
energies

Article

Formal Verification and Co-Simulation in the Design
of a Synchronous Motor Control Algorithm

Cinzia Bernardeschi , Pierpaolo Dini , Andrea Domenici , Maurizio Palmieri
and Sergio Saponara *

Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56127 Pisa, Italy;
cinzia.bernardeschi@unipi.it (C.B.); pierpaolo.dini@phd.unipi.it (P.D.); andrea.domenici@unipi.it (A.D.);
maurizio.palmieri@ing.unipi.it (M.P.)
* Correspondence: sergio.saponara@unipi.it

Received: 1 July 2020; Accepted: 3 August 2020; Published: 5 August 2020
����������
�������

Abstract: Mechatronic systems are a class of cyber-physical systems, whose increasing complexity
makes their validation and verification more and more difficult, while their requirements become
more challenging. This paper introduces a development method based on model-based design,
co-simulation and formal verification. The objective of this paper is to show the applicability
of the method in an industrial setting. An application case study comes from the field of precision
servo-motors, where formal verification has been used to find acceptable intervals of values for design
parameters of the motor controller, which have been further explored using co-simulation to find
optimal values. The reported results show that the method has been applied successfully to the case
study, augmenting the current model-driven development processes by formal verification of stability,
formal identification of acceptable parameter ranges, and automatic design-space exploration.

Keywords: synchronous motor; cogging torque; power drive system; model-based design;
co-simulation; formal verification; theorem proving

1. Introduction

Mechatronic [1] (and, more generally, cyber-physical) systems are constantly growing
in complexity and widening their fields of application, and require higher and higher levels
of dependability and performance. Accordingly, system validation by simulation and testing
should be complemented with rigorous analysis and verification methods, leading to a
formal-verification-in-the-loop [2] development process.

This concept is the basis of the development process presented in this work. The process assumes
a high-level specification, typically in natural language or some semi-formal language, from which
a set of submodels is derived. The submodels may represent different structural parts (e.g., power
plant and gear train of a vehicle) or different aspects (e.g., electromagnetic and mechanical physics of a
motor) of the system. Each submodel can be developed by different domain experts, who use modeling
languages and tools fit for each domain. Co-simulation (as opposed to traditional, monolithic simulation)
is the co-ordinated simulation of heterogeneous submodels that have been developed independently.

Modeling languages are usually oriented to simulation. They may be based on different
conceptual frameworks, such as e.g., signal flows for Simulink and equations for Modelica and
their supporting environments provide a simulator. However, their support for verification is limited,
if any. In the proposed development process, also verifiable models are built. A model is verifiable if
it is written in a language oriented to verification and implemented in an environment providing tools
for automatic or semiautomatic verification. In this work, we propose to use an abstract mathematical
specification as the base of both the simulation-oriented and the verifiable model.

Energies 2020, 13, 4057; doi:10.3390/en13164057 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-1604-4465
https://orcid.org/0000-0002-9425-7354
https://orcid.org/0000-0003-0685-2864
https://orcid.org/0000-0002-6177-0928
https://orcid.org/0000-0001-6724-4219
http://www.mdpi.com/1996-1073/13/16/4057?type=check_update&version=1
http://dx.doi.org/10.3390/en13164057
http://www.mdpi.com/journal/energies


Energies 2020, 13, 4057 2 of 23

Not all submodels need be formally verified since many aspects of a system are well known
and can be designed with well-proven and reliable techniques. Formal verification is needed for the
more innovative components or aspects of a system, in particular for control systems. In this case,
co-simulation is particularly convenient.

In this work, we present an application of formal verification, co-simulation and design-space
exploration (DSE), to a case study of practical interest, a servo drive for permanent magnet
synchronous motors. Servo drives are cyber-physical (more specifically, mechatronic) systems since
they combine physical and algorithmic components. This case study has been chosen because servo
drives are systems of particular interest as they are applied in all fields of industrial automation,
industrial robotics, and automotive applications. However, the contribution of this work is not a new
control algorithm for brushless motors, but rather to propose a control algorithm verification procedure
in the context of mechatronic systems. The algorithm used in this case study had been previously
designed by two of the authors [3] and validated with the classic software-in-the-loop (SIL) procedure.

This paper aims at showing how formal verification and co-simulation can be introduced in the
design process to achieve more confidence in the system’s compliance with requirements and to assist
the designer in choices that would otherwise be based on rules of thumb and trial-and-error procedures.
Particular attention is paid to the tuning of parameters of the control algorithm, whose values, in a
classic SIL approach, can be chosen only by making many simulations. In the approach exposed in this
paper, formal methods are used to define acceptable ranges for those values, and co-simulation-based
DSE is used to explore systematically the parameter space.

In the rest of this section a small collection of references to the vast literature on mechatronic [1,4–6]
systems development is presented, grouped by their relevance to the main themes of this work, i.e., modeling
and simulation, co-simulation, and formal approaches.

Concerning modeling and simulation, system models are typically built with block-based languages,
which describe a system as an assembly of functional blocks, each representing a possibly complex
mathematical operation, and interconnected by data flows. The blocks have a visual representation,
but their semantics is defined in an underlying textual language. The models are then simulated
by running test scenarios and successful runs reinforce confidence on the correctness of the design.
However, exhaustive testing is not possible and high reliability of the system requires a high level
of testing coverage.

The MATLAB/Simulink suite [7,8] is a prime example of an environment supporting
block-based modeling. Among its large number of application-oriented toolboxes, the Stateflow
toolbox, based on a state machine formalism, can be used to model hybrid systems, which are
characterized by having a finite number of distinct modes of operation, and in each mode the system
evolves according to time-continuous laws.

Several papers may be cited from the literature on simulation of mechatronic systems published
in recent years. Dell’Amico and Krus [9] use monolithic simulation and hardware-in-the-loop (HIL)
simulation to design an electrohydraulic power steering system. In the HIL simulation, both the
controller and the vehicle-tire model are in software while the mechanical and hydraulic parts
are assembled in a test rig comprising the steering wheel, the rack and pinion, pump and valves,
and associated sensors and actuators.

An interface between Simulink and the finite elements toolkit Abaqus is presented by Orszulik
and Gabbert [10], oriented to the simulation of smart structures, i.e., solid bodies whose shape can
be modified through a control stimulus, such as, e.g., an electric field. As a case study, an aluminum
beam controlled by piezoelectric sensors and actuators is simulated with Abaqus, while the controller
is simulated in Simulink, in order to study the vibrational behavior.

Isermann et al. [11] discuss the role of HIL simulation in the development of engine-control
systems and report on the simulation of a Diesel engine interacting with real injection pumps and real
control units for engines and pumps.



Energies 2020, 13, 4057 3 of 23

Concerning co-simulation, an extensive survey has been recently published by Gomes et al. [12],
providing definitions of the fundamental concepts and the taxonomy of the literature based on the
computational model adopted in the various works: discrete events, continuous time and hybrid, i.e., a
mix of the two.

Co-simulation of multibody dynamic systems in ADAMS [13] and controllers in Simulink are
used by Hadas et al. [14] to analyze various types of industrial robots.

