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Abstract: The paper deals with the modeling of a slip-ring induction motor. Induction motors are 
very often used in industry and their suitable model is needed to reduce control and operating costs. 
The identification process of self and mutual inductances of the stator and rotor, and mutual 
inductances between them in the function of the rotor rotation angle is presented. The dependence 
of each inductance on the rotor rotation angle is determined experimentally. The inductance matrix 
is then formulated. Taking the magnetic energy of the inductances and kinetic energy of the rotor 
into account, the Lagrange function is defined. Next, the motor motion equations are obtained. After 
making some algebraic transformations and using the dimensionless variables, the motion 
equations of electric circuits and of the mechanical equation are written separately in the forms 
facilitating their solution. The solution was obtained using the Simulink model for the stator and 
rotor currents in the form of vectors. The simulation was controlled by MATLAB script. The results 
of the simulation are presented in the form of basic variables time courses and compared with some 
values calculated with the use Steinmetz model of induction motor. The work is followed by two 
appendices, which contain procedures for determining the inverted inductance matrix. 

Keywords: slip-ring induction motors; modeling; inductance matrix; motion equation; simulation 
 

1. Introduction 

AC induction motors definitely have advantage over DC ones. They are more reliable and their 
purchase and maintenance costs are significantly lower [1]. This is mainly due to a simple design of 
the rotor and that the stator is the only element which is connected to a power supply, as well as due 
to economies of scale. The popularity of induction motors is confirmed by the data published in [2], 
where it was stated that induction motors constitute 95% of driving devices and consume up to 40–
50% of the total produced electricity. 

Furthermore, AC induction motors can be used in difficult operating conditions, including areas 
with high levels of dust, chemically aggressive atmosphere and even in explosion hazard zones as 
speed control and positioning systems. That is why the induction motors are commonly used in 
different types of industrial drive systems with velocity or position as controlled variable. It is 
expected that in the next decade up to 50% of all electric motors will contain induction motors 
powered from power electronic systems [3]. 
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The driving torque of the induction motor results from the stator and rotor interactions. There 
are two types of rotors: caged and wound [2–4]. The design and construction of a cage rotor is simpler, 
but its mathematical description is more complex than a wound rotor [5]. A wound rotor has 
windings connected in a star. The connection point of these windings is usually isolated. The other 
ends of these windings are led to the rings, on which the graphite brushes slide. External resistors 
can be connected through these brushes. These resistors can facilitate starting of the motor and shape 
its operating characteristics [3]. The heat generated in the external resistors does not directly affect 
the motor interior temperature. As a result, the insulation of the windings and bearings age more 
slowly. 

Slip-ring induction motors are used when high starting torque or low starting current is 
required. They are particularly suitable for driving systems of the machines with high inertia loads. 
Currently, ring motors with powers up to 20 MW are produced. 

The use of induction motors with slip rings with a wounded rotor circuit connected to a variable 
external resistance allows speed regulation in a considerable range. However, the thermal losses of 
resistors associated with low speed motor operation are a serious problem. Slip ring motor drives are 
often using systems to recover electricity from the rotor circuit, which is rectified and returned to the 
power supply by means of a variable frequency drive [6]. 

An alternating current power system, developed by George Westinghouse, was introduced as 
electric power transmission system in the late 1880s and early 1890s. The first AC commutator-free 
induction motors were independently invented by Galileo Ferraris and Nikola Tesla, respectively in 
1885 and in 1887. The three-phase circuit was first applied by Michal Doliwo-Dobrowolski in 1889. 
First mathematical model of the induction motor was published in 1897 by Charles Steinmetz. He 
proposed T-equivalent circuit model. The model is a single-phase circuit of a multiphase induction 
motor. On the basis of Steinmetz equivalent circuit analysis, it is possible to determine many useful 
relationships between circuit parameters, current, voltage, speed, power and torque. They describe 
how electrical input variables are transferred into mechanical output in induction motor. The 
Steinmetz diagram has been widely used in electrical engineering in the unchanged form for over a 
hundred years. In [6,7] the author uses the Steinmetz diagram, also for three-phase induction motors. 
The elements of the single-phase equivalent diagram are recalculated from the given parameters of 
three-phase circuit of the induction motor.  

Some extension of the Steinmetz diagram was accomplished in [8,9] by introducing an ideal 
rotating transformer (IRTF) between magnetizing inductance and load resistance. The use of this 
element facilitated the modeling of electric machines. In the chapter on inductive machines, a 
universal model of winding stream connections was introduced, which enables the transformation 
to a two-phase circuit in frame d-q-0 that leads to a simplified machine model with IRTF. This model 
is the basis for a universal model of a magnetic field-oriented machine, which enables analysis and 
facilitates understanding of the dynamics of inductive machines. This model is the basis for the 
development of field-oriented control [8].  

Futhermore, in [4], chapter 3 considers the induction motor scheme developed by Steinmetz. In 
this diagram, the resistance of losses in iron is additionally introduced in parallel to magnetization 
inductance and the resistance of rotor windings is distinguished. The analysis of different types of 
working areas and working characteristics in these areas was carried out. Chapter 4 presents, 
between others, a three-phase model of an induction motor and the equations of magnetic fluxes and 
inductance matrixes. Next, the Park transformation was applied, and four scalar differential 
equations of ordinary electrical part were obtained for coordinates d-q-n (equivalent d-q-0). Schemes 
in Simulink for scalar variables solving differential equations and sample diagrams of dynamic 
processes in the induction motor are also presented.  

