
  

Energies 2020, 13, 4017; doi:10.3390/en13154017 www.mdpi.com/journal/energies 

Article 

Forecasting Day-Ahead Hourly Photovoltaic Power 
Generation Using Convolutional Self-Attention 
Based Long Short-Term Memory 
Dukhwan Yu 1, Wonik Choi 1,*, Myoungsoo Kim 1 and Ling Liu 2 

1 Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea; 
yuin2063@gmail.com (D.Y.); audtn4201@gmail.com (M.K.) 

2 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA; ling.liu@cc.gatech.edu 
* Correspondence: wichoi@inha.ac.kr; Tel.:+82-32-860-8375 

Received: 30 June 2020; Accepted: 31 July 2020; Published: 4 August 2020 

Abstract: The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the 
penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power 
Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been 
proposed for increasing prediction performance in practical environments through statistical, 
machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of 
forecasting PV power generation remains to be challenging in power system operations since 
existing methods show limited accuracy and thus are not sufficiently practical enough to be widely 
deployed. Many existing methods using long historical data suffer from the long-term dependency 
problem and are not able to produce high prediction accuracy due to their failure to fully utilize all 
features of long sequence inputs. To address this problem, we propose a deep learning-based PV 
power generation forecasting model called Convolutional Self-Attention based Long Short-Term 
Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly 
improve prediction accuracy by capturing the local context of the data and generating keys and 
queries that fit the local context. To validate the applicability of the proposed model, we conduct 
extensive experiments on both PV power generation forecasting using a real world dataset and 
power consumption forecasting. The experimental results of power generation forecasting using the 
real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 
6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-
attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 
17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with 
the canonical self-attention, respectively. 

Keywords: microgrid; virtual power plant (VPP); distributed energy resource; PV power generation 
forecasting; deep learning; convolutional self-attention; LSTM 

 

1. Introduction 

Microgrids and Virtual Power Plants (VPPs) are two remarkable solutions for a reliable supply 
of electricity in a power system [1]. Microgrids are power systems comprising Distributed Energy 
Resources (DERs) and electricity end-users, possibly with controllable elastic loads, all deployed 
across a limited geographic area [2]. The concept of VPP was proposed in [3]. A VPP is a flexible 
representation of a portfolio of DERs that can be used to make contracts in the wholesale market and 
to offer services to the system operator [4]. The increasing penetration of intermittent and variable 
renewable energy resources (e.g., wind and solar) has significantly complicated energy system 
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management for microgrids and a VPP [5,6]. For the above reasons, PV power generation forecasting 
is an important and challenging topic for the fields of microgrids and VPPs. 

The PV power generation, a key renewable energy source for microgrids and VPPs, is a power 
generation method that produces electricity by converting sunlight into direct current electricity. The 
amount of sunlight is bound to depend on weather conditions. In other words, the amount of PV 
power generation also depends on meteorological variables such as solar radiation, temperature, 
cloud changes, wind speeds and relative humidity. Therefore, there are difficulties in predicting the 
exact amount of PV power generation [7,8]. 

In this context, many previous studies have tried to increase the accuracy of PV power forecasts, 
mainly by using weather data from the past [9–14]. These previous studies constructed prediction 
models by using or combining Convolution Neural Network (CNN) and Long Short-Term Memory 
(LSTM), independently. Although these approaches used canonical self-attention mechanisms to 
emphasize important features of data, they might generate inappropriate keys and queries that do 
not fit the local context. To address this problem, we propose a LSTM based forecasting model using 
convolutional self-attention. The proposed model adopts the convolution-self attention mechanism 
to solve the problems of the existing self-attention mechanism by generating keys and queries that fit 
the local context [15]. In addition, we do not use only historical data but also future data to further 
improve prediction accuracy. 

The rationale of the proposed Convolutional Self-Attention LSTM model design is to combine 
the efficiency of attention in generating the keys and queries that fit the context information with the 
ensemble potential of multi-LSTM by introducing a convolutional self-attention-based context 
learning approach. 

