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Abstract: With the rapidly increasing number of electric vehicle users, in many urbans transport
networks, there are mixed traffic flows (i.e., electric vehicles and gasoline vehicles). However, limited
by driving ranges and long battery recharging, the battery electric vehicle (BEV) drivers’ route choice
behaviors are inevitably affected. This paper assumes that in a transportation network, when BEV
drivers are traveling between their original location and destinations, they tend to select the path
with the minimal driving times and recharging time, and ensure that the remaining charge is not less
than their battery safety margin. In contrast, gasoline vehicle drivers tend to select the path with the
minimal driving time. Thus, by considering BEV drivers’ battery management strategies, e.g., battery
safety margins and en-route recharging behaviors, this paper developed a mixed user equilibrium
model to describe the resulting network equilibrium flow distributions. Finally, a numerical example
is presented to demonstrate the mixed user equilibrium model. The results show that BEV drivers’
en-route recharging choice behaviors are significantly influenced by their battery safety margins, and
under the equilibrium, the travel routes selected by some BEV drivers may not be optimal, but the
total travel time may be more optimal.

Keywords: battery management; mixed network equilibrium; battery electric vehicles; gasoline
vehicles; en-route recharging behavior

1. Introduction

Thanks to the rapid development of battery technologies and increasing price of crude oil [1-4],
in recently years, the number of battery electric vehicles (BEVs) is increasing rapidly in many cities
in the world. However, for many BEV users, although the number of charging stations is increasing
in the urban area, they still fear that their vehicle may run out of power when driving between their
original location and destination. This fear, known as range anxiety [5-7], is not only experienced
by BEV drivers, but also by alternative-fuel vehicles drivers [8,9]. Nevertheless, for alternative-fuel
vehicle drivers, range anxiety can be easily eliminated by taking onboard spare fuel cans. However,
for BEV drivers, it seems unrealistic to take onboard spare batteries for replacing. Furthermore, to
ease range anxiety, many BEV drivers are likely to set a battery safety margin to ensure the remaining
battery can finish the trip [10-12]. Moreover, range anxiety also makes some BEV drivers prefer the
path on which they can easily access charging stations. In a word, range anxiety will inevitably affect
BEV drivers’ travel choice behaviors. Thus, in the future, with BEVs widely participating in urban
transportation, the equilibrium distribution of the urban traffic flow will be influenced.

However, in the research of traffic assignment, the assumptions of travelers’ choice behaviors play
an important role in solving network equilibrium problems [13-17]. Thus, in order to understand how
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BEVs influence the equilibrium distribution of the urban traffic flow, the assumptions of BEV drivers
travel choice behaviors and the assumptions of BEVs’ structure and characteristics will be important.
For example, by considering electric vehicles’ limited driving range and drivers’ recharging behaviors,
He et al. [18] proposed a network equilibrium model. In their research, they assumed that there are
only BEVs in the network and these BEVs are homogeneous with the same battery size and same initial
state of battery, and that BEV drivers are rational. These assumptions are restrictive and may lead a
discrepancy between the research results and reality. Then, by considering stochastic range anxiety,
Xie et al. [19] developed a network equilibrium with electric vehicles. In their research, they assumed
that the variation of driving distance limits BEV drivers’ perception and causes battery depletion of
BEV drivers with heterogeneous perception errors and risk-taking behaviors. In addition, Jiang and
Xie [20] and Xu et al. [21] considered a mixed network equilibrium problem with two vehicle types,
i.e., gasoline vehicles and electric vehicles. In the former, a path-constrained traffic assignment is
formulated; in the latter, a nonlinear minimization model in terms of path flows is formulated. The
above studies lack of consideration on BEV drivers’ recharging psychological barriers.