Summarizing these publications review it can be concluded that the T-equivalent model is the 
most commonly used one. The element of this model, which is defined as the quotient of resistance 
and slip, it is a non-linear circuit part. It should be stressed that according to [6] the Steinmetz model 
is single phased and valid only in steady-state balanced circuit condition. However in drive systems 
there is often an alternating mechanical load and a three-phase power supply is used, which is not 
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always symmetrical. In addition, the asymmetry of stator and rotor circuits and the non-sinusoidality 
of currents are associated with the creation of a potential difference between the central points of the 
winding stars and supply voltages or load resistance. This phenomenon is not taken into account in 
the publications in question. Especially since the transition from three-phase variables to orthogonal 
coordinates d-q-0 is associated with a common reference point. 

The magnetic streams coupling the stator and rotor windings flow twice through the air gap. 
Hence it can be assumed that the magnetic fluxes in the induction motor are proportional to the 
currents, and the stator and rotor currents should be assumed as state variables, respectively, and so 
applied in [5,10,11]. However, in a three-phase system without a neutral conductor there are only 
two independent currents. It means that the state equations of the stator and rotor circuits should be 
of second order. However, the state coordinates of these circuits need not be orthogonal. It can be 
two of three phase currents. 

The purpose of the analysis is to determine the mathematical model of the slip ring induction 
motor. This model should make it possible to analyze both the influence of motor parameters and 
power quality disturbances occurring in the motor supply circuit on the output torque of the motor 
and the impact of dynamic load moments on the motor shaft on its supply system. The models 
presented above are not sufficient for these purposes  

The basis of the induction motor model is the inductance matrix. The form of this matrix is 
defined in [4,5,10,12]. The first chapter proposes a method of measuring the elements of this matrix 
and their values are determined. Direct measurements of the inductance matrix elements and 
checking its structure can be done only for the slip ring induction motor. Therefore, the paper 
includes an analysis of the slip ring induction motor. In practice, the model of this motor is often used 
as a cage induction motor model [3]. 

Taking into account the above remarks, the equations of the state of the electric part of the motor 
circuits have been recorded in the vector-matrix form of the 6th order and then transformed into the 
4th order. Non-dimensional variables resulting from the equations and time scaling were used. The 
results of model simulation with dimensionless variables were converted into physical variables. The 
simulation was conducted for a balanced motor. Thanks to that, it was possible to use the Steinmetz 
model to verify the obtained results. 

An original procedure for inverting the inductance matrix was developed. It allowed to present 
the equations in a form facilitating the solution of model equations in MATLAB-Simulink system. 
The operating diagram of the analyzed model is much smaller and simpler than the one presented in 
[4,13] and allows to conduct simulation experiments to study power quality disturbances and 
dynamic mechanical loads of the motor.  

2. Inductance Matrix of a Slip-Ring Induction Motor 

The three-phase circuits of both the stator and rotor should be considered as part of the motor 
dynamics analysis. In each phase of each circuit there are windings, which are mutually coupled. The 
type of couplings depends on the rotor rotation angle in relation to the stator. The couplings between 
the windings also depend on the properties of the magnetic circuit. In the induction motor, the air 
gap between the rotor and the stator is important. The magnetic flux generated by the currents of the 
stator flows through the gap twice. This allows to assume that the motor magnetic circuit is linear 
and may be described using inductances. That is why the base of the induction motor mathematical 
model is a matrix of inductances. The matrix may be described experimentally. The separated 
physical parts of the motor are powered and relevant elements of the inductance and resistance 
matrix are calculated. One drawback of this approach is that the measurements can be performed 
only on a real, existing machine. The results of these measurements allow us to determine which 
parameters are relevant for a given model. In the process of identifying the parameters of the model, 
the measurements are performed as the function of the rotor rotation angle.  

The inductance matrix L of an induction motor depends on rotor rotation angle and consists of 
four submatrices 3 × 3: Ls—the stator matrix of self-and mutual inductances, Msr—the matrix of 
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mutual inductances of the rotor in relation to the stator, Lr—the rotor matrix of self—and mutual 
inductances and Mrs—the matrix of mutual inductances of the stator in relation to the rotor. 









=

LrMsr
MrsLs

L )(ϕ , (1)

Taking into account the matrix L symmetry [3], it can have 21 different elements. Simultaneous 
identification of all these parameters causes the parameter measuring system to be rather complex. 
Therefore, the measurements were carried out in several stages. One of the stator or rotor windings 
was connected to a 50 Hz AC source and the source current and the voltages of all motor windings 
were measured. Measurements of both the powered winding and the remaining ones were 
performed using an eight-canal simultaneous measurement system. The diagram of connections for 
the case when one winding of the stator is powered is presented in Figure 1. The supplied winding 
was marked with the thick line.  

In the first stage of parameters determination, the supply was connected to the first winding of 
the stator and both the supply current and voltages: Is1, Us1, Us2 and Us3 were measured. The measured 
voltages are described by equations: 

111
1

1 sss
s

s UIR
dt
dI

L =⋅+ , (2)

2
1

12 s
s

sm U
dt
dI

L = , (3)

3
1

13 s
s

sm U
dt
dI

L = , (4)

After using the Golay-Sawitzki filter to the currents and voltages signals, the inductances and 
resistances were determined from the above-mentioned equations with the use of the least squares’ 
method. To determine mutual inductances, it is necessary to use the measurements taken at the 
supply of chosen one winding—Figure 1. 

