracture

The thickness of the reservoir rock layer is the key factor to determine the water-abundance
strength of aquifer and the storage state of groundwater [24]. When the coefficient of hydraulic
conductivity is used to evaluate the water abundance, the variation of the hydraulic conductivity is
controlled by the thickness of the water-bearing rock layer if the influence of the hydraulic conductivity
is ignored. The aquifer of the water-conducting fracture zone is the direct water-inrush aquifer of
the coal seam, so the thickness of the aquifer within the development height of the water-conducting
fracture zone is taken as the standard to evaluate the water abundance of rock strata. According to
the geological data, the contour map of the total thickness of sandstone within the fracture zone is
made (Figure 10). It is worth noting that, when the water-conducting fracture zone passes through the
aquifer floor, the aquifer within the whole influence range of fracture is considered to be the direct
source of mine water. Therefore, the total thickness of the aquifer within this range should be counted.
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Figure 10. Contour map of sandstone thickness within the development range of the water-conducting
fracture zone of the main coal seam roof in the study area.

It can be seen from Figure 10 that the total thickness of sandstone within the influence range of the
water-conducting fracture zone is 0–291.50 m, with an average thickness of 77.6 m. Maiduoshan has
the thickest and most wide distribution of sandstone, followed by Hongliu and Shicaocun; Shuangma
and Meihuajing have relatively thin sandstone. The thickness of sandstone is mainly between 40 and
60 m for Meihuajing; 60 and 80 m for Shicaocun; 100 and 140 m for Maiduoshan; and 80 and 100 m for
Hongliu; while Shuangma has a relatively even distribution of sandstone, mainly between 40 and 80 m.

4.2. Establishment of Lithology Influencing Index for the Roof

In this study, the lithology influencing index (LII) is established to quantitatively describe the
effect of combination characteristics of coal seam roof lithology and the thickness of aquifer on
the water abundance. The specific calculation method of LII is as follows: (1) the thickness of
the water-bearing medium, including the thickness of medium-grained sandstone and fine-grained
sandstone, is multiplied by a conversion coefficient, and the calculated result is equivalent to the
thickness of coarse-grained sandstone; (2) the content of sandstone, the number of sand mud
combination layers, core recovery percentage, and other factors are considered for the establishment
of LII.

4.2.1. Equivalent Thickness of Lithology

Generally, the coarser the sandstone particles, the better the water abundance. In this study,
the thickness of medium-grained sandstone and fine-grained sandstone is converted into the thickness
of coarse-grained sandstone: medium-grained sandstone times the equivalent coefficient of 0.8,
and fine-grained sandstone times the equivalent coefficient of 0.6.
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4.2.2. Establishment of LII

The higher the content of sandstone, the greater the proportion of water-bearing medium, and the
higher the water abundance property. Therefore, the percentage of sandstone is positively correlated
with the LII under the unchanged condition. Besides, the more the sand-mud interbedding combination,
the weaker the water-conducting property, and the more obvious the water resistance property. Hence,
the number of sand-mud interbedding layers is negatively correlated with the LII under the unchanged
condition. On the basis of the above analysis, the expression of the lithology influencing index (LII) is
constructed as follows:

LII =
(M cg+a×Mmg+b×M f g

)
n

(2)

where LII is the lithology development influence index; Mcg, Mmg, and Mfg are the thickness of
coarse-grained sandstone, medium-grained sandstone, and fine-grained sandstone, respectively.
a, b are the equivalent ratios of medium-grained sandstone and fine-grained sandstone, and a = 0.8
and b = 0.6. Ps is the total percentage of coarse-grained sandstone, medium-grained sandstone,
and fine-grained sandstone of one drilled core. n is the interbedding number of mudstone (or siltstone)
and sandstone.

4.3. Water Abundance Analysis

Through the LII, the influence of sandstone particle size, water abundance difference between
different media, and lithology combination structure on water abundance can be considered
comprehensively. Thus, LII can be used to evaluate the water abundance of the aquifer.