Becker [22] suggested that the utility of time spent at a meaningful activity is larger than the utility
of time spent at a non-meaningful activity. Since recharging activity is an additional activity and makes
BEV drivers’ total travel time become longer, for BEV drivers who need to rechange their BEVs at
en-route charging stations, their perception of disutility of unit driving time may be different from their
perception of disutility of unit recharging time. Thus, to be more in line with reality, in this paper, we
assume that there are two kinds of vehicles in the network, i.e., gasoline vehicles and electric vehicles;
moreover, BEV energy consumption is not influenced by traffic congestion and is independent of traffic
flows [5,23,24]. Then, for battery electric vehicles, assuming that these BEVs have the same battery size
but different initial state of battery, and for BEV drivers who need recharging en-route, it is assumed
that they are heterogenous with different risk attitudes (this can be reflected by different battery safety
margins) and that their perceptions of disutility of unit recharging time is smaller than the perception
of disutility of unit travel time. That is, if the value of the travel time coefficient is equal to the value of
the recharging time coefficient, there must be an error in some BEV drivers’ minimal recharging time
perception that makes their actual minimal recharging time longer. Based on the above assumptions
and considering BEV drivers’ range anxiety and recharging behavior, we formulate a mixed network
equilibrium model to deal with the traffic assignment of gasoline vehicles and electric vehicles.

In summary, the contribution of this paper is that by considering different types of drivers with
different risk attitudes, different perception errors, and different initial states of battery, we developed a
mixed user equilibrium model to describe gasoline vehicle drivers’ route choice behavior, BEV drivers’
en-route recharging behaviors, the utilization of charge stations, and the distribution of traffic flow in
the network under a long-term equilibrium. The results of this paper can help to understand how BEV
drivers’ battery management strategies (e.g., battery safety margin setting and en-route recharging
behavior) influence urban transport systems.

The remainder of this paper is organized as follows: Section 2 formulates a base model that
describes a mixed network equilibrium, and then a solution procedure is proposed. In Section 3, a
numerical example is presented, and the numerical example results and some conclusions are also
presented. Finally, Section 4 concludes the paper.

2. Base Model

2.1. The Characterization of a Traffic Network

Let G = (N, A) denote a traffic network where N is set of nodes and A is set of links. Let W be
the set of origin—destination pairs (hereinafter referred to as “OD pairs”) and w € W be the OD pair
index. Let Ry, and Dy, be the set of paths and the travel demand between OD pair w, and r € Ry, the
path index. We denote a link as a € A, and f, is the corresponding link flow. Let 6, be the path-link
incidence. If path r traverses link a, then 67, = 1, otherwise 67, = 0. Let f; be the traffic flow on link a
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and z, be the travel distance of link a. The travel time of link 4 is a strictly increasing function of the flow
in the link, for example, in this study, we used the following Bureau of Public Roads (BPR) function:

4
t, = tg[l +0.15(ﬁ) } 1

Ca
where 1) is link a’s free-flow travel time, and c, is link a’s capacity.

2.2. Definition and Formulation of a Mixed User Equilibrium

In this paper, it is assumed that there are two kinds of vehicle drivers in the network, i.e., BEV
drivers and gasoline vehicle drivers. For BEV drivers, they many need rechange their BEVs at one
en-route charging station to avoid running out of charge before reaching their destinations. It is worth
mentioning that this paper assumes that in order to reach the destination as quickly as possible, the
BEVs will not be fully charged at the en-route charging station; BEV drivers will recharge a small
amount of electricity (this also suggests that the values of travel time are higher for these BEV drivers).
In addition, due to the uncertainty of fuel consumption, BEV drivers may avoid using all of the power
supplied by their batteries when they arrive at the destinations. Instead, they prefer to set a battery
safety margin that they keep the remaining battery higher than [10]. Thus, we assumed that when
BEV drivers arrive their destinations, the remaining battery is no less than the battery safety margin.
This battery safety margin will ensure that they can find the next charging station to keep the BEV
going. Note that in this paper, the minimal recharging amount of electricity depends on the remaining
distance traveled and BEV drivers’ battery safety margins. Figure 1 is an example used to illustrate the
en-route recharging behavior. As shown in Figure 1, the BEV’s initial state of battery is 6 kWh, the
energy consumption rate is 0.3 kWh/km [18], and the BEV driver’s battery safety margin is 3 kWh.
Then, under this setting, this BEV driver will choose path 2 and the amount of recharging electricity will
be 6.9 kWh. On the other hand, for gasoline vehicle drivers, it is assumed that they have enough fuel.

L1=30km

Path1 Energy consumption=9kWh>6kWh

Initial state of A

battery=6kWh Q
Safety margin
battery=3kWh

L2=16km ’ errfaining battery=3kWh
Energy consumption=4.8kWh<6kWh .

