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Abstract: Most technoeconomic feasibility studies of photovoltaic (PV) systems with batteries are
mainly focused on the load demand, PV system profiles, total system costs, electricity price, and the
remuneration rate. Nevertheless, most do not emphasise the influence degradation process such as
corrosion, sulphation, stratification, active material seeding, and gassing on battery lifetime, efficiency,
and capacity. In this paper, it is analysed the influence of the degradation processes in lead–acid
batteries on the technoeconomic analysis of PV systems with and without battery. Results show
that Net Present Value (NPV), Payback Period (PBP), and Discounted PayBack Period (DPBP) have
a heavy dependence on the assumptions about the value of the battery performance parameters
according to its degradation processes. Results show NPV differences in the range from −307% to
740%, PBP differences in the range from 9% to 188%, and DPBP differences in the range from 0%
to 211%.

Keywords: lead–acid battery; battery degradation; battery stress factors; photovoltaic
system; feasibility

1. Introduction

Electrification is emerging as a key solution for reducing emissions but only if paired with clean
electricity. The share of electricity in total energy use must increase to almost 50% by 2050, up from 20%
today [1]. In particular, electric mobility should gain pace. Electricity prices in some countries such as
Germany, Spain, Italy, and Cyprus are high. The price of electricity for household consumers in the
first half of 2019 in Germany was almost threefold the price in Bulgaria [2]. Consequently, photovoltaic
systems are reaching grid parity in many countries [3].

On the other hand, photovoltaic solar systems have been largely driven by the rapid decrease of
PV module costs in the last ten years. Solar PV module prices have fallen by around 90% since the
end of 2009. At the end of 2018, module prices in Europe ranged from USD 0.22/W for “low cost”
modules to USD 0.42/W for “all black” modules. Benchmark solar PV module prices fell rapidly
between 2010 and 2013, but average module prices by country continued falling between 2013 and
2018, with declines between 34% and 61% for gigawatt-scale markets [4].

Nevertheless, the main limitation of PV systems is the mismatching between the profiles of the
electric demand and the solar irradiance. There are several ways to solve this situation [5–7], mainly
by using the battery. Battery systems could support high levels of variable photovoltaic electricity
by storing energy and releasing it later. However, the usual operating conditions of a battery in
a photovoltaic system are very irregular, charge and discharge processes are intersecting each other
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frequently, partial cycling is frequent, the high time between full charge, temperature variations
or extreme temperature may appear and a wide range of charge and discharge rates may occur.
The impact of those so-named “stress factors” on battery performance depends on the battery size and
technology, PV array size, solar radiation, and load demand profile and control strategy, among others.
There are many types of battery technologies, lithium-ion, lead–acid, NiCd, NiMH, vanadium redox
flow, sodium–sulphur battery, etc., each with different parameters, advantages, and drawbacks [8–11].
Lead–acid technology is a mature technology and it is the leader in the battery market mainly due to
its low cost (about 200 €/kWh) [12]. Nevertheless, lithium-ion technology has a high potential for PV
applications for its high efficiency and lifespan, but its cost is relatively high (more than 300 €/kWh) [12].
For this reason, this paper is focused on lead–acid battery technologies.

As a result of the stress factors, degradation phenomena over battery are frequent, such as
corrosion, sulphation, active material degradation, stratification, gassing, etc., which damages the
battery. These damages result in battery lifetime and capacity reductions and lower charge and
discharge efficiencies with respect to the manufacturer’s datasheets. For instance, it is assumed that
an increase of 10 ◦C, above in the lead–acid battery temperature leads to a 50% reduction in its lifetime
for a given depth of discharge (DoD) [13]. Charge efficiency significantly decreases at a high state of
charge (SoC) and a high charge rate and increases at lower SoC and low charge rate. Capacity increases
with temperature and decreases with the discharge rate.

On the other hand, the technoeconomic analysis of a photovoltaic system with and without
battery seeks the higher returns from their investments. However, this analysis should include all
the phenomena that could affect the results, mainly, investment, operation and maintenance costs,
electricity tariffs, energy losses due to failures [14], control strategy, and the inclusion of battery
parameters degradation. Accordingly, most economic feasibility studies assume that lifetime, capacity,
charge, and discharge efficiency data of the battery are those given by the manufacturer irrespective of
its operating conditions [15].

Tomar et al. [16] carried out a technoeconomic evaluation of a grid-connected photovoltaic (PV)
system using Homer software [17]. In their study, battery lifetime is fixed to six years, without
information about the battery efficiency and degradation effects on these parameters. They point
out the significant role of the electricity tariff on the results. Hoppmann et al. [18] investigated the
economic viability of battery storage for residential PV in Germany under eight different electricity
price scenarios from 2013 to 2022. In this research, the authors assume that the main parameters
of the battery are constants: battery efficiency is 81%, and the lifetime is defined for eight, three
years. This research is focused on electricity prices without any comment about the real battery
capacity according to temperature or discharge rate. The authors highlight that the optimal battery
size is influenced mainly by the context of electricity price scenarios. Schopfer et al. [19] proposed a
technoeconomic simulation model using local weather data and current electricity rates as input to
optimise the battery size and installed PV power for each given load profile. They assess the maximal
net present value for 4190 households in Zurich, Switzerland, to show how the heterogeneity of load
profiles among dwellings can completely change the optimal investment (if there is one) in PVs and
batteries. This model’s authors assume that the battery operates between 10% and 90% state of charge
levels, assuming a charging and discharging efficiency of 95%, and a lifetime of 4000 cycles at 80% of
DoD. According to this paper, battery costs should decrease towards the range of 250–500 €/kWh to
become profitable on a residential scale.

Gardenio et al. [20] showed a comprehensive approach of a distributed photovoltaic system with
and without a battery in Belem, Brazil, using System Advisor Model software. This paper assumes
a lead–acid battery using manufacturer a datasheet with a lifetime of five years. Conclusions have
shown the influence of cost on the results without any consideration about degradation effects on
the battery parameters. Truong et al. [21] analysed the economic benefit of the Powerwall battery
for end-users with respect to various influencing parameters: electricity price, the topology of the
battery system coupling, subsidy schemes, and retrofitting of existing PV systems. They assume
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a constant round-trip efficiency of 92.5%, and a lifetime of 5000 and 3000 full cycles including the
ageing related to battery capacity only according to lithium battery DoD. Egoan et al. [22] evaluated
the economic analysis of the use of lead–acid batteries in grid-connected PV systems under feed-in
tariff arrangements in the UK in 2012, compared with Germany’s cost in 2011. In this case, the
authors assume that the battery has its own inverter and the battery efficiency depends on the rates of
charge and discharge. The battery inverter lifetime was assumed to be 10 years. Battery lifetime is
estimated from the Jenkins design equation, which estimates the useful lifetime for lead–acid batteries
in grid-connected residential PV systems as a function only of battery size and usage. Other parameters
such as temperature, discharge rate, time between full charge, charge rate, stratification, and partial
cycling are not taken into account. Fathiet al. [23] showed and discussed the results of a long-term
monitoring of a lead–acid battery bank, which is a part of a modular 7.2 kWp standalone photovoltaic
power plant. Results show that the lowest efficiency of 68% was observed for the days when the
duration of charge and discharge are short. The internal resistance increases with time at an average
rate of 0.065 Ω every year. The increase in the internal resistance with time (age) is responsible for the
decrease in Coulomb efficiency and consequently of the incremental efficiency of the battery with age.
It was observed that higher efficiencies are usually associated with lower maximum temperatures and
low SoC. Celik et al. [24] in a similar study for five sites in Turkey assumed a battery efficiency of 74%
for 80% of DoD. In this research, the authors assumed battery lifetime is affected by temperature given
a value of five years, without any degradation phenomenon during the battery lifetime.