 
Figure 1. The diagram of connections for one powered winding of the stator. 

The Ls1 inductance of the winding 1 of the stator is sum of leakage inductance Ls_1 and 
magnetizing inductance Lsm1: 

11_1 smss LLL += , (5)

The magnetizing inductance Lsm1 of the winding 1 equals the negative sum of mutual inductances 
of the remaining windings Lsm12 and Lsm13: 
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( )13121 smsmsm LLL +−= , (6)

The measurements were performed winch induction motor of SZUDe36a 2P44 type. It is the 
three-phase slip-ring and has three pairs of poles. The nominal stator current for the star connection 
of windings was equal to 4.1 A, the nominal rotor current for the star connection of windings was 21 
A and the nominal motor speed was 920 revolutions per minute. The rated power is 1.5 kW. The 
measurements were executed at the supply of the windings with the current equal to approx. 0.25 of 
the rated current of given winding.  

All stator windings were measured. The averaged measurement results showed that the stator 
magnetizing inductance was equal to Lsm = 0.187 H and the stator leakage inductance to Ls_ = 0.0293 
H. The average phase resistance of windings of the stator was also measured. It amounted to Rs = 10.5 
Ω and contained the eddy currents resistance and the windings copper resistance equaling RsDC = 3.7 
Ω, (measured with the multimeter).  

The measured values of self and mutual inductance coefficients of stator phase windings were 
very close. The parameters differences for the circuit of different phases in the function of the rotation 
angle did not exceed 2% of their mean value. Therefore, it was acknowledged that they were equal 
for all phases of the motor and independent on the rotation angle [4,5]. This applies also to both the 
leakage and the magnetizing inductances. It means that the matrix Ls is symmetric and the elements 
of the diagonal are equal and amount to Ls. The elements outside the diagonal equal −0.5Lsm: 

mLsLs ⋅=
















+−−
−+−
−−+

⋅=
















−−
−−
−−

= sm

s

s

s

sm

ssmsm

smssm

smsms

LL
LLL
LLL
LLL

σ
σ

σ

12/12/1
2/112/1
2/12/11

2
1

2
1

2
1

2
1

2
1

2
1

, (7)

where: 
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100
010
001

_1 , 

Similar measurements were conducted for the rotor. It was obtained the averaged magnetizing 
inductance Lrm = 3.9 mH and the leakage inductance Lr_ = 0.55 mH from (5) and (6). The average phase 
resistance of the stator windings amounted to Rr = 0.523 Ω and contained the resistance introduced 
by eddy currents and the windings (copper) resistance equaling RrDC = 0.2 Ω.  

The matrix Lr has the form similar to that of Ls matrix. The elements of the diagonal are equal 
and amount to Lr. and the elements outside the diagonal are equal to—0.5Lrm. 

1 1
2 2

1 1
2 2
1 1
2 2

1 1/ 2 1/ 2
1/ 2 1 1/ 2
1/ 2 1/ 2 1

r rm rm r

rm r rm rm r rm

rm rm r r

L L L
L L L L L
L L L

 − − +σ − − 
   = − − = ⋅ − +σ − = ⋅   
   − − − − +σ  

Lr mLr , (9)

where: 

rm

rmr

rm

r
r L

LL
L
L −

== _σ , 

The mutual inductances between the stator and rotor as well as between the rotor and stator in 
the function of the rotor rotation angle were determined for the supply given to one winding of the 
stator or rotor, respectively. In case of the supply given to the rotor it is assumed that the voltages on 
stator windings are described by the equations: 
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1r
rsn sn

dIM U
dt

⋅ = , where n = 1, 2, 3. (10)

As in the previous case the signals of currents and voltages were filtered. The elements of the 
matrix of mutual inductances in the function of the rotor rotation angle were identified using the least 
squares method. The measurements were carried out for the supply given to the individual windings 
of the rotor.  

The waveforms of coefficients of the mutual inductances of stator windings in relation to the 
rotor first phase winding versus the rotor rotation angle are presented in Figure 2. 

 
Figure 2. The coefficients of the mutual inductance of the stator windings in relation to the first phase 
rotor winding versus the rotor rotation angle. 

The coefficients of mutual inductances between stator and rotor are periodic functions of the 
rotor rotation angle. Their period amounts to 120 degrees and results from the number of poles pairs. 
Their amplitudes differ at most by approx. 2%. The inductances generate the cyclic matrix-circulant 
[14]: 

rsM= ⋅Mrs mC, (11)

where: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3/2,
3cos23cos3cos

3cos3cos23cos
23cos3cos3cos

π
ϕϕϕ

ϕϕϕ
ϕϕϕ

⋅=

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











⋅++
+⋅+

⋅++
= q

qq
qq
qq

mC , (12)

In the next stage the stator winding was supplied and measurements of voltages on rotor 
windings in the function of the rotation angle were conducted. The voltages are described by an 
equation analogous to (10). The measured coefficients are also periodic functions of the rotor rotation 
angle they generate the circulant as well. Their amplitudes differ by 2%. 

srM= ⋅ TMsr mC , (13)

The amplitude of the mutual inductances among the stator and rotor equals Msr = 0.0275 H. The 
amplitude of the mutual inductances between the rotor and stator is approx. 4% smaller and amounts 
to Mrm = 0.0264 H. 