Path 2 L3=17km

Energy consumption=5.1kWh

Energy consumption
rate=0.3kWh/km

\_/\ Charging station

The amount of recharging electricity=6.9kWh

Figure 1. An example of en-route recharging choice behavior.

When traveling between their original location and destination, for each driver, it is assumed that
they select the route with minimal travel costs, which includes the cost of travel time and electricity.
It is worth mentioning that the cost of travel time is much higher than the cost of electricity [25].
Thus, we only consider travel time cost when drivers select paths. Notably, for BEV drivers who
need recharging en-route, their total travel time includes driving time and recharging time. Moreover,
different from others’ research, in our based model, we consider heterogenous BEV drivers with
different risk attitudes and different levels of perception errors regarding the values of recharging time,
and the BEVs have the same battery size but a different initial state of battery. Moreover, we further
assumed that in the transport network, there is only a finite number of charging stations, and these
charging stations are located at certain nodes of the network. Note that a vehicle traveling along a path
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may not pass by a charging station. Thus, based on the above assumptions and considerations, we can
obtain the following network equilibrium:

Definition 1. In a long-term equilibrium, for the same type of drivers, all the utilized paths are usable and the
total travel time costs of all the utilized paths of one OD pair are the same, that is, they are less than or equal to
those of any unutilized usable paths of the same OD pair.

Here, a mathematic model will be proposed to describe the above long-term equilibrium. For
convenience, it is assumed that there are K types of vehicle drivers in the network where K — 1 types
belong to BEV drivers and they have different risk attitudes and different levels of perception of
rechanging time. The remaining type belongs to gasoline vehicle drivers. Moreover, because BEV
energy consumption is independent of traffic flow, let R;, denote the set of all usable paths between
OD pair w, thus, we can obtain following network equilibrium with heterogenous users (NE-HU):

NE-HU: mm ZAaeA f u t” dZ + ZAkeK Zwew ZreRw kﬁksrk rk (2)

s.t. ZreRw fY =Dy Vwe W 3)
ZkeK Z — ¢ YweWkekK )

reRw
f%=0 VreRY,weW,keK (5)

— (NY
fa= ZkeK Zwew Zref{“’ ﬁ,kéa,r YaeAkek ©)

where, s¥, is the minimal actual time (minutes) that drivers need to spend on recharging activity.

Moreoverkfor gasoline vehicle drivers, there is s, = 0. Bx(> 1) is a coefficient and relates to the drivers’
risk attitudes. ax(> 1) is a coefficient and relates to BEV drivers’ perception errors of the values of
recharging time. Note that limited by cognitive ability, drivers may not be able to accurately estimate
their recharging times, thus, the “perception error” in this study is defined as the difference between a
BEV driver’s perceived value of recharging time and the actual value of recharging time. Moreover, ay
=1 indicates that a driver’s perception of disutility of unit travel time is equal to their perception of
disutility of unit recharging time, and the greater the value of «y, the smaller the perception of disutility
of unit recharging time. g;” is travel demand (i.e., total vehicles) of type k between OD pair w, and fru;c
(veh/h) is the traffic flow of type k € K on path r between OD pair w.
Then, the above NE-HU model’s Karush-Kuhn-Tucker (KKT) conditions can be written as:

J
X o)+ st A - f, =0 )
a ak

Y fe =gt (8)

reIA{w
%20 ©)
uﬁr >0 (10)
r iy = 0 (1)

where af “k = 0F, and Y, t,(f2)0y, = t)’. Moreover, t}’ is the travel time (minutes) of path r. Thus,

Equation (7) can be further written as:
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”Izc(fr = i’f,u + ackﬁksf’ - A]Zf (12)
Finally, based on the Equations (10)—(12), we can obtain the following conditions:
t?u + (Xk‘BkS;U - /\z} >0 (13)

w0+ st = AY) =0 (14)

Here, Equation (14) is a complementary condition. When r € Rw, if fw =0, then £ + ay sy’ = A} if
r“;{ > 0, then £’ + aypys,’ — 1)) = 0. However, when r ¢ Rv, "% = 0. This complementary condition
guarantees that the traffic ﬂow is only distributed on the usable paths.