Use of the SysML language [15] is discussed in a paper by Sadovykh et al. [16], where a SysML
model defines the high-level architecture of a heating, ventilation, and air conditioning system
composed of various physical subsystems modeled in 20-sim and a controller modeled in VDM.
The latter has a digital (event-driven) component that reacts to user inputs and temperature changes
by switching between modes of operation (heating or cooling), and a continuous-time component that
in each mode controls the temperature with a PID algorithm.

Foldager et al. [17] present a case study on the development of a driverless lawn mower, describing
the interplay between experiment and simulation to study physical parameters, design parameters,
and operating conditions. First, two physical parameters have been determined by experiment, then
co-simulation has been used to choose an optimal value for a design parameter of the controller,
which has been validated by field testing. Finally, co-simulation has been used again to assess system
behavior for different speeds. The plant has been simulated in 20-sim and the controller in VDM.

From the literature of formal approaches, we may cite Giese et al. [18], who develop a formal
extension to UML Statecharts and components enabling developers to model cyber-physical systems
as hybrid automata [19] and supporting the modular composition of subsystems.

Model checking with UPPAAL is used by Lindahl et al. [20] to verify a gearbox controller,
modeled as a network of timed automata, against requirements of different kinds, including
performance and time bounds.

Cimatti et al. [21] developed HyComp, an SMT-based tool for the verification of networks
of hybrid automata. The tool can also synthesize design parameters [22].

The KeYmaera X interactive theorem prover is introduced by Fulton et al. [23]. In this environment,
continuous-time behaviors are expressed in the language of differential dynamic logic [24].

Another theorem proving environment is the Prototype Verification System which, differently
from KeYmaera, uses a general-purpose higher-order logic [25]. This environment has been used
in many application fields such as medical [26,27] and control systems [28,29], and it will be described
more extensively in Section 2.1.

Other interesting works, which exploit formal methods for verification, are listed below. In [30],
the authors propose a review of the state of the art in the field of automotive cyber-security, evaluating
the best combinations of on-board HW simulation methods and formal verification methods to
cover special cases. In [31], the authors present a strategy to control the power distribution system
to minimize electricity bills and meeting the comfort constraints of users. They use the UPPAAL
environment for modeling and verification by model checking.

This work is organized as follows: Section 2 provides background information on the theorem
proving and co-simulation; Section 3 introduces the methodology presented in this paper; Section 4
reports the design of a controller for brushless motors as a case study, and the application of formal
verification, Section 5 contains co-simulation, and DSE results, and Section 6 concludes the paper.

2. Background on PVS and Co-Simulation

This section introduces the two main techniques underpinning the proposed process: using
higher-order logic for verification and using co-simulation for validation and design-space exploration.
Verification is supported by the Prototype Verification System (PVS) [25] and co-simulation by the
INTO-CPS framework [32].



Energies 2020, 13, 4057 4 of 23

2.1. The PVS Environment

The PVS is an interactive theorem prover environment based on a typed higher-order logic language
and a sequent calculus deduction system [33], provided with a rich, extendable type system.

A PVS theory is a collection of definitions and formulae between a ‘name THEORY BEGIN’ and
an ‘END name’ statement. A user can define types, constants, variables, and functions. A formula
is a named logical statement, and it may be either an axiom (declared as such with the AXIOM keyword)
or a theorem (declared with such keywords as THEOREM, LEMMA, etc.). Axioms are taken as proved,
while theorems are proved using a large set of prover commands based on the sequent calculus. The
PVS language has arithmetic and logic types, and structured types, including record types and predicate
subtypes. For example, the specification of a particular motor may include the definition of physical
magnitudes, possibly with the acceptable ranges of values:

electric_motor_th: THEORY
BEGIN
Resistance: TYPE =

{x: nonneg_real | 1.5 <= x and x <= 3.5}
Inductance: TYPE = nnreal
Flux: TYPE = nnreal
Current: TYPE = nnreal
...
electric_motor: TYPE = [#

stator_resistance: Resistance,
inductance :Inductance,
pole_pairs: nat,
flux_intensity: Flux #]

The above definitions declare that a current is a magnitude with non-negative real (nnreal)
values, that a resistance takes non-negative values in the range [1.5, 3.5], and so on. Type Resistance
is an example of a predicate subtype, defined by adding a constraint to its supertype. The concept
of electrical motor can then be modeled as a record type containing the parameters of a generic motor.
A particular motor is then modeled as an instance of type electric_motor, specifying the values of its
parameters:

acmePN123: electric_motor =
(# stator_resistance := 3.1, inductance := 0.5, pole_pairs := 4,

flux_intensity := 0.85 #)

The theory introduces relationships among physical magnitudes, e.g.,

power(R: Resistance, i1, i2, i3: Current): real =
R*((i1*i1) + (i2*i2) + (i3*i3))

Finally, system properties are expressed as theorems to be verified, e.g.,

power_positive: THEOREM
FORALL (R: Resistance, i1, i2, i3: Current):

power(R, i1, i2, i3) >= 0
END electric_motor_th

The PVS syntax language uses logical connectives and quantifiers, the IF ... ENDIF clause and
the COND ... ENDCOND clause, which is composed of condition → expression pairs and translates to
a set of conditional clauses.

Any theory can use other theories by importing them. The specification of complex systems can
be built incrementally importing theories defining subsystems into the theory of the overall system.

The proof for the simple power_positive theorem in the theory above is shown below:



Energies 2020, 13, 4057 5 of 23

power_positive :
|-------

{1} FORALL (R: Resistance, i1, i2, i3: Current): Power(R, i1, i2, i3) >= 0

Rule? (grind)
Power rewrites Power(R, i1, i2, i3)

to R*i1*i1 + R*i2*i2 + R*i3*i3
Trying repeated Skolemization, instantiation, and~if-lifting,

Q.E.D.

The theorem is proved with the single PVS grind command, which automatically applies
simplifications, using type information. More realistic theorems are proved with longer sequences
of commands.

2.2. Co-Simulation

Co-simulation is the simulation of a complex system by the co-ordinated simulation of its
subsystems, each executed in a specific environment. This makes it possible to model each subsystem
independently, using the preferred modeling language and simulator.

The Functional Mockup Interface (FMI) [34] is the standard for co-simulation adopted in this
work. In this standard, each submodel is packaged in a Functional Mockup Unit (FMU) containing
the submodel itself (e.g., in Simulink) and possibly the respective simulator, together with any
resource required for simulation. The FMUs communicate with a co-simulation orchestration engine that
synchronizes the FMUs and dispatches data among them.

In this work, co-simulation was supported by the INTO-CPS toolchain, developed by the
INTO-CPS project [32]. With this toolchain it is possible to co-simulate models formalized in different
languages, such as Modelica, MATLAB, VDM, and PVS. The user interface (the INTO-CPS Application)
of the toolchain allows developers to design a co-simulation by assembling different FMUs and
configuring how simulations are executed.

Figure 1 shows the standard architecture of an FMI co-simulation.

co−simulation

orchestration

engine

model
1

Simulink
environment

FMU 1

model
2

Modelica
environment

FMU 2

model
n

AnOther
environment

FMU n

Figure 1. FMI co-simulation architecture.