In the following part of the chapter it is assumed that the Mrs and Msr inductances are equal to: 

0.027 Hsm rmM L L= ⋅ = , (14)

with the accuracy of about 2% of Mrs and Msr values. 
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Basing upon the measurements we have concluded that phase resistances of the stator circuits 
have very close values. This applies also to the rotor resistances per phase. The phase resistances of 
the stator and rotor circuits are placed on diagonals of the matrices respectively Rs and Rr. 

Finally, the inductance matrix of the motor is assumed in the form: 









⋅⋅

⋅⋅
=

mLrmC
mCmLs

L
rm

T
sm

LM
ML

)(
)(

)(
ϕ

ϕ
ϕ , (15)

The resistances matrix of the motor is also a concatenation of the stator and rotor diagonal 
resistances matrices:  






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
=
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0Rs

R
33

33

x

x , (16)

The 0nxn denotes the zero matrix of n x n dimensions. The phase resistances of the stator and 
rotor circuits are placed on diagonals of the matrices: 
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00
00
00

r

r

r

R
R

R
Rr , (17)

In general, in the model the stator phase winding resistances can have different values. The same 
can be for the rotor winding. However, basing upon the measurements, it was assumed in simulation 
that phase resistances of the stator circuits are equal. This applies also to the rotor resistances per 
phase. 

The inductance matrix of a slip-ring motor (1) depends on rotor rotation angle and together with 
motor currents (time derivative of electric charges) determine the magnetic energy, which aggregated 
with the rotor kinetic energy form the Lagrange function. 

( ) 21 1
2 2
TfL Jϕ ω= ⋅ ⋅ + ⋅I L I , (18)

where: 
( )ϕL —the matrix of inductances, dependent on the angle of rotor rotation in relation to a stator, 

QI = —the motor currents column vector,  
ω ϕ=  —the angular velocity of the rotor, 
J —the moment of rotor inertia. 
The Lagrange function is the difference of kinetic and potential energies and it does not take into 

account the friction and external forces. Consequently, the Lagrange function does not describe the 
energy flow [15].  

Basing on the Lagrange function the d’Alembert-Lagrange equation may be formulated [15]. 
Using the equation with virtual velocities as variations of virtual coordinates it may be easy checked 
that induction motors are holonomic systems. Thanks to that, after using the Euler-Lagrange 
equations and taking into account forces of friction and external excitation, the motion equations may 
be obtained in the form: 

UoIRUz
IQ

−⋅−=
∂

∂
=

∂
∂ fL

dt
dfL

dt
d

 , (19)

( )ϕ
ϕϕ


 FL TTfLfL

dt
d −=

∂
∂−

∂
∂ , (20)

where Uz—denotes the supply voltage vector, Uo—the vector of voltages between s neutral points, 
R—the windings resistance matrix, TL—the mechanical load torque, TF—the mechanical friction 
torque 

After substitution of Lagrange function into the Equations (19) and (20) and some 
transformations we get 
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UzUoIRILIL =+⋅+⋅⋅
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∂+
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d
td
d ϕ

ϕ
ϕϕ )()( , (21)
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LF TTT

dt
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∂⋅−+⋅ ILI
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ϕωω

2
1 , (22)

The vectors of currents and voltages are of the 6th order and it refer to concatenated three-phase 
stator and rotor vectors. So: 
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where: Is = [Is1 Is2 Is3]T, Ir = [Ir1 Ir2 Ir3]T, 13x1 = [1, 1, 1]T, Uos, denote voltage between center points of star 
power supply and star winding for the stator, Uor—voltage between center points of star winding of 
the rotor and the star load or power supply of rotor, Us, Ur—are vectors of the phase voltage that 
supply power to the stator and rotor windings. The motor inductance matrix L(ϕ) and the resistance 
matrix R are described as (15) and (16) respectively. 

The voltages supplying the stator are assumed in form: 

vSEsUs ⋅= , (24)

where: Es—the diagonal matrix of magnitudes and time functions of power supply phase voltages. 
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where: 3/2 π⋅=q   
The mean value of the phase voltages amplitudes is described as: 

( ) 3/321 sss EEEEs ++= , (26)

The (21) components are column vectors of voltages of the 6th order. Their first three rows 
represent the stator equation, the other three are the rotor one. 

In order to simplify the writing to the dimensionless form, the voltage and currents of the rotor 
are transferred to the stator level. For this purpose, the stator equations are divided by the mean 
amplitude of the phase supply voltages Es, the rotor equations are divided by Es∙(M/Lsm). Next the 
time scaling τ = ωs·t is used and then the substitution of the value of stator and rotor currents divided 
by Es/(ωsLsm) and Es/(ωsM) respectively is performed. After the dimensionless variables’ definition: 

))/((,
))/((,

)(),(
))((,)(

sm

sm

rmssms

ssms

LMEsEs
LMEsEs

LL
MEsLEs

⋅==
⋅==

==
==

UruEse
UuUu
RrrRsr

IiIi

rs

ororosos

rs

rrss

ωω
ωω

, (27)

(21) may be written in form. 
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A circle above the state variables denotes the time derivative calculated in relation to τ, which 
describes the time after time scaling. 