The rest of the paper is organized as follows: In Section 2, we introduce related researches on 
Photovoltaic (PV) forecasting and describe the structure of two deep learning-based models for 
performance comparisons with the proposed model. The detailed input and output of the proposed 
model are explained in Section 3. Section 4 describes the proposed model, and Section 5 shows the 
results of the experiment. Lastly, Section 6 concludes the paper. 

2. Related Work 

In the existing PV power generation prediction research, the forecast horizons varied from 
minutes to months depending on their usage. In addition, they used various forms of input data, 
such as using only historical PV power generation, using historical PV power generation and weather 
data, and using only weather forecasts. The methods for modeling the above data mainly include 
statistical methods, machine learning and deep learning methods. Statistical approaches include the 
Autoregressive Moving Average (ARMA) and the Autoregressive Integrated Moving Average 
(ARIMA). Machine learning and deep-learning approaches include the Support Vector Machine 
(SVM), Artificial Neural Network (ANN), Deep Neural Network (DNN), Recurrent Neural Network 
(RNN), Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM). In addition, 
hybrid methods such as SVM-ARIMA and Hybrid PSO-ELM (Particle Swarm Optimization 
Algorithm-Extreme Learning Machine) are used [16]. 

A study for predicting 1-h ahead using the historical PV data through ARIMA was conducted 
in [17] and showed the results of average MAE (Mean Absolute Error) of 0.0206 kW. In [18], the 
authors proposed an ARMAX model for applying climate information data to ARIMA and showed 
the results of MAPE (Mean Absolute Percentage Error) of 82.69%. The historical power, weather 
forecasting data were used for 1-day ahead forecasting and modeled with the proposed ARMAX 
method. Zeng et al. proposed the SVM based model for 1-h head forecasting, using meteorological 
data such as sky cover, relative humility, and wind speed [19] and showed the results of MAPE of 
15.6% in Denver and 26.25% in Seattle. There are two PV power forecasting models using ANN 
[20,21]. These studies used the same ANN method, but the temporal horizons they needed to predict, 
and the input data used, were different. In [20], the authors used the historical power, cell 
temperature, and solar radiation for 24-h ahead foresting and showed the results of MAPE of 1.92% 
on sunny days, 2.30% on partly cloudy days, 5.28% on overcast days. Meanwhile, the authors in [21] 



Energies 2020, 13, 4017 3 of 17 

 

used the historical PV energy generation and weather forecast data from Numerical Weather 
Prediction (NWP) for up to 39-h ahead forecasting and showed the results of MAE of 7.01%. Son, J. 
et al., conducted a task for 1-day ahead forecasting, training PV power and weather data using a six-
layer feedforward deep neural network [22] and showed the results of MAE of 2.9%. Then they 
verified it using weather forecasting data in the testing process. Abdel-Nasser et al. proposed a deep 
LSTM by using historical power data for 1-h ahead forecasting [23] and showed the results of RMSE 
(Root Mean Squared Error) of 82.15. Qing and Niu et al. applied the LSTM model using weather 
forecast data for 1-day ahead solar irradiance forecasting [24]. The RMSE value of the model in [24] 
was 76.245 (W/mଶ). A high-precision deep neural network model named PVPNet to forecast 24-h PV 
system output power was proposed in [25]. In this paper, the authors used deep neural networks, 
which were able to generate a 24-h probabilistic and deterministic forecasting of PV power output 
based on meteorological information such as temperature, solar radiation and historical PV system 
output data. This PVPNet showed the results of MAE of 109.4845 (W). In [26], the authors proposed 
a GT-DBN (Gray Theory-based data preprocessor Deep Belief Network) that predicts PV output over 
a prediction time of over 24 h by integrating a gray theory and DBN-based data preprocessor with a 
supervised learning system. The GT-DBN showed better prediction results compared with other 
models and showed the results of MAPE of 3.76%. The long-term PV power generation prediction 
for one year was studied in [27]. In this paper, the authors used a predictive model that ensembles 
meta runners (VAR (Vector Autoregression), ARIMA, LSTM) and CNN, and showed the results of 
MAE of 16.70 (MWh). Bouzerdoum et al. used the historical power for 1-h ahead forecasting and 
modeled by combining SVM and SARIMA (Seasonal Autoregressive integrated moving average) [28] 
and showed the results of NRMSE (Normalized Root Mean Absolute Error) of 9.4010%. Behera et al. 
used the historical solar irradiance, air temperature for 15-min, 30-min, and 60-min ahead forecasting, 
and proposed a model that optimizes ELM with adaptive PSO methods [29] and showed the results 
of MAPE of 1.44%.  

