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Abstract: The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the
penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power
Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has
been proposed for increasing prediction performance in practical environments through statistical,
machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of
forecasting PV power generation remains to be challenging in power system operations since existing
methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed.
Many existing methods using long historical data suffer from the long-term dependency problem
and are not able to produce high prediction accuracy due to their failure to fully utilize all features
of long sequence inputs. To address this problem, we propose a deep learning-based PV power
generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory
(LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction
accuracy by capturing the local context of the data and generating keys and queries that fit the local
context. To validate the applicability of the proposed model, we conduct extensive experiments on
both PV power generation forecasting using a real world dataset and power consumption forecasting.
The experimental results of power generation forecasting using the real world datasets show that
the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the
Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively.
As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower
Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical
self-attention, respectively.

Keywords: microgrid; virtual power plant (VPP); distributed energy resource; PV power generation
forecasting; deep learning; convolutional self-attention; LSTM

1. Introduction

Microgrids and Virtual Power Plants (VPPs) are two remarkable solutions for a reliable supply
of electricity in a power system [1]. Microgrids are power systems comprising Distributed Energy
Resources (DERs) and electricity end-users, possibly with controllable elastic loads, all deployed
across a limited geographic area [2]. The concept of VPP was proposed in [3]. A VPP is a flexible
representation of a portfolio of DERs that can be used to make contracts in the wholesale market
and to offer services to the system operator [4]. The increasing penetration of intermittent and
variable renewable energy resources (e.g., wind and solar) has significantly complicated energy system
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management for microgrids and a VPP [5,6]. For the above reasons, PV power generation forecasting
is an important and challenging topic for the fields of microgrids and VPPs.

The PV power generation, a key renewable energy source for microgrids and VPPs, is a power
generation method that produces electricity by converting sunlight into direct current electricity.
The amount of sunlight is bound to depend on weather conditions. In other words, the amount of PV
power generation also depends on meteorological variables such as solar radiation, temperature, cloud
changes, wind speeds and relative humidity. Therefore, there are difficulties in predicting the exact
amount of PV power generation [7,8].

In this context, many previous studies have tried to increase the accuracy of PV power forecasts,
mainly by using weather data from the past [9–14]. These previous studies constructed prediction
models by using or combining Convolution Neural Network (CNN) and Long Short-Term Memory
(LSTM), independently. Although these approaches used canonical self-attention mechanisms to
emphasize important features of data, they might generate inappropriate keys and queries that do
not fit the local context. To address this problem, we propose a LSTM based forecasting model using
convolutional self-attention. The proposed model adopts the convolution-self attention mechanism to
solve the problems of the existing self-attention mechanism by generating keys and queries that fit
the local context [15]. In addition, we do not use only historical data but also future data to further
improve prediction accuracy.

The rationale of the proposed Convolutional Self-Attention LSTM model design is to combine
the efficiency of attention in generating the keys and queries that fit the context information with
the ensemble potential of multi-LSTM by introducing a convolutional self-attention-based context
learning approach.

The rest of the paper is organized as follows: In Section 2, we introduce related researches
on Photovoltaic (PV) forecasting and describe the structure of two deep learning-based models for
performance comparisons with the proposed model. The detailed input and output of the proposed
model are explained in Section 3. Section 4 describes the proposed model, and Section 5 shows the
results of the experiment. Lastly, Section 6 concludes the paper.

2. Related Work

In the existing PV power generation prediction research, the forecast horizons varied from minutes
to months depending on their usage. In addition, they used various forms of input data, such as using
only historical PV power generation, using historical PV power generation and weather data, and using
only weather forecasts. The methods for modeling the above data mainly include statistical methods,
machine learning and deep learning methods. Statistical approaches include the Autoregressive
Moving Average (ARMA) and the Autoregressive Integrated Moving Average (ARIMA). Machine
learning and deep-learning approaches include the Support Vector Machine (SVM), Artificial Neural
Network (ANN), Deep Neural Network (DNN), Recurrent Neural Network (RNN), Convolution
Neural Network (CNN) and Long Short-Term Memory (LSTM). In addition, hybrid methods such
as SVM-ARIMA and Hybrid PSO-ELM (Particle Swarm Optimization Algorithm-Extreme Learning
Machine) are used [16].