Additionally, there are several studies showing the influence of the degradation processes on
battery performance where it is shown the influence of the stress factors on battery degradation [25,26].
Mousavi et al. [27] analysed the application of six simple-based models of a battery: (a) simple
models, (b) Thevenin-based models, (c) impedance-based models, (d) runtime-based circuit models,
(e) combined electrical circuit-based models, and (f) generic-based models to simulate the battery
performances. Brand et al. [28] developed a modified multi-objective non-dominated sorting genetic
algorithm based on the optimisation code to effectively perform the extraction of battery parameters
required for modelling the charging/discharging performance of a battery of electric train. However,
all these models are complex, and they require several parameters that are not available on the
manufacturer datasheet [29].

In conclusion, it is shown that most economic feasibility studies are mainly focused on the load
and PV array profiles and the significance of total system costs and electricity price, but most do
not emphasise the influence of the degradation processes on those studies. Degradation processes
decrease the real battery capacity, lifetime, and charge and discharge efficiencies with respect to the
manufacturer datasheet having a significant influence on the PV installation energy balances. It is
probably because predicting the true performance parameters of lead–acid batteries in PV systems
with variable operating conditions is very difficult. However, to despise or minimise those effects
should not be the solution for economic studies.

The aim of this paper is to analyse the influence of the degradation processes in lead–acid batteries
on the technoeconomic analysis of PV systems with and without a battery. This paper analyses
the influence of PV system operating conditions on the stress factors, damages, and performance
parameters of the battery and its relevance in economic feasibility studies.

This paper is structured as follows: Section 2 presents the relationship between photovoltaic
systems, stress factors, battery damages, and battery performance parameters. Section 3 presents
the energy balance models for all the analysed scenarios. Section 4 presents the economic analysis.
Section 5 shows the results and discussion. Conclusions are then presented in Section 6.
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2. Model, Battery Parameters, and Photovoltaic Integration

2.1. Battery Performance Parameters Versus PV System Operating Conditions

Battery manufacturer datasheets [30] provide information about battery performance according to
standards. Nevertheless, certain features of the operating conditions in the photovoltaic system have
a particularly strong impact on the main characteristics of the battery that are not tested by standards.

Battery degradation is increasing as time goes by. Degradation is due to two mechanisms, cycling
ageing that is produced when the battery is in operation and calendric ageing that is produced when
the battery is in stand-by and no current flows to the battery. The temperature affects both mechanisms.
Corrosion, sulphation, active material degradation, water loss, and sulphation processes affect cycling
ageing and storage state of charge affects calendric ageing [29,31,32].

According to Figure 1, the relationship between the photovoltaic system, stress factors,
battery damages, and battery performance parameters is described for each stress factor in the
following paragraphs.
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Figure 1. Relationship among photovoltaic (PV) system parameters, battery performance, Net Present
Value (NPV), PayBack Period (PBP), and Discounted PayBack Period (DPBP).

Discharge Rate

Discharge rate is the rate of discharge as compared to the capacity of the battery under standard
operating conditions. The capacity of a battery is commonly rated at 1 C, meaning that a fully charged
battery rated at 200 Ah should provide 200 A for 1 h. The same battery discharging at 0.5 C should
provide 100 A for 2 h, and at 2 C it delivers 400 A for 30 min.

Discharge rate stress factor damages the battery as follows. When the battery is discharged,
sulphate crystals are created at both electrodes. If sulphate crystals are not dissolved, they could damage
the electrodes by corrosion or mechanical effect, reducing their lifetime. The battery capacity decreases
with the active material degradation leading to an increase in the internal resistance, which negatively
affects the battery efficiency. In addition, at a high discharge rate, the battery voltage drops. Low voltage
also induces control corrosion damage, which may be avoided with voltage control. It is therefore
advisable to avoid deep discharges if the load profile allows it. However, there is a positive effect at
a high discharge rate. This is the decrease of the electrolyte stratification.

Energy load profile is one of the main parameters that affect the discharge rate because a higher
load profile leads to a higher discharge rate. Nevertheless, this higher discharge rate should be lower if
the photovoltaic array yield is high in that instant, decreasing the energy required from the battery.
So, the PV array size and solar radiation profile also have a significant influence on this stress factor.
In addition, a high or low discharge rate is always referred to battery capacity, so battery size also
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affects this stress factor. Lastly, but no less important, is the control strategy. When and how the battery
discharge is allowed has a significant influence on the discharge rate. Control strategy could limit
the maximum discharge rate allowed. So, the influence of the PV system on this stress factor could
be reduced if the control strategy limits high discharge rates and there is an appropriate sizing of the
battery and PV array according to solar radiation and load demand profiles.

Charge Rate

Charge rate is the rate of charge as compared to the capacity of the battery under standard
operating conditions. Charge rate stress factor damages the battery as follows. When the battery is
charged with a high charge rate, it leads to active mass shedding, water loss due to gassing that reduces
the coulombic efficiency and corrosion processes.

Photovoltaic array yield is the main parameter that affects the charge rate. So, the photovoltaic
array size and the solar radiation profiles have a significant influence on this stress factor. A high or
low charge rate is always referred to battery capacity, so battery size affects this stress factor similarly
to discharge rate stress factor. Control strategy plays a significant role in limiting the charge rate.
As happens with the discharge rate stress factor, the influence of the photovoltaic system on this stress
factor could be reduced if the control strategy limits high charge rates and there is an appropriate
sizing of the battery and PV array according to solar radiation and load demand profiles.

Time between Full Charge

Time between full charge is the time in days between recharging the battery up to SoC > 90%.
The time between the full state of charge is an average value for one year of operation. If the time
between full state of charge is too long, lead sulphate crystals will grow and form hard sulphation
which is impossible to convert back to charged material under normal operating conditions. Long time
between full charge at a low SoC could lead to stratification and corrosion processes if the battery
temperature is high.

Photovoltaic array yield and load profiles are the main parameters that affect this time. In addition,
the control strategy about the allowed time between full charge has a significant influence on the
damages. Control strategy could limit the damages and the impact of the photovoltaic system on this
stress factor.

Battery Temperature

Battery temperature is one of the main stress factors of a battery that significantly affects it when
the battery temperature is out of the range 10–25 ◦C. Battery temperature is affected by the room
temperature that, in turn, is usually related to the ambient temperature. In addition, charge and
discharge rate also affect the battery temperature [33]. Battery temperature affects all of the main
performance parameters of the battery such as capacity, lifetime, and efficiency.

High temperature leads mainly to corrosion. In addition, other damages such as sulphation,
water loss, and active material degradation could appear. Water losses increase with increasing battery
temperature according to the Arrhenius law. Gassing reduces the coulombic efficiency and results in
the mixing of the electrolyte in flooded batteries. Low temperature reduces the capacity and increases
internal resistance. Extreme temperatures could lead to freezing of the electrolyte especially when the
battery is at a low SoC when electrolyte density is minimum. If the temperature is properly controlled
around moderate values, its impact on damage should be medium.

To control this stress factor from the photovoltaic system, an adequate selection of the battery room
is necessary including a refrigeration strategy in case of need. In addition, recommendations to avoid
a high charge and discharge rate should be taken into account as described above. When lead–acid
batteries are used in applications with shallow cycling, their service life normally is limited by float life.
In systems where the cycling is deep, but occurs only a few times a year, the temperature-dependent
corrosion process is the normal life-limiting factor, even for batteries with short cycle life. In systems
with deep daily cycling, the cycle life determines the service life of the battery. As the temperature
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increases, the electrochemical activity of the battery increases as well as the rate of the natural
ageing of the active material. Elevated temperatures result in accelerated ageing but also higher
available capacity [34]. Manufacturer datasheets show battery parameters for a range of temperature
between 20–25 ◦C and most manufacturers give the effect of temperature on the capacity, efficiency,
and lifetime. [14].

Ah-Throughput

This factor is expressed as cumulative Ah discharged per year and it is normalised in units of
the battery nominal capacity. A high Ah-throughput increases active mass degradation, active mass
shedding, and electrolyte stratification. The full impact of the Ah-throughput on ageing processes can
only be discussed when other stress factors such as cycling at partial state of charge and time at a low
state of charge are considered at the same time. Most of the investigated systems show an annual
Ah-throughput of 10–100 times the rated capacity [35].

