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Abstract: The paper features an examination of the link between the behaviour of oil prices and
Dow]Jones Index in a nonlinear autoregressive distributed lag nonlinear autoregressive distributed
lag (NARDL) framework. The attraction of NARDL is that it represents the simplest method available
of modelling combined short- and long-run asymmetries. The bounds testing framework adopted
means that it can be applied to stationary and non-stationary time series vectors, or combinations
of both. The data comprise a monthly West Texas Intermediate (WTTI) crude oil series from Federal
Reserve Bank of St Louis (FRED), commencing in January 2000 and terminating in February 2019,
and a corresponding monthly DOW JONES index adjusted-price series obtained from Yahoo Finance.
Both series are adjusted for monthly USA CPI values to create real series. The results of the analysis
suggest that movements in the lagged real levels of monthly WTI crude oil prices have very significant
effects on the behaviour of the DOW JONES Index. They also suggest that negative movements have
larger impacts than positive movements in WTI prices, and that long-term multiplier effects take
about 9 to 12 months to take effect.

Keywords: NARDL; Bounds Tests; WIT; DOW JONES; asymmetries; multiplier effects

1. Introduction

The paper explores the link between oil prices and Dow Jones Index in a nonlinear autoregressive
distributed lag (NARDL) framework. Shin et al. [1] introduce short- and long-run nonlinearities
via positive and negative partial sum decompositions of the explanatory variables. This model,
as developed by [1], has a number of advantages. These include the capability of being estimated
by OLS, and the use of bounds-testing to make reliable long-run inference. Bounds testing does not
require the integration orders of the variables to be the same. In traditional cointegration analysis,
all the variables would have to be non-stationary I(1).

The analysis is undertaken using the R library package ‘nardl’ by Zagdoudhi [2]. This package
also uses R code to implement the bounds tests confidence intervals on the dynamic multipliers,
as suggested by Philips [3], using code that he made available (the 'nardl’ library uses the R package
"pss” which Philips [4] placed on ‘Github’ to undertake this http:/ /andyphilips.github.io/pss/).
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The paper explores the links between oil price changes and movements in the Dow Jones Index,
using the latest developments in nonlinear time-series modelling techniques, in a framework that is
capable of capturing both short-run and long-run effects. Shin et al. [1] draw attention to the vast
literature that has developed around the concept of cointegration and the analysis of non-stationarity,
which commenced with Dickey and Fuller [5], Engle and Granger [6], Johannsen [7], Phillips and
Hansen [8], and Kwiatkowski et al. [9], which represent major landmarks.

Park and Phillips [10] explore nonlinear econometric analysis for non-stationary time series.
They demonstrate that the spatial features of a time series can play a significant role in the relevant
asymptotics. A further generalisation of this approach to encompass a time trend and stationary
regressors, and multiple I(1) regressors, is provided by Chang et al. [11].

Bierens and Martin [12] developed a vector ECM with time-varying properties. The Johansen
framework is a special case. Park and Hahn [13] followed the approach of Engle and Granger [6] and
proposed a cointegrating regression with time-varying parameters. They conceded that this form of
cointegration is quite restrictive, as only the coefficients are assumed to be time-dependent.

The relationship between oil price changes and GDP in a non-cointegration framework, has been
explored by Hamilton [14], who reported strong evidence of nonlinearity, and suggested that oil price
increases have a greater impact than oil price decreases.

A considerable literature, developed since the mid 1990s, considered non-stationarity and
nonlinearity jointly. Three regime-switching models have influence: threshold ECM associated with
Balke and Fomby [15], Markov-switching ECM of Psaradakis et al. [16], and smooth transition
regression ECM developed by Kapetanios et al. [17].

The approach reflects the view that simple linear adjustment processes may be too limited.
Shin et al. [1] note that there is not a great deal of work on nonlinear cointegration. One exception
is provided by Schorderet [18,19], who proposed a bivariate asymmetric cointegrating regression of
unemployment on output, in which output is decomposed into partial sum processes of positive and
negative changes.