The three-phase equation of a stator and a rotor may be described by two instantaneous values 
of currents. It means that the stator and rotor circuit may be also described by two equation system 
of the second order. Therefore, the stator (or/and rotor) equations of the 1st and 2nd phase will be 
used only for the analysis. The 3rd phase current is replaced with a negative sum of the current of 
the first and second phases. The replacing process for the stator and rotor currents is shown as T32 

transformation [14]. 

232 ss iTi ⋅= ,  232 rr iTi ⋅=   , (30)

where: 











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

−−
=

1
1
0

1
0
1

32T , (31)

In order to eliminate voltages between center points of stars of power supply and stator 
windings, the third phase equation should be subtracted from the first-phase equation and from the 
second-phase equation of stator. The same should be done with the equations of the rotor. The above 
subtractions correspond to a premultiplication by a matrix [16] separately for stator and rotor 
equations: 









−
−

=
110
101

23T , (32)

After transformations the equations of the electric part of the motor may be expressed as follows: 









⋅
⋅⋅

=















⋅+














⋅

r

s

r

s

r

s
uT
vSeT

i

iΘ
i

iΛ
23

23

2

2
2

2

2
2

)(τ




, (33)

where: 









=








⋅⋅⋅⋅
⋅⋅⋅⋅

=
22

22

32233223

32233223
2 mTmC

mCmT
TmLrTTmCT
TmCTTmLsT

Λ
r

T
s

T λ
λ

, (34)



















⋅⋅






⋅⋅
=



















⋅⋅⋅⋅⋅




⋅

⋅⋅⋅




⋅⋅⋅

=

2
2

2
2

32233223

32233223

2

rs

T

ss

s
T

s

d
d

d
d

d
d

d
d

mrmC

mCmr

TrTTmCT

TmCTTrT
Θ

r

s









ϕωϕ

ϕωϕ

ϕωϕ

ϕωϕ
, (35)

The Λ and Θ matrices are sized 6 × 6 dimensions. After applying the T23 and T32 transformations, 
the Λ2 and Θ2 matrices are 4 × 4 dimensions and their elements—submatrices are  2 × 2 dimensions. 
The values and designations of these sub-arrays for Λ2 are as follows:  

( ) ( )
( ) ( ) 








+−

⋅+−
⋅=⋅⋅=

ϕϕ
ϕϕ
3cos3cos

23cos3cos
32 q

q
3223 TmCTmC , (36)

3223 TmLsTmT ⋅⋅=⋅ 2sλ , (37)

3223 TmLrTmT ⋅⋅=⋅ 2rλ , (38)

where: 









=⋅=

21
12

2 3223 TTmT , (39)
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ss σλ 23 += , rr σλ 23 += , (40)

Similarly, elements of the Θ2 matrix are in the form: 









+

+
=⋅⋅=

323

331
2

sss

sss

rrr
rrr

32s23s TrTmr , (41)









+

+
=⋅⋅=

323

331
2

rrr

rrr

rrr
rrr

32r23r TrTmr , (42)

( ) ( )
( ) ( ) 








−+

⋅+−
⋅=⋅

∂
∂⋅=

∂
∂

ϕϕ
ϕϕ

ϕϕ 3sin3sin
23sin3sin

92

q
q

3223 TmCTmC , (43)

Computing elements of matrices (34) and (35) yields possibility calculation of currents 
derivatives using equation: 
































⋅−








⋅
⋅⋅

⋅=













−

2

2
2

23

231
2

2

2 )(

r

s

r

s

r

s

i

iΘ
uT
vSeT

Λ
i

i τ




, (44)

The Λ2−1—inverted matrix may be determined using the procedures presented in Appendix A 
and B. 

The mechanical Equation (22) of the motor may also be transformed. After substitution of wet 
friction: 

dt
dkT FF
ϕ⋅= , (45)

and time scaling, it has the following form: 
2

2 2
2 22
T

s s F L s r
dd dJ k T ke

d dd
ϕ ϕω ω

τ ϕτ
⋅ ⋅ + ⋅ ⋅ + = ⋅ ⋅ ⋅mCi i , (46)

where: 

2

2
s sm

Eske
Lω

=
⋅

, (47)

The mathematical model describes the inductive slip-ring motor with symmetrical inductances. 
The remaining elements of the model may be asymmetric, i.e., they may have unequal phase 
components. The tests conducted on the model may be divided into the analysis of the model of the 
symmetrical arrangement and sensitivity studies of the remaining elements affecting its 
characteristics. The model uses dimensionless variables and parameters and that is why it is simple 
and maybe useful in simulation of the slip-ring induction motor.  

3. The Model of the Motor in Simulink 

The motor electric and mechanical Equations (44) and (46) respectively, provide the basis for the 
creation of the vectorized simulation model in Simulink. The vectorization simplifies the diagram of 
the model and facilitates its use. The model diagram is presented in Figure 3.  
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Figure 3. The model of a slip-ring motor in a Simulink program. 

The physical parameters of the modeled motor are presented in Table 1.  

Table 1. Parameters of the modeled induction motor. 

Name Value Name Value 
Es 230∙sqrt(2) V Lrm 3.9 mH 
ωs 2∙50∙π rad/s Lr_ 0.55 mH 
Rs 10.5 Ω Rr 0.523 Ω 
Ls_ 0.0293 H q 2∙π/3 rad 
Lsm 0.187 H kT 0.005 Nm∙s 
M 0.027 H J 0.011 kg∙m2 

Physical variables are converted into dimensionless Simulink input variables and simulation 
output variables into physical variables of the object in the MATLAB script, which controls the 
simulation experiment. 