Partial Cycling

The partial cycling factor represents a cumulative Ah-throughput in (%) in specified SoC ranges.
Partial cycling occurs when the charge and discharge processes are not complete. Battery damage
mainly depends on the frequency, state of charge and temperature. This is a significant stress factor in
photovoltaic systems because it is very difficult to avoid. The charge process is mainly stochastic due
to the solar radiation and, to the fact that the discharge process depends on the load demand profile
that in many cases also is stochastic.

High frequency of partial cycling leads to high voltage variations that could cause corrosion with an
increase in the internal resistance and, thus a decrease in capacity and efficiency. In addition, according
to the state of charge, partial cycling could lead to damages such as sulphation and stratification, and
active material degradation could appear. During battery operation, the electrodes suffer from strong
mechanical stress due to the large variations in the volume of the active materials involved in the
charge and discharge processes. This causes the separation of the active material from the electrodes
leading to a decrease in porosity and surface area of the electrolyte and active material boundary,
reducing the effective capacity, efficiency, and lifetime of the battery. This degradation is a result of its
exact discharge and charge history and cannot be restored. [36]. This effect is stressed by an increase in
DoD during the daily cycles of PV systems [9].

Time at a Low SoC

The time at a low SoC in the n-year is defined as the cumulative operating hours in percent of the
whole hour of a year at an SoC below a minimum value. For instance, SoC < 35%.

The main impact when the battery is at a low state of charge is irreversible sulphation that leads
to a decrease in battery capacity and lifetime. In addition, voltage battery and acid density are low and
could lead to corrosion, increasing the internal resistance and decreasing the capacity and efficiency.
This stress factor is particularly relevant for lead–acid batteries. Time at a low SoC mainly occurs
when the power from the photovoltaic array is much lower than the load demand. That is to say,
photovoltaic energy self-consumption energy is low compared to the load demand. When the battery
temperature is very low, barely below 0 ◦C, its electrolyte stratification should be low, and the state of
charge should be as high as possible to avoid electrolyte freezing.

To avoid this effect, it should be required a proper control strategy to avoid energy consumption
if the SoC of the battery is low for a long time. So, in some cases, load demand could not be satisfied by
the PV system and, in some cases, the battery could be charged from the grid.

The battery damages are a result not only of the influence of each stress factor, but of the
combination among all the “stress factors”. Thus, special care shall be taken to select the battery,
the control of the DoD, charge and discharge rates, room temperature, electrolyte stratification,
time between full charge, and time at a low SoC.
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2.2. Battery Performance Parameters

Battery Lifetime

Battery lifetime is generally expressed as the loss of the battery’s ability to provide a specific
amount of its original nominal capacity, usually 80%. One of the main drawbacks of lead–acid
batteries is its short lifetime, about 1000 cycles at 80% DoD [28]. The addition of activated carbon
into the negative plate of the lead–acid battery can greatly enhance its lifetime [34]. The reasons for
this short battery lifetime are due to the ageing mechanism described, mean grid corrosion on the
positive electrode, depletion of the active material, and expansion of the positive plates. Such ageing
phenomena are accelerated at high battery temperature and high discharge rate. Battery lifetime is
often directly linked to the thickness of the positive plates. The thicker the plates, the longer the life
will be. During charging and discharging, the lead on the plates gets gradually washed away and
the sediment falls to the bottom. The weight of a battery is a good indicator of the lead content and
life expectancy.

Predicting the lifetime of lead–acid batteries in PV systems with irregular operating conditions
such as partial state of charge cycling, varying depths of discharge, and different times between full
charging is known as a difficult task [30].

High battery temperature and DoD accelerate the ageing phenomena, grid corrosion on the
positive electrode, depletion of active material, and expansion of the positive plates and sulphation
processes. Many researchers assume that battery temperature is ambient temperature.

Battery temperature shall nevertheless be affected by the rate of charge/discharge as well as by
ambient temperature [26]. The Arrhenius Law describes the battery temperature influence on the
chemical reaction. As a rule, for lead–acid batteries each 10 ◦C increase in temperature reduces service
life by 50% [25,31]. Other researchers predict the battery lifetime taking into account the battery
temperature and the annual cycles. For instance, Rydh et al. [32], use Equation (1).

tDoD,T =
NDoD,25 ◦C

nDoD,T
·σ(T) (1)

where tDoD,T is the battery lifetime in years, at a given DoD and temperature T, NDoD,25 ◦C is the battery
cycles from the manufacturer datasheet at a given DoD and 25 ◦C, nDoD,T is the annual cycles at a given
DoD and temperature T, according to the operating conditions, and σ(T) is a lifetime correction factor
dependent on the temperature. For a lead–acid battery at a temperature T, the σ(T) value is shown in
Table 1.

Table 1. Lead–acid battery lifetime correction factor dependent on the temperature.

σ25 ◦C σ30 ◦C σ35 ◦C σ40 ◦C σ45 ◦C σ50 ◦C

1 0.69 0.51 0.37 0.25 0.14

Battery DoD influence on the battery lifetime appears to be logarithm and it is given by the
manufacturer [26]. Thus, if the battery temperature is constant, the number of cycles yielded by
a battery goes up exponentially the shallower the DoD.

Taking into account other stress factors, according to the scenario conditions, Equation (1) has
been modified by coefficient α that depends on the scenario given in Equation (2):

tDoD,T = α·
NDoD,25 ◦C

nDoD,T
·σ(T) (2)

where α is a degradation factor related to the operating conditions.
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Battery Efficiency

Battery efficiency is mainly affected by the active material, temperature, state of charge, charge,
and discharge rate. Under the right temperature, SoC, new and with moderate charge and discharge
rate, lead–acid provides high charge and discharge efficiency, between 80% and 90% [34].

The Homer software assumes that the charge efficiency and the discharge efficiency are both
equal to the square root of the round-trip efficiency. The battery round-trip efficiency is the round-trip
DC-to-storage-to-DC energy efficiency of the storage bank, or the fraction of energy put into the storage
that can be retrieved, and typically, it is about 80%, without degradation over its lifetime.

There are several simplified models to estimate battery efficiency. The Jenkins model [37] gives
a simplified model based on empirical data, according to battery capacity and charge and discharge
rate. The main drawbacks of this model are that it does not take into account the SoC of the battery.
The CIEMAT model [38] takes into account the SoC and the charge rate showing a good performance
to represent dynamic and more complex battery operating conditions [39] according to Equation (3).

ηbc,t,1 = 1− exp

 20.73
Ic,t
I10

+ 0.55
·(SoC− 1)

 (3)

whereηbc,t,1 is the charge efficiency of the battery at the hour t the first year without degradation damages
and Ic,t represents the charge current in that hour. This equation shows that charge efficiency at very
low charge current, medium SoC, 25 ◦C, and the battery new, could be near 99%. If the charge current
is high (five times I10) and SoC is high (90%), charge efficiency is reduced to near 30%. Discharge
efficiency has a similar equation. The CIEMAT model does not include the degradation process
caused by the other stress factors that lead to active material degradation, sulphation, stratification,
and corrosion processes. Taking into account these degradation processes, Equation (3) has been
modified including coefficient γ that depends on the operating conditions given in Equation (4):

ηbc,t,n = (1− γ)n
·

1− exp

 20.73
Ic,t
I10

+ 0.55
·(SoC− 1)


 (4)

Capacity

Most battery manufacturers specify the capacity of their batteries for a certain discharge time of
hour t (h) and the temperature range is 20–25 ◦C. For example, Ct (25 ◦C) = 500 Ah. This means that
the battery will deliver 500 Ah if discharged at such a rate that the discharge time is t hours at 25 ◦C.
Using this example, if t = 10 h, the rate would be I10= 50 A. Kim et al. [40] highlight that batteries in
real-use conditions lose their capacity considerably quicker than suggested by manufacturers.