Compared with the existing works, our proposed method has two prominent advantages. First, 
our method adopts the convolutional self-attention to efficiently model local context of input data. 
Second, we use both historical and future data for day-ahead hourly PV power forecasting to enhance 
the prediction accuracy. 

2.1. DNN Based Approach to Predict PV Power Generation 

MLP (Multi-Layer Perceptron) is a calculation method that uses a huge number of artificial 
neurons and consists of an input layer, an output layer, and one or several hidden layers between 
them [30]. If there are two or more hidden layers, it is generally referred to as DNN. After forming a 
network with a fixed number of neurons, the training process involves finding the relationship 
between input and output data. Figure 1 shows the architecture of the DNN based model that was 
used to predict PV power generation. ݊௟,௣ represents the ݌-th node of layer ݈, while ௟ܰ represents 
the number of nodes of layer ݈. On the other hand, ݓ௡೗భ,೛,௡೗మ,೜ represents the weight between the ݌-
th node of layer ݈ଵ and the q-th node of layer ݈ଶ. In designing the DNN model in this paper, three 
hidden layers were constructed and ௛ܰభ = ௛ܰమ = ௛ܰయ = 512. 
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Figure 1. Deep Neural Network (DNN) based model architecture. 

2.2. LSTM-Based Approach to Predict PV Power Generation 

RNN is proposed to model a time series using an autoregressive method [31,32]. However, RNN 
has difficulty in training due to the problem of gradient vanishing and exploding [33]. The proposed 
RNN is a special kind; LSTM and gradient clipping solve the problem of gradient vanishing and 
extension and also solve the complex and artificial long-term dependency problem [34]. In Figure 2, 
(a) shows the interior of the LSTM block and (b) shows the LSTM-based model architecture to predict 
PV power generation. In Figure 2b, two layers of LSTM layers are stacked, and each LSTM layer has 
256 units and is designed to output prediction results for the future 24-h through a fully connected 
layer. 

 
 

(a) (b) 

Figure 2. Long Short-Term Memory (LSTM)-based model: (a) the inner of the LSTM; (b) the LSTM-
based model architecture. 
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3. Data Processing 

3.1. Features and Their Notations 

In this paper, we aim to perform a day-ahead hourly forecasting task using both historical and 
future data. We consider PV power generation and weather measurements as historical data and 
weather forecast data as the future data. Since we use the historical data and future data, we need to 
extract common features of weather measurement data and weather forecast data. To do this, we use 
the humidity, rainfall, cloudiness, temperature and wind speed data. Table 1 shows the notation for 
the measurement corresponding to each feature of each day. 

Table 1. Notation of features for each day. 

Features Day d-5 Day d-4 Day d-3 Day d-2 Day d-1 Day d 
PV Power Generation ଵܲ ଶܲ ଷܲ ସܲ ହܲ ଺ܲ 

Humidity ܪଵ ܪଶ ܪଷ ܪସ ܪହ ܪ଺ 
Rainfall ܴଵ ܴଶ ܴଷ ܴସ ܴହ ܴ଺ 

Cloudiness ܥଵ ܥଶ ܥଷ ܥସ ܥହ ܥ଺ 
Temperature ܳଵ ܳଶ ܳଷ ܳସ ܳହ ܳ଺ 
Wind Speed ଵܹ ଶܹ ଷܹ ସܹ ହܹ ଺ܹ 