2.3. Solution Procedure

The above NE-HU model is a convex program with linear constraints. We can solve it by the
enumeration method. However, the work of enumerating all the usable paths will be tremendous.
Thus, in this paper, we adopt an iterative solution procedure which was proposed by He et al. [18].
However, different from He’s work, in this paper, we consider the perception recharging time instead
of actual recharging time and heterogenous BEV drivers with the different risk attitudes and different
levels of perception of recharging time. Thus, the sub-problem, finding the shortest usable path by
considering BEV drivers’ perception of recharging time (SP-PT), can be formulated as follows:

SP—PT: X, rl ZkeK ZaeA f)x + Zke[( ZzeN C ylk +¢ 5 lw ) (15)

s.t. Axi) = E/ (16)

Lw — L%+ za@ — ﬁkl =p’.  V(,j)=acA (17)
LY =20 > ~M(1 - 2%) +pem (i, j) =acA (18)
~H(1-x%)<pY <H(1-x%)  V(ij)=acA (19)
0<LY <Lpx VieN (20)

LY s =Lox  VieN (21)

¥ €01} V(ij)eA (22)

yf"k € 10,1} Vie N (23)

where, I} (kWh) is the recharging amount of electricity in theory at charging stations i for type k drivers,
and ﬁklw (kWh) is the actual recharging amount of electricity for type k drivers when considering

their different risk attitudes. Let ¢; (ﬁkl?’k) represent the recharging time (minutes) that at nodei € N,

type k drivers spend recharging ,Bkll?f’k amount of electricity. Then, akci(ﬁklz’k) is the perception of time
for type k drivers to recharge ﬁkl?”k amount of electricity. In this paper, the following perception of
charging time function is used, i.e., akci(ﬁklg’k) = ozkci1 + akcfﬁklz’ , and here c} (minutes) represents the
fixed recharging time; clz (min/kWHh) is a variable of recharging time and relies on the class of chargers,
for example, direct current charging (fast charging) and alternating current charging (slow charging).
However, in this study, it is assumed that the en-route charging stations only supply direct current
charging facilities and the charging facilities are adequate. Note that if there is no charging station on
node i, the value of akci(ﬁklg'k) will be zero, and for gasoline vehicle drivers, the value of akci(ﬁklg’k) will
also be zero.

Moreover, L;" (kWh) is the battery charge after recharging, L,y (kWh) is the battery size, and
Lox (kWh) is the initial state of battery charge. A is the node-link incidence matrix, E}” is a vector with
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a length of |N| and consists of two nonzero components: one has a value of 1, which corresponds to

the original location; the other has a value of —1 which corresponds to the destination. x%
W —

a,k
charging station i is selected, then i) =L otherwise, y; =00 =0 if link a is used by driver k and

unrestriced otherwise. @ is the BEV's energy consumption, m is the minimum comfortable range, and
H and M are sulfficiently large constants.

In the above SP-PT model, the objective function is to minimize the total trip time,
including driving time (i.e., Y ek Laea ta(ﬁ,)ngk) and BEV drivers’ perceived recharging time

o is a binary

variable, and if link 4 is used, then xwk = 1, otherwise x} = 0; yj} is also a binary Varlable, and if

(i-e., Ykek LieN ozk(cil yg’k + cfﬁklz’k). Constraint (16) ensures flow balance. Constraints (17) and (19)
specify the relationship between the states of charge of BEV batteries at the starting and ending nodes
of any utilized link. Constraint (18) ensures that the BEV driver will not fully deplete their battery
on any utilized link, and the BEV driver prefers to keep the remaining battery range no less than a
comfortable range

Let ( e y e T4 ) be the optimal solution to SP-PT for OD pair w € W for each type
of k € K. By sol;Img , we can obtaln the shortest usable path, i.e., 7. Moreover, through solving ¥, y

and ll?f’k, we can obtain the shortest perception recharging time, i.e., Y yex YienN ak<ci yz’,k + cfﬁklf.f’k). Then,
to solve NE-HU, we can use the following iterative procedures: _
Step 1: For each type of k € Kbetween OD pairw € W solve SP-PT,i.e., ( cos far e ) =(..,0 ...).