The INTO-CPS toolchain also provides DSE, which allows parametric robustness analyzes to be
performed in a systematic way. This feature enables designers to specify the desired sets of parameter
values, the objective functions, and the ranking criterion. The INTO-CPS application executes the
co-simulations, collects the results, computes the objective functions for each tuple of parameter values,
and ranks the tuples according to the specified criterion.



Energies 2020, 13, 4057 6 of 23

3. A Development Process Integrating Verification and Co-Simulation

In the development of complex, possibly safety-critical applications, it is desirable to exploit
both simulation and formal verification. In this section, we present a development process that
integrates co-simulation and verification by computer-assisted theorem proving. This section is the core
of this paper’s contribution, as it defines the structure of the development process in its general form.
An example of its application is shown in the next section, where the design of a control algorithm for
a brushless motor is taken as a case study. Readers interested in the details and performance of the
algorithm are referred to [3].

The process, represented in Figure 2, is based on three models of a mechatronic system (rectangular
boxes), which are the inputs to the process activities (ovals). The models are the mathematical, logic,
and simulation model. The latter two models are the starting points of two activity flows, simulation
and verification.

assessment

modelmathematical

model
simulationlogic model

proof co−simulation

DSE
STOP

process flow
information flow

parameter constraints

verification/simulation failure?

chosen parameter values

Figure 2. Integrated workflow.

The mathematical model is a mathematical specification of the system, from which the two other
models are derived. This model is composed of three parts: (i) the definition of the plant dynamics,
(ii) the control algorithm, and (iii) the system requirements. Each part, in turn. may be decomposed
into submodels, reflecting the system’s structure.

The simulation model is an executable specification of the plant dynamics and the control algorithm.
This specification is usually built as a monolithic model using a block-based language such as Simulink,
but co-simulation affords the convenience of using different languages for different submodels.
This is particularly useful when a model is already available for one subsystem (e.g., the plant)
and a model for another subsystem (e.g., the controller) is to be created anew.

The logic model is a translation of the mathematical model into a language suitable for verification.
In the present work, the logic model has been expressed in the PVS higher-order logic language. In this
language, a logic model can be structured into a set of theories, each corresponding to a different
submodel of the mathematical model. The mathematical models of plant and control algorithm are
translated directly into PVS axioms and definitions, while requirements become theorems to be proved
against the theory.

The simulation flow uses the executable models of the plant and control parts to collect
experimental results from the co-simulation activity. At this stage of development, the control



Energies 2020, 13, 4057 7 of 23

part design is software design, so that its executable model is conveniently built with a software
specification language, or directly in the implementation language, whereas the plant is built with
physical modeling languages. Co-simulation is chosen as the simulation method to cater for the
different formalisms.

The verification flow uses the logic model to prove if the requirements are satisfied. The proof
activity takes place as interactive theorem proving, as anticipated in Section 2.1: The theorem prover
displays the goal, i.e., the statement to be proved, and the user issues commands that simplify the goal
or decompose it into subgoals. This is repeated until the initial goal is reduced to a set of subgoals
simple enough to be proved automatically by the theorem prover, or else until no command can
simplify some subgoal, in which case the theorem is not verified. The proof activity then results
in a verdict of verified or not verified for each theorem. As a byproduct, verification may lead to the
definition of constraints on design parameters, which are fed back to the mathematical model and
propagated to the simulation and verification flows, as shown in Figure 2.

The two workflows merge into the assessment activity, which consists of taking action in response
to the results of proof and co-simulation. In case of negative results of either proof or simulation,
the logic and simulation models are reviewed and compared with each other. Comparing logic
and simulation models is useful since the two models, albeit derived from the same mathematical
specification, are built on different conceptual frameworks, and either one can shed light on the other
one’s issues. The two models are then compared with the mathematical model, to ensure that it has
been correctly translated. In the following, we assume that the three models are coherent. As a result
of the assessment activity, the mathematical model is updated and the updates are propagated to the
two parallel flows.

In the case of negative simulation results, tests can be designed to isolate the parts of the
specifications where problems lie, and the mathematical model can be changed accordingly.

Negative verification verdicts are caused by inconsistencies in the logical specification, such as
false, incomplete, or contradictory assumptions or requirements. There is no mechanical procedure
to pinpoint such inconsistencies, but the interactive theorem proving process usually guides the
developer in the search for inconsistencies. Typically, a failed proof gets stuck in the attempt to prove
a faulty statement, whose analysis reveals a conceptual problem in the specification.

Depending on the project context, different parts of the specification can be changed.
If the requirements and plant are fixed, clearly only the control part can be acted upon.
Otherwise, modifications of the plant or even the requirements can be considered. For example,
components with different characteristics can be chosen, or performance requirements can be loosened.

The above cycle is iterated as necessary until the results are satisfactory. In this case,
the design-space exploration activity starts. DSE consists of trying out different combinations
of design parameters to find those that maximize certain figures of merit or minimize certain costs.
In the approach proposed in this work, the design space is made of the intervals of parameter values
that have been formally and experimentally shown to satisfy the requirements.

The design parameter values chosen by DSE are used to produce the final version of all the
models, ready for further stages of development, such as HIL simulation and implementation.

Many variations to the above schema are possible. In particular, a logic specification can be both
verifiable and executable, and then used both for verification and simulation. Another variation is the
side by side deployment of verification tools and automated mathematical tools, as shown in the
following sections.

Furthermore, it may be remarked that the software-based process introduced in this paper can be
included in a complete process, where a HIL phase is used to validate the simulations.



Energies 2020, 13, 4057 8 of 23

4. Design of a Controller to Reduce Cogging Torque in Brushless Motors

This section describes the application of the proposed process to the design of a control algorithm
for a precision servo-motor. The control algorithm is designed to reduce the cogging effect, an adverse
phenomenon causing mechanical oscillations, in a large brushless motor [3].

This case study is meant to show how the integration of co-simulation, formal verification,
and design-space exploration tools can provide additional contributions to the analysis of control
algorithms with respect to development processes relying only on (monolithic) simulation.

Tables 1 and 2 list the parameters and values used in the following.

Table 1. Parameters.

Symbol Value Parameter

Z 10 number of stator teeth
p 3 number of pole pairs
T1 4.0 N ·m amplitude of cogging torque’s first harmonic
α1 0.009 rad phase of cogging torque’s first harmonic
R 3.3 Ω resistance
L 0.05 H inductance
k 0.5 Wb magnetic flux
J 0.01 kg ·m2 rotational inertia
β 0.01 N · s/m friction coefficient

Table 2. Variables.

Variable Quantity

ia, ib, ic a-, b-, c-components of current
ua, ub, uc a-, b-, c-components of voltage
ea, eb, ec a-, b-, c-components of electromotive force
id, iq direct and quadrature components of current
ud, uq direct and quadrature components of voltage
θ, ω angular position and velocity
ı̄d, θ̄ desired values of id and θ
Tem, Tcog electromagnetic and cogging torques
v1, v2 control voltages

4.1. Mathematical Model

The mathematical model is composed of the control and the motor model. The latter, as explained
in [3,35], includes a model of the cogging effect, together with the nominal physical behavior of the
motor.