According to statistical data, the corresponding data in each borehole of each mine are substituted
into Equation (2), and LII of each borehole in the mine is calculated. As shown in Figure 11, the statistical
results of LII values are expressed in a histogram, and the partition thresholds of 10, 40, and 100 are
obtained. LII 0–10 is defined as the region with weak water abundance, LII 10–40 is the region with
medium water abundance, LII 40–100 is the region with strong water abundance, and LII 100–240 is
the region with extremely strong water abundance. Figure 12 shows the LII contour map.
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It can be seen from Figure 12 that the south of Maiduoshan, Hongliu, Shicaocun, the southeast
and southwest of Meihuajing, and the middle and south of Shuangma are areas with the extremely
strong and strong water abundance; the north of Shicaocun, the north of Shuangma, and most of
Meihuajing are areas with medium water abundance areas; while the south of Meihuajing, the south of
Hongliu, and the north of Shuangma are areas with the weak water abundance. In the areas with strong
water abundance, the risk of water inrush is also high. In the areas with weak and medium water
abundance, the influence of coal mining on aquifer is weak. The method of drainage borehole can be
used to ensure the safety of production. In areas with extremely strong and strong water abundance,
the mining method should be changed. For example, the development height of water-conducting
fracture zone can be reduced by limited-thickness mining and backfilling to realize water conservation
mining and safety coal mining [25,26]. Considering the area ratios of the water abundance classes in
one mine, the water abundance of one mine can be determined by water abundance classes that cover
the most area of one mine. Thus, Maduoshan mine can be classified as a mine of extremely strong and
strong water abundance. Similarly, Hongliu can be classified as a mine of strong water abundance,
Shicaocun and Shuangma as mines of strong and medium water abundance, and Meihua as a mine of
medium water abundance.

5. Engineering Practice

5.1. Arrangement of Drainage Borehole

Working face 112208 is located in the south end of Meihuajing coal mine, with the medium water
abundance. The main source of groundwater recharge is atmospheric precipitation, followed by the
overflow recharge between aquifers. It is estimated that the water inflow of the working face is small,
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so the method of roof drainage borehole is selected to control the water inflow of working face 112208.
Before advancing the working face, 54 drainage holes were arranged, which were mainly located in the
belt roadway, open-off cut, and measurement roadway (Figure 13). The elevation angle of the borehole
was 60◦ and the depth of the borehole was the development height of the water-conducting fracture
zone. If the depth of the borehole did not reach the development height of the fracture zone owing to
the actual situation on site, it must be ensured that the vertical depth of the borehole in the aquifer III
was no less than 10 m (Figure 14).
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5.2. Pre-Drainage Effect of the Drilling

The total inrush water of a working face is composed of pre-drainage borehole water, mining inrush
water, and inferior corner water. According to the water inflow composition of working face 112208,
pre-drainage borehole water accounts for a high proportion. Although the total inrush water of the
working face increases with the expansion of the roof mining fracture and caving zones, the fluctuation
trend of the total inrush water in the working face is still mainly affected by the drainage borehole
water. For example, according to the analysis of the changing trend of the monthly average inrush
water in the mining process of the working face, the total inrush water of the working face rises and
falls synchronously with the pre-drainage borehole water (Figure 15).
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According to the source of water inrush in the working face, the pre-drainage borehole water also
accounts for a high proportion. As shown in Figure 16, the proportion of the pre-drainage borehole
water in the total inrush water of the working face generally decreases during the survey period,
while the minimum is still 56.4%. The proportion is up to 80.5% and 73.1% in the two months of the
initial mining stage (January and February 2016), indicating that the pre-drainage borehole measures
greatly reduce the natural water inflow in the mining process and effectively control the post-mining
water disaster.
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Figure 16. The variation trend of monthly average pre-drainage borehole water and mining drainage
water ratio of working face 112208.

6. Conclusions

The water abundance of sandstone aquifers in the roof of Zhiluo formation in Meihuajing,
Shigoucun, Hongliu, Maiduoshan, and Shuangma mining areas are analyzed, and the following
conclusions can be drawn:

1. The the development heights of the roof water-conducting fracture zone are beyond the total
thickness of aquifer III and aquiclude III, except in the southern part of Maduoshan mine.
Aquifer III in the lower part of Zhiluo formation is mainly the direct water-source aquifer of coal
seam #2, while the aquifer II and aquifer I in Zhiluo formation are indirect water-source aquifers.

2. According to the partition thresholds of LII, 10, 40, and 100, the water abundance of areas can be
classified as four classes; that is, extremely strong water abundance, strong water abundance,
medium water abundance, and weak water abundance. The south of Maiduoshan, Hongliu,
Shicaocun, the southeast and southwest of Meihuajing, and the middle and south of Shuangma
mining areas are areas with extremely strong and strong water abundance; the north of Shicaocun,
the north of Shuangma, and most of Meihuajing mining areas are areas with medium water
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abundance; while the south of Meihuajing, the south of Hongliu, and the north of Shuangma
mining areas are areas with weak water abundance. Maduoshan mine can be classified as a mine
of extremely strong and strong water abundance, Hongliu as a mine of strong water abundance,
Shicaocun and Shuangma as mines of strong and medium water abundance, and Meihua as a
mine of medium water abundance.

3. There were 54 drainage holes with an elevation angle of 60◦ arranged to drain the roof
aquifer, most of which were arranged in the belt roadway with a relatively lower altitude.
When the borehole depth reaches the development height of the water-conducting fracture zone,
the pre-drainage of the roof water before mining can effectively reduce the mining inrush water.
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