Obtain the initial usable path set ﬁkw = {7}‘{” } and calculate the minimal actual recharging time
s%’k = clyj"k + czﬁklw
Step 2: Based on the initial usable path set Rw = { } solve the NE-HU model and obtain the

optimal traffic flow distribution, i.e., ( fa,k/ .. ) and the Lagrange multiplier, i.e., ( e A ) .
Step 3: Solve the SP-PT model. For each type of k € K and each OD pair w € W, if

AP < Yikek Laea ta(f)xak + Yiek LieN ock(c yl T czﬁklw ) then stop and ( Ek/ .. ) is the optimal
equ111br1urn link flow distribution; otherwise, go to Step 1.

3. Numerical Example

To demonstrate the above mixed user equilibrium model, a numerical example will be shown
in this section. We considered the following Nguyen-Dupius network [26] (see Figure 2). There
are 13 nodes, 19 links, and four OD pairs in the Nguyen-Dupius network. We assume that the link
distances are two times the link’s free-flow travel times, and the link characteristics are shown in
Table 1. According to the Nissan Leaf 2020 [27], in the numerical example, we set the battery capacity
as Lyax = 40 kWh and the energy consumption rate as @ = 0.167 kWh/km. Since in this paper we
assume the en-route charging stations only supply direct current charging facilities (fast charging
facilities), then the fixed time C} = 5 min the variable time C1.2 = 0.6 min/kWh if the current battery
level is less than 70%, and ci2 = 10 min/kWHh if the current battery level is higher than 70%. Note that
in this paper, it is assumed that in order to reach the destination as quickly as possible, BEV drivers do
not fully charge their electric car at the en-route charging station.

As shown in Figure 2, in the network, the charge stations are located in the nodes 5 and 10. It is
assumed that in the network, 30% of vehicle drivers are BEV drivers, and the rest are gasoline vehicle
drivers. Because of the different risk attitudes towards en-route recharging, BEV drivers are further
divided into three different types and the proportion of each type is 10%. The OD demands, the
number of each type of driver, and the parameter setting of risk attitude §; and perception error ay
are shown in Table 2. Moreover, the setting of the battery safety margin and the initial state of the
battery are shown in Table 3. It is worth mentioning that when the battery safety margin is set to
0.10 Lyy4x, then according to the setting in this paper, if the initial state of the battery is equal to the
battery safety margin, i.e., 0.10 L4y, then the battery electric vehicle can have a range of about 24km
in theory. In general, there are 27 classes of BEV drivers (3 X 3 x 3 = 27) with different risk attitudes,
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different perception errors, and different initial states of the battery used in the numerical example.
The above settings ensure that all BEV drivers can reach their destinations.

Q Nodes with charging stations . Origin Q Destination ——Links

Figure 2. Nguyen-Dupius network.

Table 1. Link capacity (veh/h), distance (km) and free-flow travel time (min).

Link Distance Tf:ile,},?I:e Capacity Link Distance Tlr::/ZIF"}“(i)Xe Capacity
1 14 7 3000 11 18 9 5000
2 18 9 2000 12 20 10 5500
3 18 9 2000 13 18 9 2000
4 24 12 2000 14 12 6 4000
5 6 3 3500 15 18 9 3000
6 18 9 4000 16 16 8 3000
7 10 7 5000 17 14 7 2000
8 26 13 2500 18 20 10 5000
9 10 5 2500 19 18 9 2000

10 18 9 2000

Table 2. The setting of parameters f and ay.

Origin-Destination Perception Error and

(OD) Pair Total Demands  Driver’s Type  Risk Attitude Corresponding Proportion
Proportion (ay,%)
1.1 10%
(1,11) 5000 BEV 13 (1.2, 50%; 1.5, 40%; 2, 10%) 10%
15 10%
1.1 10%
(1,13) 3000 BEV 1.3 (1.2, 50%; 1.5, 40%; 2, 10%) 10%
15 10%
1.1 10%
(3,11) 5000 BEV 13 (1.2, 50%; 1.5, 40%; 2, 10%) 10%
15 10%
11 10%
(3,13) 3000 BEV 13 (1.2, 50%; 1.5, 40%; 2, 10%) 10%

1.5 10%
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Table 3. Battery safety margin and the initial state of battery.