The electric currents and their time derivatives are used in the model in the form of two-
dimensional signal vectors. These signals lines are presented in the diagram as thick lines. The 
equations of the electrical part are integrated in the upper part of the model diagram. The mechanical 
part is solved in the lower part of the diagram. In the middle there is a block of the built-in MATLAB 
function, in which the equations of the state co-ordinates derivatives are formulated. These 
derivatives for the electrical part are determined from (44) and for the mechanical part from (46) from 
dimensionless variables. The simulation was performed under zero initial conditions. The results of 
the simulation are placed in MATLAB workspace. Then they are used to draw up the waveforms of 
the model.  

The diagram of the model is very compact and clear. The return to physical quantities of the 
model variables is performed after the simulation. The rescaling calculations have been completed 
and then the figures are drawn.  

The simplicity of the final Simulink model ought to be emphasized. It results from the 
application of the transformation of the circuit equation to (44) and the use of vector-matrix notation. 
The simplicity of the model may be estimated by comparing it with the models presented in [4,13,17]. 
The obtained model is also more convenient for the arrangement of simulation experiments. 
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4. T-Equivalent Induction Motor Model 

For a rough check of the modelling results, it was decided to use the possibly simple model of 
an induction motor. It was decided to use the Steinmetz model. His replacement diagram of a multi-
phase induction motor in the form of T-equivalent circuit is presented in Figure 4. 

 
Figure 4. Steinmetz T-equivalent diagram of induction motor. 

The following components are used in the diagram:  

• Rs, Xs—stator resistance and leakage reactance of stator, 
• Xm—motor magnetizing reactance, 
• Rr′, Xr′—rotor resistance and leakage reactance of rotor transformed to stator side, 
• s—slip. 

This is a single-phase model of a multiphase induction motor. The model of the motor is valid 
in steady-state balanced circuit condition [6]. The slip of the motor is defined as 

3s r

s

s
ω ω

ω
−

= , (48)

Synchronous angular velocities of the stator’s magnetic field rotation and the rotor’s angular 
speed were determined as sω , rω  respectively. The element on which the output load is generated 
in this scheme is the resistance with the value Rr’/s. Steinmetz presented the power emitted on this 
resistance as a sum of electromechanical output power and thermal power. To determine these 
powers, he introduced the following equation: 

1r
r r

R sR R
s s
′ −′ ′= ⋅ + , (49)

Multiplying this equation by 23 rI ′⋅  the following equation is obtained 

gap em rP P P= + , (50)

in which the Pgap is air gap power, Pem—electromechanical output power and Pr—the heat power 
generated on the resistance. The above active power of rotor is respectively equal to: 

2 213 ' ' 3
3
s

gap r r r r
s r

P I R I R
s

ω
ω ω

′ ′= ⋅ = ⋅ ⋅
−

, (51)

2 213 3
/ 3

r
em r r r r

s r

sP I R I R
s

ω
ω ω

−′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅
−

, (52)

23r r rP I R′ ′= ⋅ , (53)

To simplify further analysis, the IEEE recommends using Thevenin’s claim. The result is the 
diagram shown in Figure 5. 

Rs

Vs

jXs

jXm
R
s
r
′

jX r
′

Is I r
′
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Figure 5. Steinmetz T-equivalent diagram of induction motor after using Thevenin’s Theorem. 

In this diagram there is a voltage source with VTE voltage and ZTE impedance in series with rotor 
reactance and load resistance. These variables are equal to: 

m m s
TE s TE

s m s m

jX jX Z
V V Z

Z jX Z jX
⋅

= =
+ +

, (54)

where s s sZ R jX= + . 
The current Ir’ flowing in the load may be calculated as follows: 

1

sTE
r

r sr
TE r s r

m

VVI
R ZRZ jX Z jX
s s jX

′ = =
′  ′  ′ ′+ +  + + ⋅ +     

, 
(55)

Using the above result, it is possible to determine the stator current from the circuit in Figure 4: 

11 r r
s r

m m

X RI j I
X X s

 ′ ′
′ = + −

 
 

, (56)

The electromechanical output power can be determined from (52) and on this basis the 
electromechanical moment may be calculated. 

em
em

r

P
T

ω
= , (57)

It should be stressed that the above dependencies result from the scheme adopted by Steinmetz 
and the assumption that the individual phase circuits of a three-phase induction motor can be treated 
as working independently on torque.  

5. Example of the Model Waveforms 

The results of the simulation were compared with the values determined for the same motor 
parameters using the Steinmetz model, which allows us to determine the motor currents and powers. 
However, the full state vector in this model cannot be reproduced as the rotor speed is not available. 
The simulation model is used to determine the steady state speed as a function of the load torque. 
The course of this speed during motor start-up for the load torque TL = 1 Nm and TL = 15 Nm is shown 
in Figure 6. These graphs show that after just one period of run there is an increase in motor speed 
equal to about 20% of steady state speed. The time of reaching the steady state is equal to about 5 to 
10 periods of supply voltage. The slip for the load torque TL = 1 Nm is about 0.025 and for TL = 15 Nm 
it is 0.435.  

RTE

VTE

jXTE

R
s
r
′

jX r
′

I r
′
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Figure 6. The rotation velocity during start-up process of the motor for different load torque values. 