The Peukert equation can be used in a simple way for calculating the available capacity Ct2 at
a different discharge rate It2 and a constant temperature of 25 ◦C using Equation (5):

Ct2(25 ◦C) = Ct1(25 ◦C)·

(
It2

It1

)PC−1

(5)

where PC is the Peukert coefficient. Nevertheless, the Peukert equation does not take into account
temperature fluctuation, variable current of discharge, and ageing, and it is not accurate for low
discharge rates due to the influence of the self-discharge rate [41,42].

The relationship between battery capacity and temperature is given in the standard EN
60896-11 [43] according to Equation (6):

Ct(T1) = Ct(25 ◦C)·(1 + λ·(T1 − 25 ◦C)) (6)
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where λ is 0.006 when the battery discharge time is lower or equal than 3 h and 0.01 when the battery
discharge time is higher than 3 h.

The CIEMAT model [38] gives the lead–acid battery capacity C normalised with respect to discharge
current corresponding to C10 rated capacity I10, corrected by temperature, given by Equation (7):

C
C10

=
1.67

1 + 1.67·(I/I10)
0,9 ·

(1 + 0.005·(T− 25 ◦C)) (7)

when the discharge current tends to 0, the maximum capacity that can be removed is about 67% over
C10 capacity at 25 ◦C.

Witold et al. [44] analyse ageing mechanisms on battery capacity, concluding with the function
C(x, y) = (ax2 + bx + c)·(dy2 + ey + f), where x is the number of cycles and y is the DoD, according to
the battery and PV system sizes.

In conclusion, the effective capacity of the battery in a PV system depends mainly on the discharge
rate, DoD, temperature, and ageing effects. These stress factors are affected by the battery size,
load profile, solar radiation profile, battery room temperature, and control strategy.

According to Witold results, a battery capacity degradation parameter δ is proposed according to
Equation (8):

Ct,n = (1− δ)n
·C t, 1 (8)

2.3. Battery Operation Scenarios According to PV System Operating Conditions

As shown, PV array and battery sizes, solar radiation, ambient temperature, load demand, and
control strategy have a significant influence on those stress factors, degradation processes, and battery
damages. Consequently, battery performance parameters are affected by these damages. The main
battery performance parameters are lifetime, charge and discharge efficiency, and capacity.

All of the main battery operation combinations can be classified under four scenarios:

(1) Low Battery and High PV yield (LB + HPV): This happens when the battery capacity is small
with respect to the PV array yield and the PV array yield is in the same order of magnitude or
higher than the load demand.

In this scenario, battery operating conditions are characterised by a very high to medium
Ah-throughput, deep partial cycling, low time between full charge, full recharge, and low time at
a high SoC, with high to very high discharge and charge rates. The temperature is according to room
conditions and very affected by charge and discharge rate [27].

The consequences of these operating conditions are that the battery suffers from high to very
high sulphation, high active material degradation, and high electrolyte stratification, high water loss,
and medium-high corrosion processes according to battery temperature. This could be the worst
condition for a lead–acid battery.

(2) Low Battery and Low PV yield (LB + LPV): This happens when the battery capacity is small with
respect to the PV array yield and the PV array yield is smaller than the load demand.

The operation of the battery is characterised by a low Ah-throughput, frequent partial cycling,
deep discharges with high discharge, and low-medium charge rates. These may occur for a long
time at a low SoC and medium-high time between full charge. Battery temperature will match room
conditions and be mildly affected by the charge rate.

The consequences of these operating conditions are that the battery suffers from high to very
high sulphation, high active material degradation and low electrolyte stratification, low water loss,
and low–medium–high corrosion processes according to battery temperature. This could be the second
worse condition for a lead–acid battery.
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(3) High Battery and High PV yield (HB + HPV): This happens when the battery capacity is high
with respect to the PV array yield and the PV array yield is in the same order of magnitude or
higher than the load demand.

In this scenario, battery operating conditions are characterised by a very low Ah-throughput
with very shallow partial cycling, low time between full charge, full recharge is usual and low time at
a high SoC, and low discharge and charge rates. The temperature is according to room conditions and
slightly affected by high discharge and charge rates. Those could be the second optimal conditions for
a lead–acid battery.

The consequences of these operating conditions are that the battery suffers from low-medium
corrosion processes if the battery temperature is high with low water loss, low-medium sulphation,
low active material degradation, and medium-high electrolyte stratification processes.

(4) High Battery and Low PV yield (HB + LPV): This happens when the battery capacity is high with
respect to the PV array yield and the PV array yield is smaller than the load demand.

In this scenario, battery operating conditions are characterised by a very low Ah-throughput with
partial cycling and high DoD, with a low discharge rate and a low-medium charge rate, long time at
a low SoC, and high time between full charge. The temperature is according to room conditions and
not affected by high charge rates. Those could be the better conditions for a lead–acid battery.

The consequences of these operating conditions are that the battery suffers from medium corrosion,
low water loss, low-medium sulphation, low active material degradation, and high electrolyte
stratification processes.

In addition, real negative consequences for the four scenarios also depends very much on the
lead–acid battery technology such as a flooded lead–acid battery, Absorbed Glass Mat Batteries (AGM),
valve-regulated lead–acid (VRLA), sealed lead–acid (SLA)), and the control strategy including the
battery charge/discharge controller. There is mature technology available on the market with intelligent
and flexible battery management systems that allow adequate commissioning and setting of the main
parameters of the battery, reducing the effects of the stress factors on battery degradation. If the battery
parametrisation is not very well done, it can be worse for battery degradation than any other factor.

As a result, four alternatives have been taken into account to analyse the influence of the
degradation process in lead–acid battery on technoeconomic studies:

• Case 0—Technoeconomic analysis assumes that the PV system does not have a battery. This will
be the reference case.

• Case 1—Technoeconomic analysis assumes that battery lifetime and battery efficiency depend on
degradation factors, σ(T), α, γd, and γc.

• Case 2—Technoeconomic analysis assumes that battery lifetime and battery efficiency depend on
degradation factors σ(T) but not on α, γd, and γc.

• Case 3—Technoeconomic analysis assumes that battery lifetime and battery efficiency are constants
according to the manufacturer datasheet. So, they do not depend on the degradation factors σ(T),
α, γd, and γc.

The α, γd, and γc values should be validated according to the lead–acid battery technology.
This technoeconomic study does not include the capacity degradation processes that will be included
in further studies.

3. Energy Balance

According to Figure 2, the electricity produced by the PV array can be directly consumed by
the household totally or partially. If the household hourly electricity load Eload,t,n is higher than
the PV array hourly electricity EPVa,t,n, all the PV array yield will be self-consumed and the battery
could provide electricity to the load. If there is enough capacity in the battery, part or all of the
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excess electricity will be stored in the battery within its limits. If the battery is already fully charged,
the remaining PV array electricity is then sold to the grid, SEGRID,t,n.
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Figure 2. Energy flows in the PV system with the battery.

According to Figure 2, when the hourly electricity load Eload,t,n is lower than the PV array hourly
electricity, all the PV array electricity is self-consumed. If there is enough energy in the battery, EBAT,t,n

all or part of the remaining electricity load will be met by the battery, E−BAT,t,n. If the battery is empty,
and the electricity load has not been satisfied by PV array and battery the remaining electricity load
will be provided by the grid. BEGRID,t,n. All the battery charge and discharge processes will be affected
by the charge and discharge efficiency. PV array yield and battery discharge are also affected by the
inverter efficiency when electricity is self-consumed or sold to the grid.

The following assumptions have been done to focus on the degradation effects on lead–acid
batteries in technoeconomic studies:

- The annual hourly solar irradiance on the PV array and load demand profiles are the same during
all days and years. PV system lifetime is set at 30 years. PV module degradation over the years
has been despised.

- A typical day has been selected with a solar radiation, ambient temperature, and load
demand profile.

- The Inverter efficiency is constant over its lifetime and set at 90%. The inverter lifetime is set at
15 years.

- The Performance Ratio (PR) is constant over the PV system lifetime and is set at 90% [45].
- The battery self-discharge rate is depreciable. The upper and lower state of charge (SoC)

of the battery should be defined. The suggested values (used for this study) are 100% and
20%, respectively.