A study for predicting 1-h ahead using the historical PV data through ARIMA was conducted
in [17] and showed the results of average MAE (Mean Absolute Error) of 0.0206 kW. In [18], the authors
proposed an ARMAX model for applying climate information data to ARIMA and showed the results
of MAPE (Mean Absolute Percentage Error) of 82.69%. The historical power, weather forecasting data
were used for 1-day ahead forecasting and modeled with the proposed ARMAX method. Zeng et al.
proposed the SVM based model for 1-h head forecasting, using meteorological data such as sky cover,
relative humility, and wind speed [19] and showed the results of MAPE of 15.6% in Denver and
26.25% in Seattle. There are two PV power forecasting models using ANN [20,21]. These studies used
the same ANN method, but the temporal horizons they needed to predict, and the input data used,
were different. In [20], the authors used the historical power, cell temperature, and solar radiation
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for 24-h ahead foresting and showed the results of MAPE of 1.92% on sunny days, 2.30% on partly
cloudy days, 5.28% on overcast days. Meanwhile, the authors in [21] used the historical PV energy
generation and weather forecast data from Numerical Weather Prediction (NWP) for up to 39-h
ahead forecasting and showed the results of MAE of 7.01%. Son, J. et al., conducted a task for 1-day
ahead forecasting, training PV power and weather data using a six-layer feedforward deep neural
network [22] and showed the results of MAE of 2.9%. Then they verified it using weather forecasting
data in the testing process. Abdel-Nasser et al. proposed a deep LSTM by using historical power
data for 1-h ahead forecasting [23] and showed the results of RMSE (Root Mean Squared Error) of
82.15. Qing and Niu et al. applied the LSTM model using weather forecast data for 1-day ahead solar
irradiance forecasting [24]. The RMSE value of the model in [24] was 76.245 (W/m2). A high-precision
deep neural network model named PVPNet to forecast 24-h PV system output power was proposed
in [25]. In this paper, the authors used deep neural networks, which were able to generate a 24-h
probabilistic and deterministic forecasting of PV power output based on meteorological information
such as temperature, solar radiation and historical PV system output data. This PVPNet showed
the results of MAE of 109.4845 (W). In [26], the authors proposed a GT-DBN (Gray Theory-based
data preprocessor Deep Belief Network) that predicts PV output over a prediction time of over 24 h
by integrating a gray theory and DBN-based data preprocessor with a supervised learning system.
The GT-DBN showed better prediction results compared with other models and showed the results of
MAPE of 3.76%. The long-term PV power generation prediction for one year was studied in [27]. In this
paper, the authors used a predictive model that ensembles meta runners (VAR (Vector Autoregression),
ARIMA, LSTM) and CNN, and showed the results of MAE of 16.70 (MWh). Bouzerdoum et al. used
the historical power for 1-h ahead forecasting and modeled by combining SVM and SARIMA (Seasonal
Autoregressive integrated moving average) [28] and showed the results of NRMSE (Normalized Root
Mean Absolute Error) of 9.4010%. Behera et al. used the historical solar irradiance, air temperature
for 15-min, 30-min, and 60-min ahead forecasting, and proposed a model that optimizes ELM with
adaptive PSO methods [29] and showed the results of MAPE of 1.44%.

Compared with the existing works, our proposed method has two prominent advantages. First,
our method adopts the convolutional self-attention to efficiently model local context of input data.
Second, we use both historical and future data for day-ahead hourly PV power forecasting to enhance
the prediction accuracy.