The dynamics of the start-up process are visible on the graphs of rotor currents—Figures 7 and 
8 and stator—Figures 9 and 10. Figure 7 shows the rotor currents for load torque TL = 1 Nm. In steady 
state they had an amplitude equal to 2 A and a period of 0.82 s which corresponds to a slip equal to 
0.025. The current amplitude at the beginning of the start-up was 48 A.  

 
Figure 7. The phase currents in the rotor windings during the start-up motor for load torque 1 Nm. 

In Figure 8, for torque TL = 15 Nm in steady state it was about 5.5 A and the period was about 
0.046 s. At the beginning of the start-up process, the current amplitude reached 50 A. The determined 
periods of current oscillation of the rotor are in accordance with the rotor speed courses in Figure 6. 
The frequency and the magnitude of the currents waveforms of the rotor decreases with the reduction 
in the load torque.  

Starting currents can be estimated using Steinmetz model dependencies. The observed model 
data differs from those calculated for s = 1 using (55) by about 5 percent of the later ones. This can be 
explained by a fairly high acceleration during the first period and a reduction in slip s, which also 
reduces the rotor current. 
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Figure 8. The phase currents in the rotor windings during the start-up motor for load torque 15 Nm. 

From the rotor current, it is possible to determine the value of the stator current amplitude at 
the beginning of the motor start-up process for both load torque values. These currents are shown in 
Figures 9 and 10.  

 
Figure 9. The phase currents in the stator windings during the start-up motor for load torque 1 Nm. 

The initial value (for s = 1) determined from relation (56) is about 10.4 A as in these figures. 
Differences occur for steady state stator current amplitudes. For TL = 1 Nm the calculation shows 
amplitude of 4.7 A and the simulation in Figure 9 shows a value of about 3.3 A. Similarly, for TL = 15 
Nm the calculation gives 6.2 A and the graph in Figure 10 shows 5.5 A. 

The stator current waveforms presented in Figures 9 and 10, have two stages: the start-up and 
steady-state. The shape of the waveforms during the stages is clear. In the case of a smaller load 
torque the current stabilizes after only four periods of the power supply voltage. The magnitudes of 
currents in steady-state rise with the increase in load torque value. The stator currents waveforms 
frequency is independent of the load torque and constant, and equal to the frequency of the supply 
network.  
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Figure 10. The phase currents in the stator windings during the start-up motor for load torque 15 Nm. 

The electric torque during the start-up motor for the different load torque values is presented in 
Figure 11.  

 
Figure 11. The electrical torque during the start-up motor for different load torque. 

In the steady state, the electromagnetic torque waveforms are close to the load torque. This is 
due to the inclusion of the mechanical part in the simulation model. The Steinmetz model for load 
torque TL = 1 Nm, gives torque value approximately 30% lower than the simulation steady state. The 
compliance was obtained for the higher value of the load moment. It seems that it may result from 
the simplification of the T-equivalent model. The T-model is sensitive for the slip value close to zero. 
In both cases the constant component of the start-up torque appears. It determines the dynamics of 
the start-up process of the motor. After reaching a specified angular speed, the electric torque 
converges to the sum of torques of loads and friction. 

6. Conclusions 

The model of slip-ring induction motor presented in this paper was obtained on the basis of 
inductance matrix in the form specified in the literature. The elements of this matrix were determined 
experimentally for the selected motor using methods developed by the authors. After the Lagrange 
function was formulated, motion equations of the motor were determined, dimensionless variables 
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were introduced and the minimal form of motion equations of the electric part of the induction motor 
model were established. These equations are recorded in the vector- matrix form of the fourth order. 
These are non-linear equations, with non-linearity resulting from the dependence of the inductance 
matrix on the angle of rotor rotation. 

These equations are original. The form of these equations allowed to formulate a simple 
operational diagram of the slip-ring induction motor model in Simulink. In order to check the 
correctness of the model, the T-equivalent diagram of the induction motor was presented. The 
correspondence between the initial period of the motor start processes and some variables of the 
steady state vector was obtained. Such possibilities were made possible using this additional model.  

Three-phase circuits of the motor stator and rotor are described using differential equations of 
two-phase currents of the stator and of two-phase currents of the rotor circuits. As a result, the motor 
circuits are more easily observed and the forms of the equations are simpler.  

The model may be easily adapted for the research on the influence of asymmetry of power 
supply, dynamical load of the motor and influence of unbalance of other components of motor 
circuits. The preliminary results of tests are promising. The tests conducted on the model may be 
divided into the analysis of the model of the balanced (symmetrical) arrangement and sensitivity 
studies of the remaining elements affecting its characteristics as in [14].  

The model makes simulation of a slip-ring induction motor simpler than the ones in [9,13,17]. 
The authors consider a concept of the presented mathematical transformations and the model as a 
novelty. 
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Appendix A. Algorithm of Matrix Inversion 

A matrix of 2n × 2n dimension is considered in the form given by: 









DC
BA

, (A1)

A, B, C, D denote submatrices of n × n dimension. It is assumed that inverse matrices of 
submatrices A, D exist and that the inverse matrix of the (A1) may be written in the same form as the 
input matrix. Submatrices of the inverse are denoted with additional letter i. The inverse matrix and 
the original matrix fulfill the relation: 









=








⋅









Dnnxn

nxnDn

10
01

DC
BA

DiCi
BiAi

, (A2)

where: 1Dn marks the identity matrix of n x n dimensions, and 0nxn is the zero matrix of n x n 
dimensions. 