- The Electricity retail price and electricity surplus price are constants over the PV system lifetime.

The energy output of a PV array for an hour t of the year n, in kWh, EPVa,t,n is given by Equation (9):

EPVa,t,n = PPV·
(
Hg,t,n/1000

)
·(1−β·(TP,t,n − 25)) (9)

where PPV is the peak power of the PV array, in kWp, Hg,t,n is the global solar radiation on the PV array
expressed in Wh/m2 for an hour t of the year n, β is PV module power temperature coefficient given by
the manufacturer in %/(100 ◦C), and TP,t,n is the average module temperature in ◦C, for an hour t of the
year n.

After a review of several models, the nominal operating cell temperature model was chosen
to estimate the average module temperature for an hour t, owing to its simplicity, adequacy of its
predicted temperatures for PV applications, and the wider availability of input data. According to
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the photovoltaic module building intergradation, other models could be used [46]. Therefore, Tp,t,n is
given according to Equation (10):

Tp,t,n = Ta,t,n +
(NOCT− 20)

800
·Hg,t,n (10)

where Ta,t,n is the average ambient temperature in ◦C for an hour t of the year n, NOCT is the Nominal
Operating Cell Temperature (NOCT) in ◦C given by the PV module manufacturer.

The output energy of a PV system without battery for an hour t can be calculated as the energy
output of a PV array affected by the balance of system (BoS) losses such as inverter, cables, dirt in the
PV modules, PV module mismatching. These losses have been included in the Performance Ratio (PR).
PV system yield, without battery, for an hour t of the year n, in kWh, EPV,t,n is calculated according to
Equation (11):

EPV,t,n = EPVa,t,n·PR (11)

There are two interesting ratios, the photovoltaic self-consumption ratio, SCRt defined as the ratio
between the self-consumption energy from the PV system, and the total photovoltaic energy yield for
an hour t, is given by Equation (12):

SCRt,n =
EPV,SC,t,n

EPV,t,n
(12)

where the load self-consumption ratio, LSCRt,n, defined as the ratio between the self-consumption
energy from the PV system and the load demand ELoad,t,n, for an hour t, can be calculated by
Equation (13):

LSCRt,n =
EPV,SC,t,n

ELoad,t,n
(13)

There are several situations according to the hourly energy balance between the load demand, PV
system yield, and state of the battery for every hour t. They are grouped into two global situations,
A and B. According to the energy balance between the PV system yield and load demand, each is
disaggregated on the basis of the state of the battery in two more scenarios and another situation,
Situations C, which occurs when there is no battery.

(a) Situation A: PV system with battery. The PV system yield is higher or equal to the load demand,
EPV,t,n ≥ Eload,t,n. When the PV system yield is higher than load demand, Eload,t,n, the entire
load demand is met by the PV system. In this case, the energy self-consumed by household,
EPV,SC,t,n = ELoad,t,n, the bought energy from the national grid, BEGRID,t,n = 0, the discharged
energy from the battery for an hour t of the year n, E−BAT,t,n = 0, and LSCRt,n = 1.

In addition, according to the battery state can occur in three more situations.
Situation A.1—This situation occurs when the battery has enough capacity to store the excess

energy for an hour t. That is, Equation (14) should be fulfilled:

EBATfull,t − EBAT,t−1,n ≥ E+
BAT,t,n (14)

where EBATfull,t is the maximum energy that the battery could store, EBAT,t−1,n is the energy stored in
the battery at the end of the hour (t−1) of the year n, and E+

BAT,t,n is the charged energy into the battery
for an hour t of the year n. This is given by Equation (15):

E+
BAT,t,n = (EPVa,t,n − (Eload,t,n/PR))·ηbc,t,n (15)
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where ηbc,t,1 is the battery charge efficiency for an hour t in the first year, given by Equation (16):

ηbc,t,1 = 0.9− exp

 20.73
((EPVa,t,1−(ELoad,t,1/PR))/Vnb)

I10
+ 0.55

·

(
EBAT,t−1,1

EBATfull
− 1

) (16)

where Vnb is the battery nominal voltage according to the battery cells connected in series. For the
following years n, it could be assumed a battery charge efficiency degradation factor γc, used in
Equation (17) and with the values shown in Table 2.

ηbc,t,n = (1− γc)
n
·ηbc,t,1 (17)

Table 2. Battery charge efficiency degradation factor: γc.

Scenario LB + HPV LB + LPV HB + HPV HB + LPV

γc 0.3 0.2 0.1 0.05

The stored energy in the battery and the end of the hour t is given by Equation (18):

EBAT,t,n = EBAT,t−1,n + E+
BAT,t,n (18)

In this scenario, SEGRID,tn = 0.
Situation A.2—This situation occurs when the battery does not have enough storage capacity to

storage all the excess energy. That is, Equation (19) should be fulfilled:

EBATfull − EBAT,t−1,n < (EPVa,t,n − (Eload,t,n/PR))·ηbc,t,n (19)

E+
BAT,t,n is given now by Equation (20):

E+
BAT,t,n = (EBATfull − EBAT,t−1,n) (20)

In this situation, SEGRID,t,n is given by the energy balance shown by Equation (21):

SEGRID,t,n =

EPVa,t,n −
E+

BAT,t,n

ηbc,t,n
−

Eload,t,n

PR

·PR (21)

The new state of the battery at the end of the hour t of the year n is EBAT,t,n = EBATfull.

(b) Situation B—PV system with battery. The PV system yield is lower than the load demand,
EPV,t,n < Eload,t,n. When the PV system yield is lower than the load demand, the load demand
should be met by the PV system, battery, and the grid. In this scenario, SEGRID,t,n = 0, SCRt,n = 1,
E+

BAT,t,n = 0 and EPV,SC,t,n = EPV,t,n.

In addition, three new situations occur according to the battery capacity:
Situation B.1—This situation occurs when the battery does not have enough energy to meet the

load demand that is not met from the PV system. That is, Equation (22) should be fulfilled:

(EBAT,t−1,n − EBATmin,DoD)

ηbd,t,n·ηinv
< Eload,t,n − EPV,t.n (22)
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where, EBATmin,DoD is the limit of the minimum energy that the battery should keep according to
a fixed DoD and ηdb,t,n is the battery discharge efficiency for an hour t for the year n. It is given by
Equation (23):

ηdb,t,1 = 0.9− exp

 20.73(
E−BAT,t,1/Vnb

)
I10

+ 0.55
·(

EBAT,t−1,1

EBATfull,t
− 1)

 (23)

where E−BAT,t,n, is given by Equation (24) which cannot be negative.

E−BAT,t,n =
(EBAT,t−1,n − EBATmin)

ηbd,t,n·ηinv
(24)

For the following years n, a battery discharge efficiency degradation factor γd, could be assumed
used in Equation (25) and with the values shown in Table 3.

ηbd,t,n = (1− γd)
n
·ηbd,t,1 (25)

Table 3. Battery discharge efficiency degradation factor, γd.

Scenario LB + HPV LB + LPV HB + HPV HB + LPV

γd 0.3 0.2 0.1 0.05

Therefore, to meet the energy load it is required to self-consume all the PV system production,
discharging the battery and buying the rest of energy to the national grid. During any given hour t,
of the year n, the bought energy to the grid, BEGRID,t,n is given by Equation (26):

BEGRID,t,n = Eload,t,n − EPV,t,n − E−BAT,t,n (26)

In this scenario, the new state of the battery at the end of the hour t is EBAT,t,n = EBATmin. LSCRt,n

is given by Equation (27):

LSCRt,n =
EPV,t,n + E−BAT,t,n

Eload,t,n,
(27)

Situation B.2—This situation occurs when the battery has enough capacity to meet the load in
conjunction with the PV system. That is, Equation (28) should be fulfilled:

(EBAT,t−1,n − EBATmin,DoD)

ηbd,t,n·ηinv
≥ Eload,t,n − EPV,t,n (28)

Therefore, the load demand is met with the PV system and battery. Consequently, LSCRt,n = 1
and BEPV,t,n = 0. The discharged energy from the battery for an hour t, EBAT,t, can be calculated as
follows and cannot be negative.