Risk Attitude f Battery Safety Margin Initial State of Battery (L;;4x, Proportion)
Br =11 0.10 Lipay (0.15 Linax, 60%; 0.20 Lingx, 30%; 0.25 Liyax, 10%)
Br=13 0.15 Lyax (0.20 Lygx, 60%; 0.25 Liyiax, 30%; 0.30 Liax, 10%)
Br=15 0.20 Lyjax (0.25 Lingx, 60%; 0.30 Lingx, 30%; 0.35 Liyax, 10%)

Table 4 lists the detailed path information under the long-term equilibrium, including path flows
and actual path travel times. It is worth noting that according to the above setting, all BEV drivers
need to rechange their BEVs at one en-route charging station to keep the remaining battery no less than
their battery safety margin. From Table 4, we can see that under the equilibrium, there are 13 available
paths in total. However, due to the fact that path 1, path 6, and path 13 do not have en-route charging
stations, these paths are only available for gasoline vehicles. Moreover, limited by travel distance and
the location of charging stations, path 3, path 5, path 9, path 10, and path 12 are not available for battery
electric vehicles whose initial state of batteries are low. Therefore, under the equilibrium, for OD pair
(1,11), path 2’s travel time is higher than the other two paths’ travel times, and for OD pair (1,13), path
4’s travel time is higher than the other two paths’ travel times.

Table 4. Path flow and path travel time under the equilibrium.

Path Flow (the Number of Vehicles on Each Path)

Path Travel Time
oD Path ID Node Sequence Electric Vehicle (Energy Gasoline (Actual Time)
. . Total
Consumption) Vehicle

1 1-2-7-11 0(9.35 kWh) 3330 3330 49.63 min

(1,11) 2 1-4-5-6-7-11 1500 (9.67 kWh) 0 1500 51.09 min
3 1-4-8-9-10-11 0 (13.69 kWh) 170 170 49.63 min

4 1-4-5-6-10-13 900 (10.69 kWh) 900 900 50.53 min

(1,13) 5 1-4-8-9-10-13 0 (13.36 kWh) 1295 1295 49.07 min
6 1-4-8-12-13 0 (11.36 kWh) 805 805 49.07 min

7 3-4-5-6-7-11 860 (10.35 kWh) 1286 2166 63.90 min

3,11) 8 3-4-5-6-10-11 640 (11.69 kWh) 0 640 63.90 min
! 9 3-4-5-9-10-11 0 (13.36 kWh) 390 390 63.80 min
10 3-8-9-10-11 0 (12.36 kWh) 1804 1804 63.90 min

11 3-4-5-6-10-13 960 (11.36 kWh) 60 60 63.33 min

(3,13) 12 3-8-9-10-13 0 (12.02 kWh) 161 161 63.33 min
13 3-8-12-13 0 (10.02 kWh) 1879 1879 63.33 min

Figure 3 shows the average utilization of charging station 5 and charging station 10 under the
long-term equilibrium. It can be observed from Figure 3 that with increased risk aversion and the
initial state of battery, charging station 10 is chosen by more BEV drivers. This is because as the level
of risk aversion increases, so do the battery safety margins and initial states of batteries of such BEV
drivers, as shown in Table 3. Figure 4 shows the recharging time information of charging station 5 and
charging station 10. It can be observed from Figure 4 that the average recharging time of charging
station 5 is longer than the average recharging time of charging station 10. This is because compared
with charging station 5, charging station 10 is closer to the destination, and to ensure the remaining
battery is higher than the battery safety margin, BEV drivers need to take more time to recharge their
electric vehicles if they choose charging station 5. In addition, as the level of risk aversion increases,
so does the recharging time of such BEV drivers, and this will also add to the feeling of more time
spent recharging.
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p=1.1 /=13 B=1.5

800 Il Charging station 5 800 [l Charging station 5 800 [l Charging station 5
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0 0 | -.L 0 -
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Initial state of battery Initial state of battery Initial state of battery

Figure 3. Charging station utilizations.

‘ I Charging station 5 [l Charging station 10
15 [ T T ]

= g e 12.95
% = 10.53 i
< wp
o =
& "B
[V
v o
%
B5=1.1 5=13 B8=15
T T T
20 - 18.13 .

Average perception
charging time

B=1.1 =13 615
Risk attitude

Figure 4. Recharging time information.