Granger and Yoon [20] proposed the concept of ‘hidden cointegration” that involved defining
the cointegrating relationship between positive and negative components of variables. They point
out that variables are cointegrated because they respond to shocks displaying common stochastic
trends. Granger and Yoon [20], p. 5 query what the implications would be if they respond differently
to positive and negative shocks. They suggest that there may be cointegration between non-stationary
components of a data series, which they refer to as being ‘"hidden cointegration’. Standard cointegration
is a special case of hidden cointegration, a simple example of nonlinear cointegration.

Shin et al. [1] extend the work in this area, and provide a dynamic framework that is both simple
and flexible, nonlinear, and capable of simultaneously and coherently modelling asymmetries. These
are present in both the underlying long-run relationship and in dynamic adjustment. They derive
the dynamic ECM associated with asymmetric long-run cointegrating regression to the nonlinear
autoregressive distributed lag (NARDL).

They follow Pesaran et al. [21] and use a bounds testing approach to test for a stable
long-run relationship. They also derive asymmetric cumulative dynamic multipliers that permit
the display of the asymmetric adjustment patterns following positive and negative shocks to the
explanatory variables.

Prior to the development of the flexible approach suggested by Shin et al. [1], there had been
a few other studies that employed a NARDL framework. Van Treeck [22] used a NARDL model to
analyse asymmetric wealth effects on US consumption.

In this paper, we apply a NARDL analysis of cointegration between the inflation-adjusted levels
of the Dow Jones Index and the West Texas Intermediate Crude oil price series. We use the CPI for
All Urban Consumers: All Items (CPIAUCSL) as a measure of inflation. In the process we provide
a validation and application of the nonlinear autoregressive distributed lag NARDL framework as
developed by Shin et al. [1] in relation to this topic.
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The paper is divided into four sections. Section 2 reviews the literature and econometric method
employed. Section 3 presents the results, and Section 4 concludes.

2. The Links between Oil Prices and Stock Markets

There does not seem to be agreement amongst economists about the relationship between the
price of oil and stock markets. Kling [23] suggested oil price increases are associated with stock market
declines. By contrast, Chen et al. [24] suggested there is no relationship between asset prices and
oil price changes, while Jones and Kaul [25] suggest the relationship between oil price changes and
aggregate stock returns is stable and negative. Huang et al. [26] explored changes in oil price futures
and stock returns, and found no indications of a negative relationship. Wei [27] suggested that the
1972-1974 oil price shock cannot be linked to the 1974 US stock price decline.

Kilian and Vigfusson [28] critiqued various approaches to the study of asymmetries in the
relationship between the oil prices and US real economic activity, and concluded that asymmetric
effects of oil price innovations on domestic real activity deserved further exploration.

Kilian and Park [29] suggest the reaction of the US real stock returns to a change in oil prices
differs according to whether it is a demand- or supply-driven shock in oil. They use a structural VAR
model of US stock market shocks to demand and supply shocks in oil. They suggest that changes in
stock prices are more likely to reflect shocks to aggregate demand for industrial commodities, or shocks
to precautionary demand for oil, that reflect oil supply uncertainty shortfall, as opposed to shocks to
production of crude oil.

However, one drawback of using a standard VAR approach using differenced series is that it loses
any information that may be captured in relationships between the levels of the series, as revealed by
cointegration. Kilian and Park [29] criticised modelling approaches that assume that changes in the
oil price are exogenous to the stock market. One of the attractions of the NARDL approach is that it
reveals differences in the responses to positive and negative changes, and also how these change in the
short and longer term.

The adoption of the bounds test also means that it can capture relationships between both
stationary and non-stationary variables, as explained in the next sub-section.