Hour ܭଵ ܭଶ ܭଷ ܭସ ܭହ ܭ଺ 
Elevation Angle of the Sun ܧଵ ܧଶ ܧଷ ܧସ ܧହ ܧ଺ 

We use the hourly data on the elevation angle of the sun on each day ܧ௡ and the Hour value ܭ௡ as shown in Table 1. Since the elevation angle of the sun is calculated by the formula in [35], we 
can use the future elevation angle of the sun without forecasting. Equation (1) indicates the elevation 
angle of the sun. sin ܧ = (sin ߜ × sin ߮) + (cos ߜ × cos ߮ × cos  (1) ,(ܪ

where δ is a declination of the sun, ߮ is a latitude and H is an hour angle. 
Note that each feature consists of 24-h values. ௡ܲ means a set of PV power generation values for 

24 h on n-th days and ݌௡,௧ means the PV power generation value on day n at t-hour. (0 ≤ ݐ ≤ 23). 
For example, ଷܲ is the PV power generation values from 0:00 to 23:00 on day 3, and ݌ଷ,ହ is the PV 
power generation value at 5:00 on day 3. The same rules apply to the rest of the features. 

In this paper, we construct the input using the past 5 days of PV power generation to predict 
day-ahead hourly PV power generation. In Section 3.1 and Section 3.2, we explain how the input and 
output data are constructed using the remaining weather measurement and forecast data, which are 
then divided into training and testing phase. 

௡ܲ = ,௡,଴݌] ,௡,ଵ݌ . .  , ௡ܪ ௡,ଶଷ] (2)݌ = [ℎ௡,଴, ℎ௡,ଵ, .  . , ℎ௡,ଶଷ] (3) ܴ௡ = ,௡,଴ݎ] ,௡,ଵݎ .  . , ௡ܥ ௡,ଶଷ] (4)ݎ = [ܿ௡,଴, ܿ௡,ଵ, .  . , ܿ௡,ଶଷ] (5) ܥ௡ = [ܿ௡,଴, ܿ௡,ଵ, .  . , ܿ௡,ଶଷ] (6) 

௡ܹ = ,௡,଴ݓ] ,௡,ଵݓ .  . , ௡ܭ ௡,ଶଷ] (7)ݓ = [݇௡,଴, ݇௡,ଵ, .  . , ݇௡,ଶଷ] (8) ܧ௡ = [݁௡,଴, ݁௡,ଵ, .  . , ݁௡,ଶଷ] (9) 

3.2. Training Phase 

Figure 3 shows the inputs and outputs of the training phase. The dotted-blue region represents 
the inputs of the model, while the dotted-red rectangle denotes the output of the model. 
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For PV power generation values, we use a 5-day sequence from Day d-5 to Day d-1. On the other 
hand, for other features except PV power generation, we use a 5-day sequence from Day d-4 to Day 
d. This is to construct a 5-day input sequence for all features. The outputs of the model are the 
predicted ௗܲ෢. 

 
Figure 3. Inputs and outputs at the training phase. 

3.3. Testing Phase 

Figure 4 shows the inputs and outputs of the testing phase. Similar to the training phase, the 
input sequences have the same structure as shown in the dotted-blue region. The input sequence of 
PV power generation is from Day ݀-5 to Day ݀-1, while the other features are from Day ݀-4 to Day ݀. However, the weather data on Day ݀ is replaced by the weather data forecasted on Day d-1 as 
shown in the dotted-green rectangle. This is because the future weather data are not known during 
the testing phase. The dotted-red rectangle represents the predicted value of ௗܲ෢.  

 
Figure 4. Inputs and outputs at the testing phase. 