To further characterize the impact of the battery safety margin (i.e., a BEV driver’s risk attitude)
on the mixed user equilibrium, we gradually reduce the values of BEV drivers’ battery safety margins
from the initial values of the state to zero. The corresponding results of the average utilization of
charging station 5 and charging station 10 are shown in Figure 5.

It can be observed from Figure 5 that when § = 1.1 (i.e., when there is a lower risk aversion), as
the battery safety margins decrease, there are only a few BEV drivers switching from charging station 5
to charging station 10, and when the value of the battery safety margin equals zero, there are very
few BEV drivers choosing not to recharge their electric vehicles. Notably, these BEV drivers change
their en-route recharging behaviors because their initial state of batteries are higher than others. When
B = 1.3 (i.e., when there is a medium risk aversion), as the battery safety margins decrease, a growing
number of BEV drivers switch to recharging station 10, and there are close to 350 BEV drivers who
choose not to recharge their electric vehicles. When g = 1.5 (i.e., when there is a higher risk aversion),
as the battery safety margins decrease, a lot of BEV drivers opt for not recharging their electric vehicles.
Moreover, according to the Table 4, we can find that when some BEV drivers choose not to recharge
their electric vehicles en-route, path 2 and path 4 are not the best choice. Thus, Table 5 lists the detailed
path information under the equilibrium without the battery safety margin. Compared with Table 4, it
can be observed that in Table 5, some paths’ travel times are increased and some paths’ travel times
are decreased. However, the total travel time is 851,318 min in Table 4, and 907,994 min in Table 5.
Figure 6 shows the recharging time information of charging station 5 and charging station 10 without
the battery safety margin. Compared with Figure 4, it can be observed that the recharging times
become smaller for charging station 5 and charging station 10 when = 1.1, but the recharging times
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become larger for charging station 10 when § = 1.3 and = 1.5. This is because more and more BEV
drivers choose to recharge their electric vehicles at charging station 10 when they do not consider their
battery safety margin.

1500 F M
g
'-E 1000 L Risk attitude 8=1.1 ]
= Charging station 5
] Charging station 10
gg Without recharging
i
L 500+ .
>
<
0 | ! 1 ! 1 ! 1 ! 1
0 01 02 03 04 05 06 07 08 09 1
Diminishing rates of safety margin battery
1400 T T T T T T T T T
1200 + ]
§ 1000 | Risk af{titude 5=1.3
=
=800 Charging station 5
'*g Charging station 10
& 600 Without recharging =
&
> 400
> L ]
yd
200 - .
0 1 1 L ! 1 ! 1 1 1
0 01 02 03 04 05 06 07 08 09 1
Diminishing rates of safety margin battery
1200 . . . . . .
1000 F N\ Risk attitude 5=1.5
=]
S 800} -
<
X
= 600 8
g U
Y
g
g 400 | —— Charging station 5 1
< ——— Charging station 10
200 Without recharging 1
0 L 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Diminishing rates of safety margin battery

Figure 5. The average utilization of charging station 5 and charging station 10.
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Table 5. Path flow and path travel time under the equilibrium (without the battery safety margin).

oD Path ID Node Sequence Total Flow Path Travel Time (Actual Time)
1 1-2-7-11 3388 50.26 min
(1,11) 2 1-4-5-6-7-11 1155 50.25 min
3 1-4-8-9-10-11 457 50.25 min
4 1-4-5-6-10-13 722 49.35 min
(1,13) 5 1-4-8-9-10-13 1431 49.35 min
6 1-4-8-12-13 847 49.35 min
7 3-4-5-6-7-11 2319 63.92 min
3,11) 8 3-4-5-6-10-11 538 63.92 min
’ 9 3-4-5-9-10-11 388 63.92 min
10 3-8-9-10-11 1755 63.92 min
11 3-4-5-6-10-13 940 63.02 min
(3,13) 12 3-8-9-10-13 190 63.02 min
13 3-8-12-13 1870 63.02 min

Charging station 5 Charging station 10
15 ging ging

11.39
10 9.88 10.10 10.08

charging time

Average actual

20 p11 p13 15
15.94

Average perception
charging time

=11 =13 B=15
Risk attitude

Figure 6. Recharging time information (without the battery safety margin).
4. Conclusions and Future Work