E−BAT,t,n =
(ELoad,t,n − EPV,t,n)

ηbd,t,n·ηinv
(29)

In this case, the new state of the battery at the end of the hour t is given by Equation (30):

EBAT,t,n = EBAT,t−1,n − E−BAT,t,n (30)
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For Situations A and B, battery lifetime, tDoD,T, is given by Equation (31), where the values of the
battery lifetime degradation factor α are shown in Table 4.

tDoD,T = α·
NDoD,25 ◦C

nDoD,T
·σ(T) (31)

Table 4. Battery lifetime degradation factor α.

Scenario LB + HPV LB + LPV HB + HPV HB + LPV

α 0.7 0.8 0.9 1

(c) Situation C—PV system without battery and PV system yield is higher or equal to the load
demand, EPV,t,n ≥ Eload,t,n. In this situation, load demand is met by the PV system. Consequently,
LSCRt = 1, BEGRID,t = 0, E+

BAT,t,n =, E−BAT,t,n =, EBAT,t,n = 0 and EPV,SC,t,n = Eload,t,n. SEGRID,t,n

and SCRt,n are given by Equations (32) and (33):

SEGRID,t,n = EPV,t,n − Eload, t,n (32)

SCRt,n =
EPV,SC,t,n

EPV,t,n
(33)

(d) Situation D—PV system without battery and PV system yield is lower to the load demand,
EPV,t.n < Eload,t,n. In this situation, the load demand should be met by the PV system and
the grid. Consequently, SEGRID,t,n = 0, SCRt,n = 1, E+

BAT,t,n =, E−BAT,t,n = EBAT,t,n = 0 and
EPV,SC,t,n = EPV,t,n. BEGRID,t,n and LSCRt,n are given by Equations (34) and (35):

BEGRID,t,n = Eload,t,n − EPV,t,n (34)

LSCRt,n =
EPV,t,n

Eload,t,n
(35)

The values shown in Tables 2–4 have been estimated according to how the scenario affects the
stress factor and operating conditions to the battery charge efficiency, battery discharge efficiency and
battery lifetime degradation, respectively. These values should be validated in future work.

4. Economic Analysis

Three parameters have been calculated for the economic analysis, Net Present Value (NPV),
PayBack Period (PBP), and Discounted Payback Period (DPBP).

NPV is calculated according to the investments and cash flow in and out with and without the
battery in the PV system, given by Equation (36):

NPV = −C1 +
N∑

n=0

(CIN,n −COUT,n)

(1 + i)n (36)

where i is the interest rate and C1 is the capital investment cost in Year 1, given by Equation (37):

C1 = CAPEXPV,1 + CAPEXBAT,1 + CAPEXBoS,1 (37)

where CAPEXPV,1 is the PV array cost, CAPEXBAT,1 is the battery cost, and CAPEXBoS,1 is the BoS cost.
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CIN,n is the cash flow in the year n. It is calculated according to Equation (38):

CIN,n =
8760∑
t=1

[(
EPV,t,SC,n + E−BAT,t,n·ηbd,t,n·ηinv

)
·RPt,n + SEGRID,t,n·SPt,n

]
(38)

COUT,t,n is the cash flow in the year n. It includes all operation, maintenance, and reposition costs.
It is calculated according to Equation (39):

COUT,t,n = OPEXPV,n + OPEXBAT,n + OPEXBoS,n + CAPEXBAT,n + CAPEXBoS,n (39)

where OPEXPV,n and OPEXBAT,n are the PV system and battery operation and maintenance costs,
CAPEXBAT,n is the battery reposition cost, and CAPEXBoS,n is the BoS reposition cost in the year n.

PayBack Period (PBP) is given by Equation (40):

CAPEXPV,1 + CAPEXBAT,1 + CAPEXBoS,1∑PBP
n=0(CIN,n −COUT,n)

= 0 (40)

Discounted PayBack Period (DPBP) is given by Equation (41):

CAPEXPV,1 + CAPEXBAT,1 + CAPEXBoS,1∑DPBP
n=0

(CIN,n−COUT,n)
(1+i)n

= 0 (41)

5. Results and Discussion

The technoeconomic analysis described in the previous section has been applied to a PV system
according to Figure 3 with the component sizes shown in Table 5.
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Table 5. PV system component sizes.

Equipment
Scenarios

LB + HPV LB + LPV HB + HPV HB + LPV

Peak Power (Wp) 7.50 3.00 7.50 3.00
BoS (W) 7.50 3.00 7.50 3.00

Battery Size, C10 (kWh) 4.85 4.85 14.54 14.54

Figure 4 shows the hourly solar irradiance, ambient temperature, and load demand profiles that
have been considered in this research. It is assumed that these parameters are the same over the year
because we have focused only on the degradation process effects, not on the effect of load demand
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and PV system yield profile. The PV module power temperature coefficient β used in this study is
0.37%/◦C and NOCT = 45 ◦C.Energies 2020, 13, x FOR PEER REVIEW 17 of 29 
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Figure 4. Solar Irradiance, ambient temperature, and load demand profiles for the selected day.

We have compared the reference case of a PV system without battery, named Case 0, with the
other scenarios, according to the battery size and PV system size with or without taking into account
degradation and temperature effects. The main energy balances and Key Performance Indicators (KPI),
such as NPV, PBP, and DPBP have been selected for the combination of scenarios shown in Figure 5
according to electricity prices, PV system size, battery degradation factors, and temperature effect.
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Figure 5. Combination of the scenarios that have been analysed.

For the selected day, Figure 6 shows the hourly energy balances according to the battery and PV
system sizes for Cases 1 and 2. For the first year, energy balances for Cases 1 and 2 are equals because
ageing effects only affect the energy balances from the second year.

Figure 6 shows how the battery performance is affected by its size and PV system energy yield.
In the LB + HPV scenarios, the battery is fully charged from 3 h and 15 h to 18 h, and those are the
only scenarios where energy is sold to the grid during those hours. In the scenarios with LPV, that is
HB + LPV and LB + LPV, the SoC of the battery is very low while for both sets of scenarios with HPV
the SoC is higher. Those energy balances will change for Case 1 when ageing effects will appear.

Figure 7 shows the daily energy balances for Case 3 using the manufacturer datasheet for the
battery lifetime and efficiencies, assuming constant values over the battery lifetime. Consequently,
battery performance is the same throughout the battery lifetime because ageing or temperature effects
are not taken into account.
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Figure 7. Daily energy balances according to the battery and PV system sizes for Case 3. When the
stored energy is lower than the PV energy yield in an hour, the bar shows in a dark blue colour the PV
energy yield and in a greenish-blue colour the stored energy. Otherwise, the PV energy yield is shown
in a greenish-blue colour.

For the first year, Figures 6 and 7 are identical when comparing the energy balances for each
scenario among Cases 1, 2, and 3, shown in Figures 3 and 4. It is due to the fact that the influence
of battery temperature and ageing effects is not taken into account in the model for this first year.
This could lead us to believe that those are the battery performances over its lifetime but that will not
happen when ageing and temperature effects are taken into consideration. Figure 8 shows the daily
energy balances for Case 0 in which there is no battery.
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Figure 8. Daily energy balances according to the PV system size for Case 0.

As is to be expected for Case 0, there is more sold energy to the grid and less energy self-consumed
than in those scenarios with batteries. PV system energy yield depends on solar radiation and ambient
temperature profile and photovoltaic power peak. Table 6 summarises the daily energy balances for
all scenarios.

Table 6. Daily energy balances for all scenarios the first year.