2.1. DNN Based Approach to Predict PV Power Generation

MLP (Multi-Layer Perceptron) is a calculation method that uses a huge number of artificial
neurons and consists of an input layer, an output layer, and one or several hidden layers between
them [30]. If there are two or more hidden layers, it is generally referred to as DNN. After forming a
network with a fixed number of neurons, the training process involves finding the relationship between
input and output data. Figure 1 shows the architecture of the DNN based model that was used to
predict PV power generation. nl,p represents the p-th node of layer l, while Nl represents the number of
nodes of layer l. On the other hand, wnl1,p,nl2,q represents the weight between the p-th node of layer l1
and the q-th node of layer l2. In designing the DNN model in this paper, three hidden layers were
constructed and Nh1 = Nh2 = Nh3 = 512.
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Figure 1. Deep Neural Network (DNN) based model architecture.

2.2. LSTM-Based Approach to Predict PV Power Generation

RNN is proposed to model a time series using an autoregressive method [31,32]. However, RNN
has difficulty in training due to the problem of gradient vanishing and exploding [33]. The proposed
RNN is a special kind; LSTM and gradient clipping solve the problem of gradient vanishing and
extension and also solve the complex and artificial long-term dependency problem [34]. In Figure 2,
(a) shows the interior of the LSTM block and (b) shows the LSTM-based model architecture to predict
PV power generation. In Figure 2b, two layers of LSTM layers are stacked, and each LSTM layer has
256 units and is designed to output prediction results for the future 24-h through a fully connected layer.
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3. Data Processing

3.1. Features and Their Notations

In this paper, we aim to perform a day-ahead hourly forecasting task using both historical and
future data. We consider PV power generation and weather measurements as historical data and
weather forecast data as the future data. Since we use the historical data and future data, we need to
extract common features of weather measurement data and weather forecast data. To do this, we use
the humidity, rainfall, cloudiness, temperature and wind speed data. Table 1 shows the notation for
the measurement corresponding to each feature of each day.

Table 1. Notation of features for each day.

Features Day d-5 Day d-4 Day d-3 Day d-2 Day d-1 Day d

PV Power Generation P1 P2 P3 P4 P5 P6
Humidity H1 H2 H3 H4 H5 H6
Rainfall R1 R2 R3 R4 R5 R6

Cloudiness C1 C2 C3 C4 C5 C6
Temperature Q1 Q2 Q3 Q4 Q5 Q6
Wind Speed W1 W2 W3 W4 W5 W6

Hour K1 K2 K3 K4 K5 K6
Elevation Angle of the Sun E1 E2 E3 E4 E5 E6

We use the hourly data on the elevation angle of the sun on each day En and the Hour value Kn as
shown in Table 1. Since the elevation angle of the sun is calculated by the formula in [35], we can use
the future elevation angle of the sun without forecasting. Equation (1) indicates the elevation angle of
the sun.

sin E = (sin δ× sinϕ) + (cos δ× cosϕ× cos H), (1)

where δ is a declination of the sun, ϕ is a latitude and H is an hour angle.
Note that each feature consists of 24-h values. Pn means a set of PV power generation values

for 24 h on n-th days and pn,t means the PV power generation value on day n at t-hour. (0 ≤ t ≤ 23).
For example, P3 is the PV power generation values from 0:00 to 23:00 on day 3, and p3,5 is the PV power
generation value at 5:00 on day 3. The same rules apply to the rest of the features.

In this paper, we construct the input using the past 5 days of PV power generation to predict
day-ahead hourly PV power generation. In Sections 3.1 and 3.2, we explain how the input and output
data are constructed using the remaining weather measurement and forecast data, which are then
divided into training and testing phase.