The electromagnetic component of the motor model is given by the equations for the
counter-electromotive force (Equation (1)) and applied voltage (Equation (2)) on each winding (a, b, c).

ea = −ωpk sin(pθ)

eb = −ωpk sin(pθ − 2
3

π)

ec = −ωpk sin(pθ − 4
3

π)

(1)


ua = Ria + Li̇a + ea

ub = Rib + Li̇b + eb

uc = Ric + Li̇c + ec

(2)



Energies 2020, 13, 4057 9 of 23

The resulting useful electromagnetic torque is

Tem = −pk(ia sin(pθ) + ib sin(pθ − 2
3

π) + ic sin(pθ − 4
3

π)) (3)

Cogging is caused by the magnetic interaction between the permanent magnets arranged on the
surface of the rotor and the teeth of the stator cavities, as shown in Figure 3. This interaction results
in an alternating mechanical torque with zero mean value that is added to the electromagnetic one,
causing a vibration of the rotor axis. As described in [3,35], the value of the cogging torque can be
approximated with a truncated Fourier series (Equation (4)).

rotor

statorteeth

air gap

magnets

Figure 3. Schematic representation of the magnetic interaction between stator and rotor.

Tcog =
m

∑
k=1

Tk sin(kZθ + αk) (4)

The mechanical component of the motor model is then given by Equations (5):{
Jω̇ + βω = Tem + Tcog

ω = θ̇
(5)

The controller has been designed with a Feedback Linearization Control (FLC) technique [36].
For simplicity, the electromagnetic laws are expressed in terms of d-q phasors [37] and the law
describing the cogging torque is truncated to its first harmonic. The controller’s inputs are the desired
values of current īd and angular position θ̄, and the feedback values of current (id and iq), angular
position θ, and angular speed ω. Its characteristic parameters are the gains K11 and K22, from which
the intermediate control voltages v1 and v2 are computed according to Equation (6). The latter are fed
to a compensation block that computes the controller outputs ud and uq (Figure 4).(

v1

v2

)
=

(
K11 0

0 K22

)(
id − ı̄d
θ − θ̄

)
(6)

Equations (7) define the control voltages according to the resulting control law.



Energies 2020, 13, 4057 10 of 23



ud = Lv1 + Rid − Lpiqω

uq =
2JL
3pk

[v2 −
3pk
2J

(−Riq − pω(Lid + k))]

+ Zω(T1 cos(Zθ + α1))−
β

J
[
3
2

pkiq + (T1 sin(Zθ + α1))])

(7)

compensation

cogging torque
motor

+
−

feedback linearization controller

K11,K22
v1, v2īd, θ̄ ud, uq id, θ

Figure 4. Schematic representation of the control loop.

4.2. Simulation Model

This section shows the block diagrams of the motor and control simulation models.
As a first step, the motor model has been split into its electrical and mechanical parts (Figure 5)

and modeled in Simulink. In the schema, (ua, ub, uc) and (ia, ib, ic) are the phasors of voltage and
current, respectively, while θ and ω are the rotor’s position and speed, respectively.

Figure 5. Block Diagram Model of the Motor.

Figure 6 and 7 show, respectively, the block diagrams for the electrical equilibrium of a single
stator phase and the mechanical equilibrium of the motor.

Figure 6. Block diagram of the equation for the electromagnetic equilibrium of the k-th stator phase.



Energies 2020, 13, 4057 11 of 23

Figure 7. Block diagram of the mechanical equilibrium.

The block diagram of the controller part is shown in Figure 8. The diagram includes the blocks
for coordinate transformation from the three-phase to the two-phase frame. The FLC compensation
and the feedback gain are computed by a Simulink M-function written in C.

Figure 8. Block diagram of the control law.

4.3. Logic Model

The logic model has been built to find acceptable ranges of values for the controller gains that
ensure stability. To do so, a linearized mathematical model has been introduced [38]. In Equations (8),
Udq, Idq, and Edq are the voltage, current, and counter-electromotive force, respectively, expressed
as pairs of d-q phasors, while Ldq and Rdq are the inductance and resistance matrices, respectively.
From a well-known result of control theory, stability requires the eigenvalues of the system’s Jacobian
to have non-positive real parts. 

İdq = L−1
dq (Udq − Rdq Idq − Edq)

θ̇ = ω

ω̇ =
Tem + Tcog − βω

J

(8)



Energies 2020, 13, 4057 12 of 23

The eigenvalues λ1, . . . λ4 of the Jacobian depend on the position θ and on the controller gains,
and they have been computed symbolically with MATLAB, obtaining Equations (10), where Φ1 and
Φ2 are auxiliary functions (Equations (9)) and C1, . . . C6 are constants (Table 3).

Table 3. Numerical coefficients.

Coefficient Value Coefficient Value

C1 4040 C2 1,237,529
C3 9/1000 C4 153,666,659/90,000
C5 1,597,813,728,139/27,000,000 C6 6371/300

Φ1(θ) = C1 cos(10θ + C3)/3−C4

Φ2(θ) = C2 cos(10θ + C3)/15 + C5
(9)

Re(λ1) = Re(λ2)

Re(λ2) = −
Φ1(θ)

2 3

√
K22

2 + Φ2(θ) +

√(
K22

2 + Φ2(θ)
)2
−Φ1(θ)3

− 1
2

3

√√√√K22

2
+ Φ2(θ) +

√(
K22

2
+ Φ2(θ)

)2
−Φ1(θ)3 −C6

Re(λ3) =
Φ1(θ)

3

√
K22

2 + Φ2(θ) +

√(
K22

2 + Φ2(θ)
)2
−Φ1(θ)3

+
3

√√√√K22

2
+ Φ2(θ) +

√(
K22

2
+ Φ2(θ)

)2
−Φ1(θ)3 −C6

Re(λ4) = K11

(10)

We may notice that the real part of λ4 equals K11, therefore this parameter is ignored in the
following discussion since any negative value is acceptable for stability.

Equations (10) were translated into the PVS language, together with the necessary definitions
of variables, constants, and functions. For example, the following PVS fragment is the definition of
Re(λ3):

re_lambda_3(K_22, theta: real): real =
Phi_1(theta)/cubicrt(K_22/2 + Phi_2(theta)
+ sqrt((K_22/2 + Phi_2(theta))^2 - Phi_1(theta)^3))
+ cubicrt(K_22/2 + Phi_2(theta)
+ sqrt((K_22/2 + Phi_2(theta))^2 - Phi_1(theta)^3)) - C_6

Auxiliary functions were introduced to rewrite (10) more compactly, for example:

a(K_22, theta: real): real = K_22/2 + Phi_2(theta)

X(K_22, theta: real): real =
cubicrt(a(K_22, theta) + sqrt(sq(a(K_22, theta)) - Phi_1(theta)^3))

re_lambda_3_rew(K_22, theta: real): real =
Phi_1(theta)/X(K_22, theta) + X(K_22, theta) - C_6



Energies 2020, 13, 4057 13 of 23

4.4. Verification

In this particular application, the verification activity might more properly be called a logic-based
design since it is oriented to the synthesis of design parameters rather than the a posteriori
requirements verification. The starting point; however, is the stability requirement, which constrains
the eigenvectors to be non-positive. For example, the requirement for λ3 is

<(λ3) ≤ 0 . (11)