Figure 5 shows an example of the input sequences for the testing phase, assuming that we are 
trying to forecast Day d. As shown in Figure 5, we use a 5-day sequence of PV power generation from 
Day ݀-5 to Day ݀-1, where the ground truth and testing input are exactly same. As shown in the 
blue box in Figure 5, it can be observed that the forecast data replaced with the weather data on Day 
d are different from the ground truth. Note that the actual values (the black line) are quite different 
from weather forecasts (the red line) due to the inaccuracy of weather forecasts. Nevertheless, we 
observe that weather forecast data play an important role in the prediction of PV power generation 
by giving the model valuable information about the future. 
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Figure 5. Example of Photovoltaic (PV) power generation and weather data used for the testing phase. 

4. Proposed Method 

In this paper, we propose the Convolutional Self-Attention LSTM model for day-ahead hourly 
forecasting of PV power generation. Although LSTM and gradient clipping solve the problem of the 
RNN, such as the gradient vanishing and expending, it may be possible to fail to utilize all features 
from long sequence inputs such as data for the past 120 h [36]. Recently, an attention method that 
emphasizes the important features of long sequence input has been widely used regardless of 
distance [37–39]. In case of LSTM with attention, the amount of lag is an important factor in reducing 
loss. Additionally, the LSTM with attention shows that it outperforms regular LSTM [40]. On the 
other hand, some deep learning model may be deteriorated due to the attention technique. The 
canonical self-attention is one of the attention techniques that cause optimization problems to the 
model by generating inappropriate keys and queries that do not fit the local context. To address this 
problem, we apply causal convolution to our model. By applying the causal convolution, we can 
improve prediction performance by generating queries and keys that are more aware of local context 
and thus are able to compute their similarities by their local context information, e.g., local shapes, 
instead of point-wise values [15]. In Figure 6, (a) shows the calculation of the similarity between 
queries and keys with point-wise values, while (b) shows the calculation of the similarity between 
queries and keys with the local context. 
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(a) 

  
(b) 

 

Figure 6. Comparison of canonical self-attention and convolutional self-attention techniques: (a) 
canonical self-attention; (b) convolutional self-attention, confirming the observation in [15], with 
slight variation. 

In addition, we construct a residual connection between the results of convolutional self-
attention and input, and also apply the normalization [41]. Then, through the two hidden-layer 
LSTMs with 256 units passing the fully connected layer, the predicted hourly PV power generation 
values are generated for the next 1-day (24 h). 

5. Experiment 

In this paper, we use hourly PV power generation data from 1 October 2017 to 30 March 2020 of 
the PV power plant in Jebi-ri, Gujeong-myeon, Gangneung-si, Gangwon-do, Korea. We obtain power 
generation data from a PV power plant in Jebi-ri. The maximum power output of each PV panel used 
in the Jebi-ri power plant is 150 kW. We also collect hourly weather measurement data for the same 
period as PV power generation measurement and 3-hourly weather forecast data to be used for 
testing from the Korean Meteorological Administration (KMA) [42]. Linear interpolation is used to 
transform the 3-hourly weather forecast data into hourly data. As mentioned in Section 3.1 and 3.2, 
we use the training dataset from October 2017 to February 2020 and the test dataset from 2 March 
2020 to 30 March 2020. 

5.1. Find k of Convolutional Self-Attention 

As shown in Figure 7 in Section 4, we generate queries, keys and values using the convolutional 
self-attention. The convolution layer with kernel size 1 generates a value, while the convolution layer 
with kernel size k generates queries and keys. Different values for the size of kernel k may lead to 
different queries and keys, and thus may have a non-trivial impact on the overall performance of the 
proposed Convolutional Self-Attention LSTM model. Therefore, we conduct nine sets of experiments 
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varying k from 1 to 9 and measure the MSE (Mean Square Error) of the model to find a suitable k 
value for the data. Table 2 shows the MSE results according to the k values. Since the results of these 
experiments show that the lowest MSE is achieved at k = 3, we set the number of k to 3. 

 
Figure 7. Architecture of Convolutional Self-Attention Long Short-Term Memory (LSTM) model. 