After the multiplication of the submatrices the following equations are obtained: 

Dn1CBiAAi =⋅+⋅ , (A3)

nxn0DBiBAi =⋅+⋅ , (A4)

nxn0CDiACi =⋅+⋅ , (A5)

Dn1DDiBCi =⋅+⋅ , (A6)
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From (A4) we get: 
1−⋅⋅−= DBAiBi , (A7)

and after substituting into (A3): 

Dn1CDBAiAAi =⋅⋅⋅−⋅ −1 , (A8)

Hence 

( ) ( ) 111111 −−−−−− ⋅⋅⋅⋅−=⋅⋅−= ACDBA1CDBAAi Dn , (A9)

The substitution of the above into (A7) yields: 

( ) 11111 −−−−− ⋅⋅⋅⋅⋅⋅−−= DBACDBA1Bi Dn , (A10) 

Similarly, the remaining submatrices can be obtained as follows: 

( ) 11111 −−−−− ⋅⋅⋅⋅⋅⋅−−= ACDBACD1Ci Dn , (A11) 

( ) ( ) 111111 −−−−−− ⋅⋅⋅⋅−=⋅⋅−= DBACD1BACDDi Dn , (A12) 

Appendix B. Algorithm of the Inversion of Inductance Matrix 

The analysis of the matrix inversion in (44) may be facilitated if cosine functions in (12) will be 
replaced by: 

( ) ( ) ( ) 3/223cos3cos3cos πϕϕϕ ⋅=⋅+=+== qqcqba , (A13) 

Then the (12) has the form: 
















=

acb
bac
cba

mC , (A14) 

and its elements fulfill the relation 

0=++ cba , (A15) 

It is easy to obtain the equality (36) in form: 









−

−
=⋅⋅=

ab
ca

32 2w33w2 TmCTmC , (A16) 

In (44) the inversion of the matrix Λ2 (34), which submatrices are denoted as follows: 









=








⋅

⋅
DC
BA

mTmC
mCmT

22

22

r
T

s

λ
λ

, (A17) 

The matrices A, D are proportional to the 2mT , which may be easily inverted: 









−

−
=−

21
12

3
11

2mT , (A18) 

In order to obtain the inverse matrix of (A17), the matrix products A−1∙B and D−1∙C from—
Appendix A will be helpful. After substituting equations (A16), (A18) and taking into account the 
relation (A15) these products may be presented in the form: 









−−
−−

=







−

−
⋅








−

−
⋅=⋅=⋅ −−−−−

babc
cbca

ab
ca

sss
11

2
1

2
11 3

21
12

3
1 λλλ mCmTBA , (A19) 
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







−−
−−

=







−

−
⋅








−

−
⋅=⋅=⋅ −−−−−

cacb
bcba

ac
ba

rr
T

r
11

2
1

2
11 3

21
12

3
1 λλλ mCmTCD , (A20) 

In all submatrices, the product D−1∙C∙A−1∙B appears, which may be written as follows: 

2
1

22
1

2
1111 mCmTmCmTBACD ⋅⋅⋅⋅⋅=⋅⋅⋅ −−−−−− T

rs λλ , (A21) 

After substituting (A19), (A20), (A21) we obtain: 

( )( ) ( )( ) 







⋅−+−−⋅⋅⋅=⋅⋅⋅=⋅⋅⋅ −−−−−−

10
0121111 cbbacars λλBACDCDBA 11 , (A22) 

The expansion of this expression while considering (A15) allows us to obtain: 

( ) 2
22211

2
3

Drs cba 1CDBA 11 ⋅++⋅⋅=⋅⋅⋅ −−−− λλ , (A23) 

Using (A13) and the identities 

( ) ( )ϕϕ 32cos2
1

2
13cos22 ⋅+==a

 

( ) ( )qqb 232cos2
1

2
13cos22 +⋅+=+= ϕϕ , 

( ) ( )qqc +⋅+=+= ϕϕ 32cos2
1

2
123cos22  

(A24) 

The sum of squares in (A23) may be calculated as follows: 

2
3222 =++ cba , (A25) 

and then the following relation is obtained: 

2
11)4/9( Drs 1CDBA 11 ⋅⋅⋅=⋅⋅⋅ −−−− λλ , (A26) 

Hence the submatrices of the diagonal of the inverted matrix may be written in the form: 

( ) ( )

( ) ( ) 







−

−
⋅−⋅=








−

−
⋅⋅⋅−⋅=

=







−

−
⋅⋅⋅⋅−=⋅⋅⋅⋅−=

−−−

−−−−−−−−

21
12

3
14/9

21
12

3
14/9

21
12

3
1)4/9(1

111

11111111
2

rrssrsrs

srsD

λλλλλλλλ

λλλACDBA1Ai
, (A27) 

( ) ( ) 







−

−
⋅⋅−⋅=⋅⋅⋅⋅−= −−−−−

21
12

3
14/9 11111

srsDn λλλDBACD1Di , (A28) 

For the calculation of the remaining submatrices, the following products, which may be 
calculated from (A26) are useful: 
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Using (A26) and (A29) and (A30) respectively, the following elements are calculated: 
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The inverted matrix (A17) i.e., Λ2 (34), may be written as: 
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