Pn = [pn,0, pn,1, . . . , pn,23] (2)

Hn = [hn,0, hn,1, . . . , hn,23] (3)

Rn = [rn,0, rn,1, . . . , rn,23] (4)

Cn = [cn,0, cn,1, . . . , cn,23] (5)

Tn = [qn,0, qn,1, . . . , qn,23] (6)

Wn = [wn,0, wn,1, . . . , wn,23] (7)

Kn = [kn,0, kn,1, . . . , kn,23] (8)

En = [en,0, en,1, . . . , en,23] (9)
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3.2. Training Phase

Figure 3 shows the inputs and outputs of the training phase. The dotted-blue region represents
the inputs of the model, while the dotted-red rectangle denotes the output of the model.
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For PV power generation values, we use a 5-day sequence from Day d-5 to Day d-1. On the other
hand, for other features except PV power generation, we use a 5-day sequence from Day d-4 to Day d.
This is to construct a 5-day input sequence for all features. The outputs of the model are the predicted P̂d.

3.3. Testing Phase

Figure 4 shows the inputs and outputs of the testing phase. Similar to the training phase, the input
sequences have the same structure as shown in the dotted-blue region. The input sequence of PV
power generation is from Day d-5 to Day d-1, while the other features are from Day d-4 to Day d.
However, the weather data on Day d is replaced by the weather data forecasted on Day d-1 as shown
in the dotted-green rectangle. This is because the future weather data are not known during the testing
phase. The dotted-red rectangle represents the predicted value of P̂d.
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Figure 5 shows an example of the input sequences for the testing phase, assuming that we are
trying to forecast Day d. As shown in Figure 5, we use a 5-day sequence of PV power generation from
Day d-5 to Day d-1, where the ground truth and testing input are exactly same. As shown in the blue
box in Figure 5, it can be observed that the forecast data replaced with the weather data on Day d are
different from the ground truth. Note that the actual values (the black line) are quite different from
weather forecasts (the red line) due to the inaccuracy of weather forecasts. Nevertheless, we observe
that weather forecast data play an important role in the prediction of PV power generation by giving
the model valuable information about the future.
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Figure 5. Example of Photovoltaic (PV) power generation and weather data used for the testing phase.

4. Proposed Method

In this paper, we propose the Convolutional Self-Attention LSTM model for day-ahead hourly
forecasting of PV power generation. Although LSTM and gradient clipping solve the problem of
the RNN, such as the gradient vanishing and expending, it may be possible to fail to utilize all
features from long sequence inputs such as data for the past 120 h [36]. Recently, an attention method
that emphasizes the important features of long sequence input has been widely used regardless of
distance [37–39]. In case of LSTM with attention, the amount of lag is an important factor in reducing
loss. Additionally, the LSTM with attention shows that it outperforms regular LSTM [40]. On the other
hand, some deep learning model may be deteriorated due to the attention technique. The canonical
self-attention is one of the attention techniques that cause optimization problems to the model by
generating inappropriate keys and queries that do not fit the local context. To address this problem,
we apply causal convolution to our model. By applying the causal convolution, we can improve
prediction performance by generating queries and keys that are more aware of local context and thus
are able to compute their similarities by their local context information, e.g., local shapes, instead of
point-wise values [15]. In Figure 6, (a) shows the calculation of the similarity between queries and keys
with point-wise values, while (b) shows the calculation of the similarity between queries and keys
with the local context.
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Figure 6. Comparison of canonical self-attention and convolutional self-attention techniques:
(a) canonical self-attention; (b) convolutional self-attention, confirming the observation in [15],
with slight variation.

In addition, we construct a residual connection between the results of convolutional self-attention
and input, and also apply the normalization [41]. Then, through the two hidden-layer LSTMs with
256 units passing the fully connected layer, the predicted hourly PV power generation values are
generated for the next 1-day (24 h).

5. Experiment

In this paper, we use hourly PV power generation data from 1 October 2017 to 30 March 2020 of
the PV power plant in Jebi-ri, Gujeong-myeon, Gangneung-si, Gangwon-do, Korea. We obtain power
generation data from a PV power plant in Jebi-ri. The maximum power output of each PV panel used
in the Jebi-ri power plant is 150 kW. We also collect hourly weather measurement data for the same
period as PV power generation measurement and 3-hourly weather forecast data to be used for testing
from the Korean Meteorological Administration (KMA) [42]. Linear interpolation is used to transform
the 3-hourly weather forecast data into hourly data. As mentioned in Sections 3.1 and 3.2, we use
the training dataset from October 2017 to February 2020 and the test dataset from 2 March 2020 to
30 March 2020.