This inequality is first rewritten in terms of function re_lambda_3_rew above. First, this function
is shown to be equivalent to the original definition of <(λ3):

lem_1: LEMMA
FORALL (K_22, theta: real):

re_lambda_3_rew(K_22, theta) = re_lambda_3(K_22, theta)

Then it was shown that the inequality can be expressed with the quadratic function defined
in the NASALIB library, considering the real part of λ3 as a quadratic function of X(k_22, theta)

quad3: LEMMA
FORALL (K_22, theta: real):

real_lam3(K_22, theta) <= 0
IFF quadratic(1, -C_6, Phi_1(theta))(X(K_22, theta)) <= 0

From this point on, relationships involving X(k_22, theta) are found, e.g.,

lem_3: LEMMA
FORALL (K_22, theta: real):

re_lambda_3_rew(K_22, theta) <= 0
IMPLIES X(K_22, theta) >= b_1_lam3(theta)

AND X(K_22, theta) <= b_2_lam3(theta)

where b_1_lam3(theta) and b_2_lam3 are the roots of the quadratic function. From such relationships,
conditions on K22 are derived.

By proving several lemmas like the one above, it was shown that a given interval of values for
K22 guarantees asymptotic stability. This interval was computed numerically (namely −400, 000 ≤
K22 ≤ −250, 000) since the actual physical characteristics of a specific motor were used.

In summary, the main points of the procedure for the design of the control algorithm was
presented, starting from the mathematical model of electro-mechanical equilibrium. The mathematical
model of the electric machine is derived from the unified theory of electrical machines [39] and
additionally it includes the mathematical model of the cogging torque, a non-negligible source
of non-linearity. The control algorithm has been designed to reduce the cogging effect, in addition to
tracking the reference values of position and electric current. Moreover, combining control systems
theory with formal verification, the choice of some parameters of the control algorithm was made as
systematic as possible, instead of relying only on multiple simulations.

5. Co-Simulation and Design-Space Exploration

In this section, we report the results of co-simulation for trajectory tracking of the rotor position.
Three FMUs have been generated starting from a complex Simulink schema that implements

the entire electric drive: the first related to the generator of the desired angular position of the rotor
axis; the second related to the control laws obtained with the FLC technique described above; a third
one incorporating the part of the process to be controlled, which includes the models of pulse width
modulator (PWM), inverter, and synchronous motor. The plant and signal generator FMUs have been



Energies 2020, 13, 4057 14 of 23

generated using the FMI export feature of Simulink, while the FLC controller and its FMU have been
implemented in Misra C.

Figure 9 describes how the three FMUs are connected together. In particular, the co-simulation
orchestration engine manages the communication between each FMU so that when all FMUs
execute a simulation step the updated outputs are provided to the FMU that requires them as input.
For example, the output values θ, ω, id and iq of the plant FMU are connected to the input values θ, ω,
id and iq of the control FMU, so at the end of every simulation step the co-simulation orchestration
engine forwards their updated values from the plant FMU to the control FMU.

Figure 9. Schematic representation of the FMU connections.

The chosen sampling time is 100 µs. The choice is in accordance with the Nyquist sampling theorem.
All the co-simulations performed in this work assume a fixed step size of 100 µs and have a duration
of 10 s.

In the simulations, the desired values of θ are sequences of rectangular pulses. The co-simulation
results are shown as plots of the system response θ superimposed to the system positioning command
θ̄. The figures are generated by the INTO-CPS interface. The ordinates are the values of θ and θ̄

in radians and the abscissae represent time in seconds.
The line labeled Out1 in the legend represents θ̄ and the line labeled Theta_m represents θ; the

label prefixes track.trackInstance and plant.plantInstance are the INTO-CPS names of the signal
generator and plant FMUs, respectively.

Figure 10 shows the results of co-simulation for a value of K22 outside the range identified in the
proof activity. In this case, θ fails to reach three out of five desired values (−5, 10, and −10).

Figure 10. Co-simulation for K11 = −1000 and K22 = −50, 000.



Energies 2020, 13, 4057 15 of 23

As another example, Figure 11 shows the results of co-simulation when K22 = −500 is further
above the upper bound of the range identified by the proof activity. The value of θ does not follow the
requested value and remains stuck near its initial value.

Figure 11. Co-simulation for K11 = −1000 and K22 = −500.

Figure 12 shows the results of co-simulation when the value of K22 is below the lower bound
of the identified range. In this case, θ approaches θ̄ with a damped oscillation.

Figure 12. Co-simulation for K11 = −1000 and K22 = −600, 000.

Figure 13 shows that asymptotic stability is attained for a value of K22 within the indicated range,
as θ follows closely θ̄ except in the transient phase where it shows an overshoot depending on the
difference between θ and θ̄.



Energies 2020, 13, 4057 16 of 23

Figure 13. Co-simulation for K11 = −1000 and K22 = −250, 000.

On average, on an Intel Core i7-7700 CPU processor with 32 Gb of RAM, each co-simulation took 2
and half minutes to complete. It should be stressed that the FMI standard allows a black-box approach
for co-simulation, in which each model can be expressed as a standalone FMU and different languages
and tools can be easily combined together. The co-simulation presented in this section can, therefore,
be easily expanded by replacing any FMU with a more refined one. Moreover, the standalone FMUs
can be reused in other scenarios, reducing the time needed to assemble a new co-simulation.

5.1. Assessment

The verification work allowed the definition of sufficient conditions for system stability
on the design parameters, and its assessment did not result in the need for changing the original
mathematical model.

The assessment of the simulation resulted in the validation of verification results, as it showed
that parameters values chosen within and outside the indicated ranges proved to be, respectively,
satisfactory or unsatisfactory, as shown by the counterexamples in Figures 11 and 12.

In a different scenario, the simulation activity reported in Section 5 can be seen as an example
of design carried out by heuristic, or trial and error, methods. In this approach different vales of K22

have been tried until acceptable values have been found.

5.2. Design-Space Exploration

The INTO-CPS DSE feature enables designers to specify the desired sets of parameter values
to try, the objective functions, and the ranking criterion. The INTO-CPS application executes the
co-simulations, collects the results, computes the objective functions for each tuple of parameter values,
and ranks the tuples according to the specified criterion.

This section shows two applications of DSE, one to analyze design robustness with respect to
variations of physical parameters and one to optimize design parameters.

In the first experiment, Figure 14 shows the behavior of θ for values of inductance L equal to
the nominal value (50 mH) and to the values corresponding to the nominal value ±15%. The control
gain K22 is −250, 000. The continuous line is the desired θ (Theta_des in the legend), and each
dotted line represents θ for the three values of inductance. The results are qualitatively satisfactory
since the differences among the curves are small. Clearly, a quantitative statement of the robustness
requirements is needed for a definitive assessment.



Energies 2020, 13, 4057 17 of 23

Figure 14. Co-simulation runs for different values of inductance (in Henry).