Table 2. MSE (Mean Square Error) by k values. (The value in bold is the minimum value.). 

k 1 2 3 4 5 6 7 8 9 
MSE 0.0038 0.0036 0.0035 0.0039 0.0040 0.0037 0.0039 0.0039 0.0039 

5.2. Performance Index 

In this paper, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean 
Squared Error (RMSE) and normalized Mean Absolute Error (nMAE) are used to measure the 
accuracy of the 1-day prediction. The MAE, MAPE, RMSE, nMAE are defined as: 

ܧܣܯ =  1݊ ෍ ௧௥௨௘,௧ݕ| − ௣௥௘ௗ,௧|௡ݕ
௧ୀଵ  (10) 

ܧܲܣܯ =  100݊ ෍ ௧௥௨௘,௧ݕ| − ௧௥௨௘,௧ݕ|௣௥௘ௗ,௧ݕ
௡

௧ୀଵ  (11) 

ܧܵܯ =  ඩ 1݊ ෍(ݕ௧௥௨௘,௧ − ௣௥௘ௗ,௧)ଶ௡ݕ
௧ୀଵ   (12) 

ܧܣܯ݊ =  ∑ ௧௥௨௘,௧ݕ| − ௣௥௘ௗ,௧|௡௧ୀଵݕ ∑ ௧௥௨௘,௧௡௧ୀଵݕ  (13) 

where ݊ represents the number of data, ݕ௧௥௨௘,௧ represents the t-th actual PV power generation value, 
and ݕ௣௥௘ௗ,௧ represents the ݐ-th predicted PV power generation value. 

5.3. Experimental Results 

In this section, we assess the efficiency and effectiveness of the proposed Convolutional Self-
Attention LSTM model by comparing it against three widely used models, DNN (described in Section 
2.1), LSTM (described in Section 2.2), and LSTM with the canonical self-attention. Figure 8 shows the 
PV power generation forecasting results for each method, i.e., DNN, LSTM, LSTM with the canonical 
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self-attention and our proposed Convolutional Self-Attention LSTM model, respectively. In Figure 8, 
there are five predicted days by four methods. The proposed Convolutional Self-Attention LSTM 
model shows a lower forecasting error and consequently higher forecasting accuracy compared with 
the DNN, LSTM and LSTM with the canonical self-attention model. 

  
(a) (b) 

  
(c) (d) 

 

(e) 

Figure 8. Forecasting results: (a) forecasting result on 8 March 2020; (b) forecasting result on 12 March 
2020; (c) forecasting result on 14 March 2020; (d) forecasting result on 28 March 2020; (e) forecasting 
result on 30 March 2020. 
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The average forecasting errors for the entire test sets are summarized in Table 3. The MAPE of 
our proposed Convolutional Self-Attention model is lower by 7.7%, 6% and 3.9% compared to the 
DNN, LSTM and LSTM with the canonical self-attention, respectively. 

Table 3. Comparison of PV power generation forecasting performance. (The value in bold in each 

column is the minimum value.). 

Method MAPE (%) MAE (kWh) RMSE nMAE 
DNN 26.25 0.66 1.36 0.17 
LSTM 25.77 0.59 1.32 0.15 

LSTM with canonical self-attention 25.21 0.63 1.30 0.16 
Ours 24.22 0.57 1.24 0.15 

Figure 9 shows the actual PV power generations and predictions for the five consecutive days. 
In general, the prediction results are similar to actual PV power generation. As shown in the blue box 
in Figure 9, although PV power generation is lower compared with the other days for several reasons 
such as poor weather condition, our proposed Convolutional Self-Attention LSTM model predicts 
the similar pattern on the third day. This means that our proposed model works well even with 
various weather changes. However, the differences between the red line and the black line are also 
seen. These errors are mainly due to a lack of data, that is, a pattern that does not exist in the past. 
Another important factor causing the error is uncertainty in weather forecasts. It can be seen that the 
uncertainty of weather forecasts can inject incorrect information into a forecast model. 

 
Figure 9. Forecasting result from 8 March 2020 to 12 March 2020. 