5.1. Find k of Convolutional Self-Attention

As shown in Figure 7 in Section 4, we generate queries, keys and values using the convolutional
self-attention. The convolution layer with kernel size 1 generates a value, while the convolution layer
with kernel size k generates queries and keys. Different values for the size of kernel k may lead to
different queries and keys, and thus may have a non-trivial impact on the overall performance of the
proposed Convolutional Self-Attention LSTM model. Therefore, we conduct nine sets of experiments
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varying k from 1 to 9 and measure the MSE (Mean Square Error) of the model to find a suitable k
value for the data. Table 2 shows the MSE results according to the k values. Since the results of these
experiments show that the lowest MSE is achieved at k = 3, we set the number of k to 3.
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Table 2. MSE (Mean Square Error) by k values. (The value in bold is the minimum value.).

k 1 2 3 4 5 6 7 8 9

MSE 0.0038 0.0036 0.0035 0.0039 0.0040 0.0037 0.0039 0.0039 0.0039

5.2. Performance Index

In this paper, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Squared Error (RMSE) and normalized Mean Absolute Error (nMAE) are used to measure the accuracy
of the 1-day prediction. The MAE, MAPE, RMSE, nMAE are defined as:

MAE =
1
n

n∑
t = 1

∣∣∣ytrue,t − ypred,t
∣∣∣ (10)

MAPE =
100
n

n∑
t = 1

∣∣∣ytrue,t − ypred,t
∣∣∣

ytrue,t
(11)

RMSE =

√√
1
n

n∑
t = 1

(
ytrue,t − ypred,t

)2
(12)

nMAE =

∑n
t = 1

∣∣∣ytrue,t − ypred,t
∣∣∣∑n

t = 1 ytrue,t
(13)

where n represents the number of data, ytrue,t represents the t-th actual PV power generation value,
and ypred, t represents the t-th predicted PV power generation value.
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5.3. Experimental Results

In this section, we assess the efficiency and effectiveness of the proposed Convolutional
Self-Attention LSTM model by comparing it against three widely used models, DNN (described
in Section 2.1), LSTM (described in Section 2.2), and LSTM with the canonical self-attention. Figure 8
shows the PV power generation forecasting results for each method, i.e., DNN, LSTM, LSTM with the
canonical self-attention and our proposed Convolutional Self-Attention LSTM model, respectively.
In Figure 8, there are five predicted days by four methods. The proposed Convolutional Self-Attention
LSTM model shows a lower forecasting error and consequently higher forecasting accuracy compared
with the DNN, LSTM and LSTM with the canonical self-attention model.
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The average forecasting errors for the entire test sets are summarized in Table 3. The MAPE of our
proposed Convolutional Self-Attention model is lower by 7.7%, 6% and 3.9% compared to the DNN,
LSTM and LSTM with the canonical self-attention, respectively.

Table 3. Comparison of PV power generation forecasting performance. (The value in bold in each
column is the minimum value.).

Method MAPE (%) MAE (kWh) RMSE nMAE

DNN 26.25 0.66 1.36 0.17
LSTM 25.77 0.59 1.32 0.15

LSTM with canonical self-attention 25.21 0.63 1.30 0.16
Ours 24.22 0.57 1.24 0.15