In the second application, DSE was used to determine combinations of design parameter values
that minimize the following objective functions:

• the absorbed power, Pc:

Pc =
1
N

N

∑
k=1

(Uk Ik) =
1
N

N

∑
k=1

(Ua,k Ia,k + Ub,k Ib,k + Uc,k Ic,k) (12)

• the mean square deviation of the tracking error on the angular position, Eθ

Eθ =
1
N

N

∑
k=1

(θk − θ̄)2 (13)

• the mean square deviation of the tracking error on the current’s direct component Eid

Eid =
1
N

N

∑
k=1

(id,k − īd)2 (14)

In these equations, N is the number of samples collected in a single co-simulation run, one for
each co-simulation step. In Equation (12), the samples are the three-phase supply voltage (Uk =

[Ua,k, Ub,k, Uc,k]) and the three-phase current vector (Ik = [Ia,k, Ib,k, Ic,k]). In Equation (13), the samples
are the values of the angular rotor position (θk) and of its desired value (θ̄k). In Equation (14),
the samples are the values of current’s direct component (id,k) and of its desired value (īd).

The following combinations of parameters are used:

• K11 has been fixed at −1000 because this variable has a low impact on the system behavior,
as shown in a previous work [3].

• K22 takes the values −250, 000 and −200, 000 in order to study the behavior with two values, one
inside and one outside the interval found in Section 4.4.

• the angular position takes the values of 10, 20 and 30 radians.



Energies 2020, 13, 4057 18 of 23

• The inductance L takes the values 42.5, 50, and 57.5 mH, i.e., the nominal value and small
variations.

The Pareto front [40] method has been used to find the best parameter combinations to
simultaneously minimize pairs of cost functions. The combinations are ranked so that lower rank
values indicate better performance.

Since the goal of this DSE analysis is to minimize all pairs of the objective functions, in the plots
shown in this section, lower rank points are closer to the origin of the axes (the green points are the
closest ones). In the figures, adjacent rank groupings have different colors, points connected by a line
have the same rank and the values of the angular position are reported in the figures as they are related
to different clusters, shown by ovals.

Table 4 and Figure 15 show results for the power absorption of the machine (Pc) and the mean
square deviation of the desired current tracking error (Eid ), respectively.

Table 4. Pareto ranking for Pc and Eid
.

Rank Pc Eid L θ̄ K22

1 133.225808994 0.4520951516 0.0425 10 −200,000
2 182.338023217 0.6207469189 0.05 10 −200,000
3 203.174600076 0.7698643094 0.0425 10 −250,000
4 238.510251169 0.8146819387 0.0575 10 −200,000
5 284.764456886 1.056688425 0.05 10 −250,000
6 389.645017067 1.393178146 0.0575 10 −250,000
7 390.725315887 2.4496935013 0.0425 20 −200,000
8 536.217360079 3.1270257044 0.05 20 −200,000
9 606.28853597 3.9126048439 0.0425 20 −250,000

10 681.333349658 3.9590184538 0.0575 20 −200,000
11 764.927467024 5.9664482285 0.0425 30 −200,000
11 792.274533863 5.0855301421 0.05 20 −250,000
12 991.117882891 7.5735576985 0.05 30 −200,000
12 1034.82060285 6.5027556699 0.0575 20 −250,000
13 1146.74688913 9.5474224247 0.0425 30 −250,000
13 1244.20686295 9.3341197085 0.0575 30 −200,000
14 1474.30527198 12.1749251909 0.05 30 −250,000
15 1844.30406114 15.0481912736 0.0575 30 −250,000

Figure 15. Pareto front for Pc and Eid
.



Energies 2020, 13, 4057 19 of 23

Increasing values of θ̄ (the number in the oval) lead to higher values of mean square deviation
and more power absorption, meaning that small movements are more controllable and need less
power, as expected. Regarding the effects of K22 and L for any fixed value of θ̄, the best performance
is achieved for smaller values of L and larger values of K22. For any θ̄, the best combination of parameter
is L= 0.0425, K22 = −200, 000, while the worst combination is L= 0.0575, K22 = −250, 000.

Table 5 and Figure 16 show the minimization of the power input (Pc) and the mean square
deviation of angular position tracking error (Eθ).
In Figure 16, changes of θ̄ significantly affect the error of the tracking position, creating well separated
clusters. For θ̄ = 10, the values of L and K22 have little influence, whereas their influence increases
for larger values of θ̄. The combination of parameters that minimizes the error on tracking position
is L= 0.0575, θ̄ = 10, K22 = −250, 000, while the combination that minimizes the power required
is L= 0.0425, θ̄ = 10, K22 = −200, 000. The worst cases of each cluster are correlated with a larger
value of L (Table 5, rows 5 and 6 for θ̄ = 10; rows 11 and 12 for θ̄ = 20; rows 17 and 18 for θ̄ = 30).

Table 5. Pareto ranking for Pc and Eθ .

Rank Pc Eθ L θ̄ K22

1 133.225808994 3.0012689667 0.0425 10 −200,000
1 182.338023217 2.8554161212 0.05 10 −200,000
1 203.174600076 2.6613697359 0.0425 10 −250,000
1 284.764456886 2.5666163063 0.05 10 −250,000
1 389.645017067 2.5096108736 0.0575 10 −250,000
2 238.510251169 2.6658599693 0.0575 10 −200,000
3 390.725315887 13.5604089712 0.0425 20 −200,000
3 536.217360079 13.3507337866 0.05 20 −200,000
3 606.28853597 12.5238422201 0.0425 20 −250,000
3 792.274533863 12.0083838635 0.05 20 −250,000
4 681.333349658 13.0097947735 0.0575 20 −200,000
4 1034.82060285 12.0973710284 0.0575 20 −250,000
5 764.927467024 33.6920496 0.0425 30 −200,000
5 991.117882891 32.6884214852 0.05 30 −200,000
5 1146.74688913 31.0693366505 0.0425 30 −250,000
5 1474.30527198 30.6858006581 0.05 30 −250,000
6 1244.20686295 32.611319147 0.0575 30 −200,000
6 1844.30406114 31.0435733541 0.0575 30 −250,000

Figure 16. Pareto front for Pc and Eθ .



Energies 2020, 13, 4057 20 of 23

Table 6 and Figure 17 show results for the minimization of deviations both of angular position
(Eθ) and current (Eid). In Figure 17, it is possible to notice that the three different values of θ̄

lead to distinct clusters, well separated along the abscissae. Parameters L and K22 affect Eid
more than Eθ . For every θ̄, the parameter combination that minimizes the error of the current
is L= 0.0425, K22 = −200, 000. It is possible to identify the worst combination for all parameters which
is θ̄ = 30, L= 0.0575, K22 = −250, 000.

Table 6. Pareto ranking for Eθ and Eid
.

Rank Eθ Eid L θ̄ K22

1 2.5096108736 1.393178146 0.0575 10 −250,000
1 2.5666163063 1.056688425 0.05 10 −250,000
1 2.6613697359 0.7698643094 0.0425 10 −250,000
1 2.8554161212 0.6207469189 0.05 10 −200,000
1 3.0012689667 0.4520951516 0.0425 10 −200,000
2 2.6658599693 0.8146819387 0.0575 10 −200,000
3 12.0083838635 5.0855301421 0.05 20 −250,000
3 12.5238422201 3.9126048439 0.0425 20 −250,000
3 13.3507337866 3.1270257044 0.05 20 −200,000
3 13.5604089712 2.4496935013 0.0425 20 −200,000
4 12.0973710284 6.5027556699 0.0575 20 −250,000
4 13.0097947735 3.9590184538 0.0575 20 −200,000
5 30.6858006581 12.1749251909 0.05 30 −250,000
5 31.0693366505 9.5474224247 0.0425 30 −250,000
5 32.611319147 9.3341197085 0.0575 30 −200,000
5 32.6884214852 7.5735576985 0.05 30 −200,000
5 33.6920496 5.9664482285 0.0425 30 −200,000
6 31.0435733541 15.0481912736 0.0575 30 −250,000

Figure 17. Pareto front for Eθ and Eid
.