Energy Balances LB + HPV LB + LPV

Case 3 Case 2 Case 1 Case 0 Case 3 Case 2 Case 1 Case 0

PV array production (kWh/d), EPVa,day,1 32.34 32.34 32.34 32.34 12.94 12.94 12.94 12.94
PV self-consumption (kWh/d), EPV,SC,day,1 17.80 17.80 17.80 17.80 10.72 10.72 10.72 10.72

Battery self-consumption (kWh/d), E−BAT,day,1 6.17 6.05 6.05 N/A 1.93 1.77 1.93 N/A
Total self-consumption (kWh/d)

EPV,SC,day,1 + E−BAT,day,1
23.97 23.85 23.85 17.80 12.65 12.49 12.65 10.72

Load demand (kWh(day), Eload,day,1, 35.85 35.85 35.85 35.85 35.85 35.85 35.85 35.85
Grid consumption (kWh/d), BEGRID,day,1 13.61 14.44 14.44 18.05 23.62 23.85 23.62 25.13

Grid energy sale (kWh/d), SEGRID,t1, 6.83 7.46 7.46 14.55 0.00 0.00 0.00 2.12
PV array production (kWh/d), EPVa,day,1 32.34 32.34 32.34 32.34 12.94 12.94 12.94 12.94

PV self-consumption (kWh/d), EPV,SC,day,1 17.80 17.80 17.80 17.80 10.72 10.72 10.72 10.72
Battery self-consumption (kWh/d), E−BAT,day,1 11.64 12.65 12.65 N/A 1.77 1.93 1.93 N/A

Total self-consumption (kWh/d)
EPV,SC,day,1 + E−BAT,day,1

29.43 30.45 30.45 17.80 12.49 12.65 12.65 10.72

Load demand (kWh(day), Eload,day,1, 35.85 35.85 35.85 35.85 35.85 35.85 35.85 35.85
Grid consumption (kWh/d), BEGRID,day,1 9.67 8.20 8.20 18.05 23.85 23.62 23.62 25.13

Grid energy sale (kWh/d), SEGRID,t1, 0.00 0.00 0.00 14.55 0.00 0.00 0.00 2.21

According to Table 6, if the PV yield profile is low (due mainly to a small PV array size and/or low
solar irradiance on the PV modules) with respect to the load demand profile, the battery has a slight
influence on results because the PV array energy yield could be directly self-consumed by the load
demand of the household. The higher PV array energy production the higher is the influence of the
battery on the energy balances. So, the bigger is the battery, the more self-consumed PV energy by the
household. Figure 9 shows the evolution of the battery lifetime over for all scenarios.

Figure 9 shows that battery lifetime covers a wide range of values according to the scenario.
The shortest battery lifetime happens when the battery is small and PV energy yield is similar to the
load demand, which is the LB + HPV scenario. According to the previous comments for the LB + LPV
scenario, the shortest battery lifetime happens when ageing effects are taken into account. In this
scenario, the battery suffers from high to very high sulphation, high active material degradation,
high electrolyte stratification, high water loss, and medium-high corrosion processes according to the
battery temperature.
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Figure 9. Battery lifetime for all scenarios.

The longest battery lifetime happens when the battery is large and PV array is small, which is the
HB + LPV scenario. In these scenarios, the battery is operating in optimal conditions, subjected to
high SoC, low charge rate and partial cycling, low time between full charge and low annual cycles.
Consequently, ageing effects are despised and battery lifetime is even much larger than manufacturer
datasheet value. So, according to the results shown in Figure 9, the real battery lifetime could be shorter
or longer than the value given by the manufacturer datasheet. Figure 10 shows the evolution of the
battery cycles over the battery lifetime for all scenarios.
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Figure 10. Evolution of the battery cycles over the battery lifetime for all scenarios.

Figure 10 shows that battery cycles per year depend on operating conditions. The best scenario is
HB + LPV. Similarly to what happens with battery lifetime, battery cycles could be shorter or higher
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than the value given by the manufacturer datasheet. The worst scenario is LB + HPV, where the battery
is subjected to frequent charge and discharge processes. The best scenario is HB + LPV. These results
are consistent with battery lifetime results for the same battery temperature. Figure 11 shows the
evolution of battery efficiency over the battery lifetime for all scenarios.
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Figure 11. Battery efficiency evolution over its lifetime for all scenarios.

Figure 11 shows how the battery efficiency is decreasing over the years when ageing effects are
taken into account. The largest battery efficiency decrease takes place in the LB + HPV scenario.
This is due to the high frequency in which the battery is at SoC > 80%. In those situations, the battery
efficiency decreases, according to Equations (17) and (24). Battery efficiency evolution depends on
each specific scenario.

In conclusion, HB + LPV and LB + HPV are the best and the worst scenarios, respectively, from the
point of view of battery lifetime. Nevertheless, HB + HPV and LB + HPV are the best and the worst
scenarios, respectively, from the point of view of battery efficiency. For the technoeconomic analysis,
the following parameters have been done:

- Electricity retail price and electricity surplus price have a significant influence on results. For this
reason, two price scenarios have been analysed:

- Low Electricity Price (LEP): 7.5 c€/kWh for bought energy from the national grid and 2.5 c€/kWh
for energy sold to the grid from the PV system.

- High Electricity Price (HEP): 15 c€/kWh for bought energy from the national grid and 5 c€/kWh
for energy sold to the grid from the PV system.

- The interest rate is set at 2%.
- PV array investment cost = 0.9 €/Wp. Battery investment cost = 200 €/kWh [13], BoS investment

cost = 0.6 €/W.
- PV array operation and maintenance cost is set at 1% of investment PV array cost. Battery

operation and maintenance cost is set at 1% of the investment battery cost. BoS operation and
maintenance cost is set at 1% of the investment BoS cost.

Figures 12 and 13 show the accumulated cash flow over the PV system lifetime for all scenarios
within HEP and LEP.
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Figure 12. Accumulated cash flow over the PV system lifetime for all scenarios within the High
Electricity Price (HEP).
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Figure 13. Accumulated cash flow over the PV system lifetime for all scenarios within the Low
Electricity Price (LEP).

Both Figures 12 and 13 show an accumulated cash flow very different for each scenario.
Accumulated cash flows show a sawtooth pattern due to the reposition costs of the battery during the
PV system lifetime. The size and length of the sawtooth depend on the battery lifetime and battery
cost. In addition, in Year 15, the PV system incurs in an inverter reposition cost shown in all cases.
Instead of electricity price, ageing and temperature effects have a significant influence on the cash
flow evolution in all scenarios. The slope of the cash flow mainly depends on the electricity price,
ageing, and temperature effects. In the HEP scenarios, the cash flow slope is larger than LEP scenarios.
The HB + HPV scenario for both electricity price scenarios is when ageing and temperature effects
have the most influence on the slope of the cash flow. The more battery size and PV array yield,
the more influence of ageing and temperature effects on cash flow.
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Table 7 shows the percentage difference of NPV with respect to Case 0 for HEP and LEP situations
according to Equation (42):

∆NPV0,i =
NPV0 −NPVi

NPV0
(42)

where ∆NPV0,i is the percentage difference between the NPV in Case 0, NPV0, and the NPV in the
Case 1, NPVi, where NPV0 and NPVi are given by Equation (36):

Table 7. Accumulated NPV and percentage difference of NPV with respect to Case 0 for all HEP and
LEP situations.

NPV and ∆NPV

HEP: High Electricity Price LEP: Low Electricity Price

Case 0 Case 1 Case 2 Case 3 Case 0 Case 1 Case 2 Case 3

LB + HPV
10,961.99 −2832.98 1321.60 9430.54 −7919.82 −25,462.99 −20,638.37 −12,454.17

−126% −88% −14% 222% 161% 57%

LB + LPV
7391.51 285.53 9586.18 8479.48 −21,65.69 −9698.91 −6793.38 −7770.90

−96% 30% 15% 348% 214% 259%

HB + HPV
10,961.99 −22,666.76 −22,052.22 2613.27 −7919.82 −47,644.67 −47,439.83 −22,774.34

−307% −301% −76% 502% 499% 188%

HB + LPV
7391.51 2710.86 3370.07 −7762.89 −2165.69 -7397.23 −7144.49 −18,181.28

−63% −54% −205% 242% 230% 740%

According to Figures 12 and 13 and Table 7, the most significant result is the high difference of
NPV values when ageing and temperature effects are taken into account. According to Equation (42),
for HEP scenarios, the NPV difference between Case 0 and any other case is in the range from −307%
(Case 1, HB + HPV) to 30% (Case 2, LB + LPV). For LEP scenarios, the NPV difference between Case 0
and any other case is in the range from 57% (Case 3, LB + HPV) to 740% (Case 3, HB + LPV).