5.4. Effect of Historical and Future Data 

To further analyze the effect of historical and future data, we magnify the blue box in Figure 9 
as shown in Figure 10. The historical and future data for predicting the PV power generation on the 
third day is shown in Figure 10a and its result is depicted in Figure 10b. Note that Figure 10b is the 
same as the blue box in Figure 9. 
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As shown in the green box in Figure 10a, the curve of PV power generation shows some lot 
fluctuations, which produce a high information gain that is helpful for accurate prediction. In 
addition, as shown in the blue box in Figure 10a, the weather forecast (the red line) predicted rain 
and the precipitation of 8 mm on day 10. Based on this information, the proposed model can predict 
an accurate amount of PV power generation as shown in Figure 10b by capturing historical features 
and also acquiring helpful information from weather forecasts. 

On the other hand, Figure 10d shows an inaccurate case. In this case, the curve of PV power 
generation shows consistent patterns for 5 days, which generate lower information for predicting a 
sudden decline in PV power generation. This low information gain can have a negative impact on a 
prediction model. In addition, because the weather forecast in the blue box in Figure 10c is inaccurate, 
the proposed model can only predict a fairly different amount of PV power generation than the actual 
PV power generation as shown in the red line in Figure 10d. 

(a) 
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(b) 

(c) 
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(d) 

Figure 10. Forecasting results according to the uncertainty of historical and future data: (a) historical 
and future data for 10 March 2020; (b) forecasting result on 10 March 2020; (c) historical and future 
data on 27 March 2020; (d) forecasting result for 27 March 2020. 

 
Figure 11. Forecast results of NSW (New South Wales) electricity load. 

5.5 NSW Electricity Load Data 

In order to validate our proposed model, we conduct an experiment using another type of time 
series data such as the NSW (New South Wales) electricity load data [43]. The NSW electricity load 
data include hour, dry bulb temperature, dew point temperature, wet bulb temperature, humidity, 
electricity price and system load. It is constructed by measuring every 30 min from 1 January 2006 to 
1 January 2011. For NSW data, since the future data, such as weather forecast, is unknown, we use 
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only the past 5-day data as input to predict the future 1-day electricity load. Figure 11 shows the 
forecasting results for seven consecutive days. As shown in Figure 11, the proposed Convolutional 
Self-Attention LSTM model predicts a closer matching pattern to the actual electricity load than other 
methods. The MAPE of the proposed model is much lower by 32%, 17% and 44% compared to the 
DNN, LSTM and LSTM with the canonical self-attention, respectively. This result indicates that the 
proposed Convolutional Self-Attention LSTM model predicts not only PV power generations but also 
power consumptions. 

6. Conclusions 

In this paper, we propose the Convolutional Self-Attention LSTM model for forecasting day-
ahead hourly PV power generations by applying the convolution self-attention technique. Unlike 
previous methods using the canonical self-attention, our proposed method is able to generate queries 
and keys that are more aware of local context and thus are able to improve prediction performance 
by computing their similarities with their local context information. In addition to the convolution 
self-attention, our model uses both historical and future data by replacing the past weather data with 
the future weather forecast data during the testing phase. 

We compare our proposed model with existing methods: the DNN-based model, LSTM-based 
model and LSTM with the canonical self-attention. Extensive experiments using the real world 
datasets show that the MAPE of the proposed Convolutional Self-Attention LSTM model is much 
lower by 7.7%, 6%, 3.9% compared to the DNN, LSTM and LSTM with the canonical self-attention, 
respectively. In addition, in order to validate the applicability of the proposed model, we conduct 
another set of experiments on forecasting power consumptions using the NSW electricity load data. 
In these experiments, we observed that the proposed Convolutional Self-Attention LSTM model has 
reduced error rates by 32%, 17% and 44% for MAPE compared to the DNN, LSTM and LSTM with 
the canonical self-attention-based models, respectively. 

For future work, we plan to augment our method with harsh conditions where the daily PV 
power generation is not in the form of a parabola and its deviation is quite severe due to poor weather 
conditions. We also plan to extend our model to predict various forecast horizons ranging from 5 min 
to a half-hour. 
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