From the results of the analysis, it is possible to recognize some patterns, so as to identify recurring
behaviors or some trends of the system under examination.

It is possible to notice that experiments with the lowest value of θ̄ have better performance for
each pair of objective functions. This result is expected, as higher values of amplitude require the
motor to perform faster and longer rotations.



Energies 2020, 13, 4057 21 of 23

Finally, from the minimization of Eθ and Eid , it is possible to notice that the value of K22 suggested
by the formal method analysis produces the best results for Eθ while lower values of L produce the
best results for Eid .

6. Conclusions

This article presents a development process integrating formal verification, co-simulation and
design-space exploration. An application of this method has been shown in the design of a controller
for a mechatronic system, namely a feedback linearization controller for the reduction of cogging
torque in a brushless motor.

Formal verification has been used to identify ranges of values for the controller gain coefficients,
satisfying the stability requirement of the non-linear dynamic system. This verification provides
designers with the starting point for subsequent design refinements, which otherwise could be derived
only through a trial-and-error process.

Co-simulation made it possible to build a system model by assembling different submodels
simulated by heterogeneous environments. This is a relevant advantage in the design of complex
systems combining subsystems of different natures, such as electrical, hydraulic, mechanical,
software, etc. The results of the co-simulation have validated the results of the verification activity.
Furthermore, co-simulation driven by a high-level design-space exploration environment has been
used to assess the robustness of the control algorithm with respect to parameter variations and to find
optimal parameter values.

This work shows the usefulness of the proposed method in the development of control in electric
drive systems, but it is as well applicable to many other areas such as driving and navigation algorithms
and energy management.

Synergies between verification and co-simulation lead to a development process that exploits the
results of both approaches to enhance the initial model.

Summarizing, a method of verification of a control algorithm has been proposed in this work that
can be considered an advanced version of the classic SIL method in which part of the physical system
to be tested is replaced with a software component that simulates its outputs. The new features of the
proposed verification method with respect to the classic SIL method are listed as follows:

• using the methodology described in the article, one could think of formally analyzing the global
state of a mechatronic systems, with a view to safety, mapping the operating states directly with
PVS and analyzing the final effects of the unpredictable variations of the parameters via DSE,
as well as verify the robustness of the entire dynamic system through co-simulation

• the development of a generalized and more automatic procedure can be used to analyze and
verify conditions for the safety of the dynamic system and its users, which is essential in the
field of automation and industrial robotics and in the motor vehicle industry, where often the
development of a safe and efficient system requires a large number of field tests, which have
significant costs

• a systematic development process based on formal methods and co-simulations in the early
phases of system design allows reducing risks in the physical prototyping phase.

Author Contributions: The authors contributed in equal measure to the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Italian Government under the CrossLab program, “Dipartimenti di
Eccellenza” project.

Acknowledgments: The authors would like to thank the reviewers for their useful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2020, 13, 4057 22 of 23

References

1. Isermann, R. Mechatronic Systems: Fundamentals; Springer: Berlin, Germany, 2005; pp. 1–624,
doi:10.1007/1-84628-259-4.

2. Bernardeschi, C.; Domenici, A.; Saponara, S. Formal Verification in the Loop to Enhance Verification of
Safety-Critical Cyber-physical Systems. Electron. Commun. EASST 2019, 77, doi:10.14279/tuj.eceasst.77.1106.

3. Dini, P.; Saponara, S. Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique.
Energies 2019, 12, 2224, doi:10.3390/en12112224.

4. Pelz, G. Mechatronic Systems: Modelling and Simulation with HDLs; Wiley: Hoboken, NJ, USA, 2003.
5. Gausemeier, J.; Moehringer, S. VDI 2206—A New Guideline for the Design of Mechatronic Systems.

IFAC Proc. Vol. 2002, 35, 785–790, doi:10.1016/S1474-6670(17)34035-1.
6. Entwicklungsmethodik für Mechatronische Systeme—Design Methodology for Mechatronic Systems;

Technical Report VDI 2206; VDI—Verein Deutscher Ingenieure: Dusseldorf, Germany, 2004.
7. Scicoslab web site. Available online: http://www.scicoslab.org.(accessed on 30 June 2020).
8. Simulink® web site. Available online: http://www.mathworks.com/products/simulink (accessed on 30

June 2020).
9. Dell’Amico, A.; Krus, P. Modeling, Simulation, and Experimental Investigation of an Electrohydraulic Closed-Center

Power Steering System. IEEE/ASME Trans. Mechatronics 2015, 20, 2452–2462, doi:10.1109/TMECH.2014.2384005.
10. Orszulik, R.R.; Gabbert, U. An Interface Between Abaqus and Simulink for High-Fidelity Simulations

of Smart Structures. IEEE/ASME Trans. Mechatronics 2016, 21, 879–887, doi:10.1109/TMECH.2015.2496727.
11. Isermann, R.; Schaffnit, J.; Sinsel, S. Hardware-in-the-loop simulation for the design and testing of

engine-control systems. Control Eng. Pract. 1999, 7, 643–653, doi:10.1016/S0967-0661(98)00205-6.
12. Gomes, C.; Thule, C.; Broman, D.; Larsen, P.G.; Vangheluwe, H. Co-Simulation: A Survey. ACM Comput. Surv.

2018, 51, 49:1–49:33, doi:10.1145/3179993.
13. Ryan, R. ADAMS—Multibody System Analysis Software. In Multibody Systems Handbook; Schiehlen, W., Ed.;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 361–402, doi:10.1007/978-3-642-50995-7_21.
14. Hadas, Z.; Březina, T.; Andrs, O.; Vetiska, J.; Březina, L. Simulation modelling of mechatronic

system with flexible parts. In Proceedings of the 15th International Power Electronics and Motion
Control Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 December 2012; pp. LS2e.1-1–LS2e.1-7,
doi:10.1109/EPEPEMC.2012.6397421.

15. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML—The Systems Modeling Language; Morgan
Kaufmann: Burlington, MA, USA, 2015, doi:10.1016/C2013-0-14457-1.

16. Sadovykh, A.; Bagnato, A.; Quadri, I.; Mady, A.; Couto, L.; Basagiannis, S.; Hasanagic, M. SysML
as a Common Integration Platform for CoSimulations: Example of a Cyber Physical System Design
Methodology in Green Heating Ventilation and Air Conditioning Systems. In CEE-SECR 2016:
Proceedings of the 12th Central & Eastern European Software Engineering Conference, Moscow, Russia,
28–29 October 2016; Association for Computing Machinery: New York, NY, USA, 2016, pp. 1:1–1:5,
doi:10.1145/3022211.3022212.