By considering electric vehicle drivers’ battery management strategies, this paper investigated
mixed user equilibrium problems with battery electric vehicle drivers’ en-route recharging behaviors.
Considering two kinds of vehicle drivers (i.e., BEV drivers and gasoline vehicle drivers) in the network,
we assume that BEV drivers select paths with the shortest driving time and shortest perceived recharging
time, and gasoline vehicle drivers select paths with the shortest driving travel time. Moreover, we also
assume that the BEVs will not be fully charged at the en-route charging station, and in order to reach
the destination as quickly as possible, BEV drivers will recharge a small amount of electricity and
keep the remaining battery no less than the battery safety margin when they reach their destinations.
We proposed a mixed user equilibrium model to describe the resulting network equilibrium flow
distributions. A numerical example was used to demonstrate the proposed mixed user equilibrium
model. It was observed that affected by the battery safety margin, under the equilibrium, for some OD
pairs, some paths’ travel times were higher than other available paths. Additionally, with increased risk
aversion, charging station 10 was chosen by more BEV drivers, which may add to the feeling of more
time spent recharging. Furthermore, in the numerical example, we further characterized the impact of
the battery safety margin on the mixed user equilibrium, and provided the mixed user equilibrium
information without considering the battery safety margin. It was observed that BEV drivers’ en-route
recharging choice behaviors are influenced by their battery safety margins, and the total travel time
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was 907,994 min when not considering BEV drivers’ battery safety margins, and 851,318 min when
considering BEV drivers’ battery safety margins at the outset.

Note that the scale of BEV drivers and BEV drivers’ risk attitudes, battery safety margins,
perception errors, and the initial states of batteries are imaginary. Thus, our future study will attempt
to investigate BEV drivers’ risk attitudes, battery safety margins, and en-route recharging choice
behaviors. Moreover, in this paper, although we considered BEV drivers’ perception errors of the
recharging time, the drivers’ route choice behavior was still following the assumption that all drivers
will choose the paths with the shortest travel time. In reality, drivers often face uncertain driving time.
Thus, developing a mixed stochastic user equilibrium model seems very meaningful. Finally, future
research can also relax the supposed condition that charging facilities are adequate at any charging
station and assumes that BEV drivers can find all the charging facilities” service information through
mobile APPs.
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Nomenclature

G the traffic network

N the set of nodes in the traffic network

A the set of links in the traffic network, and a € A denote a link

4% the set of origin-destination pairs, w € W is the origin-destination pair index

Ry the set of paths between origin-destination pair w, and r € Ry, is the path index

Dy the set of travel demand between origin-destination pair w

fa the traffic flow on link a

Za the travel distance of link a

oFy the path-link incidence, if path r traverses link a, then 0}, = 1, otherwise 67, = 0

9 the link a’s free-flow travel time

Ca the link a’s capacity

K the set of types of vehicles drivers in the network, k € K denote a type of drivers

Ry the set of all usable paths between OD pair w

s the minimal actual time (minutes) that drivers k need to spend on recharging activity when
rk he/she choose route r

Br the coefficient and relate to the drivers’ risk attitudes

ay the coefficient and relates to BEV drivers’ perception errors of the values of recharging time

Br the coefficient and relate to the drivers’ risk attitudes

8r the type k’s travel demand

byt the traffic flow of type k € K on path r between OD pair w

£ the travel time (minutes) of path r between OD pair w

lz’k the recharging amount of electricity on theory at charging stations i for type k drivers

ﬁkl?,]k the actually recharging amount of electricity for type k drivers

ci(+) the recharging time function for drivers to recharge some amount of electricity at node i

c} the fixed recharging time

Ci2 the variable recharging time

L;-‘/’k the battery charge after recharging

Liyax the battery size

Lo the initial state of battery
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A the node-link incidence matrix associated with the network

Ekw the vector with a length of |N|

x:l" s the binary variable, if link a is used, then x;‘fk =1, otherwise x;” e =

y:{’k the binary variable, if charging stations i is selected, then yz’k =1, otherwise yl?f’k =0

p;‘fk the variable, if link a is used by driver k, then p;‘fk = 0, otherwise unrestricted
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