In the same way, Table 8 shows the PV system the Payback Period for high and low electricity
cost situations calculated according to Equation (40). For a PBP shorter than the PV lifetime (30 years),
Table 8 also includes the percentage difference between the PBP of Cases 1, 2, and 3 compared to Case 0.

Table 8. PBP according to electricity prices and scenarios.

Payback Period (Years)

HEP: High Electricity Price LEP: Low Electricity Price

Case 0 Case 1 Case 2 Case 3 Case 0 Case 1 Case 2 Case 3

LB + HPV
11 >30 23 12 >30 >30 >30 >30

109% 9%

LB + LPV
8 23 12 14 >30 >30 >30 >30

188% 50% 75%

HB + HPV
11 >30 >30 20 >30 >30 >30 >30

82%

HB + LPV
8 13 13 >30 >30 >30 >30 >30

63% 63%

According to Table 8, for LEP scenarios, all the PBPs are higher than the PV system lifetime.
So, the investment will not be recovered, irrespective of the case. Those results are consistent with the
findings of many other studies [11–13]. For HEP scenarios, the results heavily depend on the case,
with maximum PBP differences of about 188% with respect to Case 0. In this percentage, it has not
been taken into account PBP longer than 30 years. A solution of a small battery with a small PV array
energy yield with respect to load demand seems to be the best option when a battery is used.

Table 9 includes the DPBP for high and low electricity cost situations calculated according to
Equation (41). It shows the results in the same way as Table 8 but for the Discounted Payback Period
indicator. In this case, the interest rate is taken into account. For a DPBP shorter than the PV lifetime
(30 years), Table 9 also includes the percentage of the difference between the DPBP of Cases 1, 2, and 3
compared to Case 0.
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Table 9. DPBP according to electricity prices and scenarios.

Discounted Payback Period (Years)

HEP: High Electricity Price LEP: Low Electricity Price

Case 0 Case 1 Case 2 Case 3 Case 0 Case 1 Case 2 Case 3

LB + HPV
12 >30 23 12 >30 >30 >30 >30

92% 0%

LB + LPV
9 28 17 20 >30 >30 >30 >30

211% 89% 122%

HB + HPV
12 >30 >30 25 >30 >30 >30 >30

108%

HB + LPV
9 23 23 >30 >30 >30 >30 >30

156% 156%

According to Table 9, for the LEP scenarios, the DPBP is also higher than the PV system lifetime.
It is consistent with the PBP results. For HEP scenarios, the results are far more dependent on cases.
Results show maximum DPBP differences among cases of 211% when compared to Case 0. The best
option is the PV system without a battery.

6. Conclusions

Lead–acid battery performance strongly depends on operating conditions. Those operating
conditions depend on PV array and battery sizes, room temperature, solar radiation profile, and load
demand profile. Consequently, PV system operating conditions have a direct influence on the battery
stress factors which in turn affects the battery degradation processes. As a result, battery lifetime,
charge/discharge efficiencies, and capacity should not be assumed as a constant value irrespective of
the operating conditions.

In addition to the load demand, PV system yield profiles, total system costs, electricity price,
and the remuneration rate, technoeconomic feasibility studies must take into account the battery
degradation processes.

The longest battery lifetime is obtained when the battery is large, and the PV array is small.
Results show a strong dependence on the Net Present Value, Payback Period, and Discounted Payback
period on the degradation processes. The three indicators have a heavy dependence on the scenario
according to the degradation processes. According to Tables 7–9, results show NPV differences in the
range from −307% to 740%, PBP differences in the range from 9% to 188%, and DPBP differences in the
range from 0% to 211%.

The reason why many studies do not include the degradation processes on their technoeconomic
analysis may be due to the complexity to include battery chemical reactions in the energy balances
with only manufacturer datasheet values. Thus, special care should be taken to define those values
according to the standard required for batteries. Many laboratory tests are required to predict the
degradation parameters α, γd, γc, and δ.
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Nomenclature

Abbreviations
AGM Absorbed Glass Mat battery
BoS Balance of System
HB Large battery scenario
HEP High Electricity Price scenario
HPV High PV system energy yield scenario
KPI Key Performance Indicators
PV Photovoltaic
LB Small battery scenario
LEP Low Electricity Price scenario
LPV Low PV system energy yield scenario
NOCT Nominal Operating Cell Temperature
PBP PayBack Period
SLA Sealed lead–acid battery
VRLA Valve-regulated lead–acid battery
Parameters and Variables
N PV system lifetime (year)
Nb Battery lifetime (year)
nb Service year of the battery (year)
SoC Battery State of Charge (%/100)
DoD Battery Deep of Discharge (%/100)
EBAT,t,n Battery energy in the battery at the end of the hour t and year n (kWh)
ELoad,t,n Load demand for the hour t of the year n (kWh)
SPt,n Surplus energy price injected into the grid (€/kWh)
RPt,n Retail energy price (€/kWh)
SCRt,n Photovoltaic self-consumption ratio in the hour t of the year n (100/%)
LSCRt,n Load self-consumption ratio in the hour t of the year n (100/%)
EPV,SC,t,n Self-consumed energy from the PV system for the hour t of the year n (kWh)
SEGRID,t,n Surplus energy sold to the grid for the hour t of the year n (kWh)
PR Performance Ratio (100/%)
EPV,t,n Photovoltaic energy yield for the hour t of the year n (kWh)
BEGRID,t,n Bought energy to the grid for the hour t of the year n (kWh)
E−BAT,t,n Discharged energy from the battery for the hour t of the year n (kWh)
E+

BAT,t,n Charged energy into the battery for the hour of the year n (kWh)
ηbd,t,n Battery discharge efficiency for the hour t of the year n (100/%)
ηcd,t,n Battery charge efficiency for the hour t of the year n (100/%)
ηinv Inverter efficiency (100/%)
Tp,t,n Average module temperature for the hour t of the year n (◦C)
EPVa,t,n PV array yield for the hour t of the year n (kWh)
Ta,t,n Average ambient temperature for the hour t of the year n (◦C)
γd Battery discharge efficiency degradation factor
γc Battery charge efficiency degradation factor
α Battery lifetime degradation factor
δ Battery capacity degradation factor
Vbn Battery nominal voltage (V)
EBATfull,t Maximum energy that the battery could store (kWh)
EBATmin,DoD Minimum energy that the battery should keep according to a fixed DoD (kWh)
tDoD,T Battery lifetime (years)
NDoD,25 ◦C Battery cycles from the manufacturer datasheet at a given DoD and 25 ◦C (cycles)
nDoD,T Battery annual cycles at a given DoD and temperature T (cycles/y)
σ(T) Battery temperature dependent correction factor (-)
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Ic Battery charge current (A)
I10 Battery charge current in 10 h (A)
Ct(T1) Battery capacity at temperature T1 and a discharge time t (Ah)
β PV module power temperature coefficient (%/(100 ◦C))
OPEXPV,n PV system operation and maintenance costs in the year n (€)
OPEXBAT,n Battery operation and maintenance cost in the year n (€)
CAPEXBAT,n Battery reposition cost in the year n (€)
CAPEXBoS,n Balance of System reposition cost in the year n (€)
CAPEXPV,1 PV array investment cost in Year 1 (€)
CAPEXBAT,1 Battery investment cost in Year 1 (€)
CAPEXBoS,1 BoS investment cost in Year 1 (€)
COUT,t,n Cash flow out for the hour t of the year n (€)
CIN,t,n Cash flow in for the hour t of the year n (€)
C1 Capital investment cost in Year 1 (€)
NPV Net Present Value (€)
PBP PayBack Period (year)
DPBP Discounted PayBack Period (year)
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