17. Foldager, F.; Larsen, P.; Green, O. Development of a Driverless Lawn Mower using Co-Simulation.
In Software Engineering and Formal Methods: Proceedings of the International Conference on Software
Engineering and Formal Methods, SEFM 2017, Trento, Italy, 6–10 September 2017; Cerone, A.;
Roveri, M., Eds.; Volume 10729, pp. 330–344, doi:10.1007/978-3-319-74781-1_23.

18. Giese, H.; Burmester, S.; Schäfer, W.; Oberschelp, O. Modular Design and Verification of Component-based
Mechatronic Systems with Online-reconfiguration. SIGSOFT Softw. Eng. Notes 2004, 29, 179–188,
doi:10.1145/1041685.1029920.

19. Agrawal, A.; Simon, G.; Karsai, G. Semantic Translation of Simulink/Stateflow Models to Hybrid Automata Using
Graph Transformations. Electron. Notes Theor. Comput. Sci. 2004, 109, 43–56, doi:10.1016/j.entcs.2004.02.055.

20. Lindahl, M.; Pettersson, P.; Yi, W. Formal Design and Analysis of a Gearbox Controller. Springer Int. J. Softw.
Tools Technol. Transf. 2001, 3, 353–368.

21. Cimatti, A.; Griggio, A.; Mover, S.; Tonetta, S. HyComp: An SMT-Based Model Checker for Hybrid
Systems. In Tools and Algorithms for the Construction and Analysis of Systems; Baier, C.; Tinelli, C., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 9035, Lecture Notes in Computer Science, pp. 52–67,
doi:10.1007/978-3-662-46681-0_4.

http://www.scicoslab.org
http://www.mathworks.com/products/simulink


Energies 2020, 13, 4057 23 of 23

22. Cimatti, A.; Griggio, A.; Mover, S.; Tonetta, S. Parameter synthesis with IC3. In Proceedings of the
Formal Methods in Computer-Aided Design, Portland, OR, USA, 20–23 October 2013; pp. 165–168,
doi:10.1109/FMCAD.2013.6679406.

23. Fulton, N.; Mitsch, S.; Quesel, J.D.; Völp, M.; Platzer, A. KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems. In Proceedings the International Conference on Automated Deduction, Berlin, Germany,
1–7 August 2015; Springer: Berlin, Germany, 2015; pp. 527–538, doi:10.1007/978-3-319-21401-6_36.

24. Platzer, A. Logics of Dynamical Systems. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, Dubrovnik, Croatia, 25–28 June 2012; pp. 13–24, doi:10.1109/LICS.2012.13.

25. Owre, S.; Rushby, J.; Shankar, N. PVS: A prototype verification system. In Automated Deduction — CADE-11;
Kapur, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; Lecture Notes in Computer Science; Volume
607, pp. 748–752, doi:10.1007/3-540-55602-8_217.

26. Bernardeschi, C.; Domenici, A.; Masci, P. A PVS-Simulink Integrated Environment for Model-Based Analysis
of Cyber-Physical Systems. IEEE Trans. Softw. Eng. 2018, 44, 512–533, doi:10.1109/TSE.2017.2694423.

27. Palmieri, M.; Bernardeschi, C.; Masci, P. a framework for FMI-based co-simulation of human–machine
interfaces. Softw. Syst Model 2019, doi:https://doi.org/10.1007/s10270-019-00754-9.

28. Muñoz, C.; Narkawicz, A.; Hagen, G.; Upchurch, J.; Dutle, A.; Consiglio, M. DAIDALUS: Detect and Avoid
Alerting Logic for Unmanned Systems. In Proceedings of the 34th Digital Avionics Systems Conference
(DASC 2015), Liverpool, UK, 26–28 Ocotober 2015, doi:10.1109/DASC.2015.7311421.

29. Bernardeschi, C.; Domenici, A. Verifying safety properties of a nonlinear control by interactive
theorem proving with the Prototype Verification System. Inf. Process. Lett. 2016, 116, 409–415,
doi:10.1016/j.ipl.2016.02.001.

30. Grimm, T.; Lettnin, D.; Hübner, M. A survey on formal verification techniques for safety-critical
systems-on-chip. Electronics 2018, 7, 81.

31. Jia, K.; Xiao, J.; Fan, S.; He, G. A MQTT/MQTT-SN-based user energy management system for automated
residential demand response: Formal verification and cyber-physical performance evaluation. Appl. Sci.
2018, 8, 1035.

32. Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Fritzson, P.; Brauer, J.; Kleijn, C.; Lecomte, T.; Pfeil, M.; Green, O.;
Basagiannis, S.; et al. Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS
project. In Proceedings of the 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS (CPS Data), Pittsburgh, PA, USA, 21–23 March 2016; pp. 1–6, doi:10.1109/CPSData.2016.7496424.

33. Owre, S.; Rushby, J.; Shankar, N.; Von Henke, F. Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Trans. Softw. Eng. 1995, 21, 107–125.

34. Blochwitz, T.; Otter, M.; Akesson, J.; Arnold, M.; Clauß, C.; Elmqvist, H.; Friedrich, M.; Junghanns, A.;
Mauss, J.; Neumerkel, D.; et al. Functional Mockup Interface 2.0: The Standard for Tool independent
Exchange of Simulation Models. In Proceedings of the 9th International MODELICA Conference; Munich;
Germany, 3–5 September 2012; Linköping University Electronic Press: Linkoping, Sweden, 2012; Number 76
in Linköping Electronic Conference Proceedings, pp. 173–184, doi:10.3384/ecp12076173.

35. Dini, P.; Saponara, S. Design of an Observer-Based Architecture and Non-Linear Control Algorithm for
Cogging Torque Reduction in Synchronous Motors. Energies 2020, 13, 2077.

36. Isidori, A. Nonlinear Control Systems; Communications and Control Engineering; Springer: London, UK, 1995.
37. Pulle, D.; Darnell, P.; Veltman, A. Applied Control of Electrical Drives: Real Time Embedded and Sensorless Control

Using VisSimTM and PLECSTM; Power Systems; Springer International Publishing: Berlin, Germany, 2015.
38. Bernardeschi, C.; Dini, P.; Domenici, A.; Saponara, S. Co-simulation and Verification of a Non-linear

Control System for Cogging Torque Reduction in Brushless Motors. In Proceedings of the 3rd Workshop
on Formal Co-Simulation of Cyber-Physical Systems—A satellite event of SEFM2019, Oslo, Norway,
18–20 September 2019.

39. Gerling, D. Electrical Machines; Springer: Berlin, Germany, 2016.
40. Gamble, C. DSE in the INTO-CPS Platform; Technical Report D5.3e; INTO-CPS Deliverable: Aarhus, Denmark,

2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on PVS and Co-Simulation
	The PVS Environment
	Co-Simulation

	A Development Process Integrating Verification and Co-Simulation
	Design of a Controller to Reduce Cogging Torque in Brushless Motors
	Mathematical Model
	Simulation Model
	Logic Model
	Verification

	Co-Simulation and Design-Space Exploration
	Assessment
	Design-Space Exploration

	Conclusions
	References