Figure 9 shows the actual PV power generations and predictions for the five consecutive days.
In general, the prediction results are similar to actual PV power generation. As shown in the blue
box in Figure 9, although PV power generation is lower compared with the other days for several
reasons such as poor weather condition, our proposed Convolutional Self-Attention LSTM model
predicts the similar pattern on the third day. This means that our proposed model works well even
with various weather changes. However, the differences between the red line and the black line are
also seen. These errors are mainly due to a lack of data, that is, a pattern that does not exist in the past.
Another important factor causing the error is uncertainty in weather forecasts. It can be seen that the
uncertainty of weather forecasts can inject incorrect information into a forecast model.
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5.4. Effect of Historical and Future Data

To further analyze the effect of historical and future data, we magnify the blue box in Figure 9 as
shown in Figure 10. The historical and future data for predicting the PV power generation on the third
day is shown in Figure 10a and its result is depicted in Figure 10b. Note that Figure 10b is the same as
the blue box in Figure 9.
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As shown in the green box in Figure 10a, the curve of PV power generation shows some lot
fluctuations, which produce a high information gain that is helpful for accurate prediction. In addition,
as shown in the blue box in Figure 10a, the weather forecast (the red line) predicted rain and the
precipitation of 8 mm on day 10. Based on this information, the proposed model can predict an accurate
amount of PV power generation as shown in Figure 10b by capturing historical features and also
acquiring helpful information from weather forecasts.

On the other hand, Figure 10d shows an inaccurate case. In this case, the curve of PV power
generation shows consistent patterns for 5 days, which generate lower information for predicting a
sudden decline in PV power generation. This low information gain can have a negative impact on a
prediction model. In addition, because the weather forecast in the blue box in Figure 10c is inaccurate,
the proposed model can only predict a fairly different amount of PV power generation than the actual
PV power generation as shown in the red line in Figure 10d.
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5.5. NSW Electricity Load Data

In order to validate our proposed model, we conduct an experiment using another type of time
series data such as the NSW (New South Wales) electricity load data [43]. The NSW electricity load
data include hour, dry bulb temperature, dew point temperature, wet bulb temperature, humidity,
electricity price and system load. It is constructed by measuring every 30 min from 1 January 2006 to
1 January 2011. For NSW data, since the future data, such as weather forecast, is unknown, we use
only the past 5-day data as input to predict the future 1-day electricity load. Figure 11 shows the
forecasting results for seven consecutive days. As shown in Figure 11, the proposed Convolutional
Self-Attention LSTM model predicts a closer matching pattern to the actual electricity load than other
methods. The MAPE of the proposed model is much lower by 32%, 17% and 44% compared to the
DNN, LSTM and LSTM with the canonical self-attention, respectively. This result indicates that the
proposed Convolutional Self-Attention LSTM model predicts not only PV power generations but also
power consumptions.
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6. Conclusions

In this paper, we propose the Convolutional Self-Attention LSTM model for forecasting day-ahead
hourly PV power generations by applying the convolution self-attention technique. Unlike previous
methods using the canonical self-attention, our proposed method is able to generate queries and keys
that are more aware of local context and thus are able to improve prediction performance by computing
their similarities with their local context information. In addition to the convolution self-attention,
our model uses both historical and future data by replacing the past weather data with the future
weather forecast data during the testing phase.

We compare our proposed model with existing methods: the DNN-based model, LSTM-based
model and LSTM with the canonical self-attention. Extensive experiments using the real world datasets
show that the MAPE of the proposed Convolutional Self-Attention LSTM model is much lower by
7.7%, 6%, 3.9% compared to the DNN, LSTM and LSTM with the canonical self-attention, respectively.
In addition, in order to validate the applicability of the proposed model, we conduct another set
of experiments on forecasting power consumptions using the NSW electricity load data. In these
experiments, we observed that the proposed Convolutional Self-Attention LSTM model has reduced
error rates by 32%, 17% and 44% for MAPE compared to the DNN, LSTM and LSTM with the canonical
self-attention-based models, respectively.

For future work, we plan to augment our method with harsh conditions where the daily PV
power generation is not in the form of a parabola and its deviation is quite severe due to poor weather
conditions. We also plan to extend our model to predict various forecast horizons ranging from 5 min
to a half-hour.
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