3. Econometric Model—The Nardl Approach

Shin et al. [1] developed NARDL by considering an asymmetric long-run regression:
v =BT xr+ B xs +uy, (1)

Axy =1y, )

where y; and x; are scalar I(1) variables, and x; is decomposed as x; = xp + xt+ + x; , where x;” and
x, are partial sum processes of positive and negative changes in x; :

t t t t
Xt = ]; Ax}% _ ]; max(Ax;,0), x; = ]; Ax; = ]; min(Ax;,0). 3)

The above provides modelling asymmetric cointegration with partial sum decompositions.
Schorderet [19] defines a stationary linear combination of the partial sum components:

2= Bgy; +Boyi + BTN+ BT @)

If z; is stationary, then y; and x; are “asymmetrically cointegrated’. The standard linear (symmetric)
cointegration is a special case of (4), obtained only if B; = B, and B = ;. Shin et al. [1] consider
the case where the following restriction holds: Bj = B, = Bo. In expression (4), this implies that

Bt =—p{/Boand B~ = —p; /po.
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Shin et al. [1] use this foundation to propose the nonlinear ARDL (p,q) model:
p q
yt=24>jyt7j+z 9+ + —0—6 x )—i—st, (5)
j=1 j=0

where x; is a k X 1 vector of multiple regressors, x; = xp + xt+ +x;, 6]- is the autoregressive parameter,
6;" and 9]-_ are the asymmetric distributed lag parameters, and ¢; is an 7.i.d. process with zero mean
and constant variance, 0’€2. Shin et al. [1] consider x; is decomposed into xt+ and x; around zero,
distinguishing between positive and negative changes in rate of growth of x;.

They follow Pesaran et al. [21] and write (5) in the error correction form as:

Dyr = pyi- 146" xt 1+0° xt 1+Z71Ayf1+z qffot]—i-go] Bxy. ')
j= j=0

= p¢;_ 1+27]Ayt ]—i—z <p+ Ax it "Ax; iy (6)
j=
where p = ):]” 14>]~ 1, v = —Zi:j+1gl)i forj =1,.,p—1, 6% = z? 9.+ - = z;’zoejf,cpg
ar,(p]*: )y 41 0 forj=1,..9-1, ¢; =6, 90f:_2—]+1 ; for]—l ...... ,p—1,and & =
— gt xt— B~ xt is the nonlinear ECM, where f* = —07 /p and B~ = —60~ /p are the associated

asymmetric long-run parameters.
In order to deal with non-zero contemporaneous correlation between regressors and residuals in
(6), Shin et al. [1] propose the following reduced form data generation process for Ax; :

q—1
Axp = Z A]'Axt,j + vy, (7)
=

where v; ~ iid(0,Y,), with )", a k x k positive definite covariance matrix. In terms of their focus on
conditional modelling, they express ¢; in terms of v; as:

q—1
et—wthret—a) (Ax; — ZAAxt i) et (8)
j=

where ¢; is uncorrelated with v;, by construction. If we substitute (8) into (6) and rearrange, we obtain
a nonlinear conditional ECM:

p—1 q-1 , ,
Ayr = pG_1+ Y Vidyi—j + Z(ﬂf A:r_j + D) Fe, )
j j=0

where 1j = 6] +w, 1y =6, + w,r(].+ = q);r + w’A]-, and =g + wlAj forj=1,...,9—1.
Equation (9) corrects for weak endogeneity of non-stationary explanatory variables, and the
choice of lag structure free the model from any residual correlation. The model explains both long and
short-run asymmetries and, as it is linear in all parameters, can be estimated by OLS.
The approach above is implemented in the R library package 'nardl’, developed by Zagdoudhi [2]
and in the R library package "pss’ by Jordan and Philips [30]. The "pssbounds’ function from the latter
package is used in the ‘'nardl’ package.
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4. Results of the Analysis

4.1. Preliminary Analysis

The sample data set consists of the monthly series of the CPI for All Urban Consumers: All Items
(CPTAUCSL), which is used as a measure of inflation. This series is taken from the Federal Reserve
Bank of St Louis (FRED) database. The series is seasonally adjusted, and has a base of 1982-1984.
We also use the monthly West Texas Intermediate (WTI) crude oil series from FRED (Crude Oil
Prices: West Texas Intermediate (WTI)—Cushing, Oklahoma (DCOILWTICO)). (FRED data available
at: https://fred.stlouisfed.org/).

The data series commences in January 2000 and terminates in February 2019. The monthly
Dow Jones index adjusted-price series are obtained from Yahoo Finance. We inflation-adjust the oil
price and Dow Jones series, and use the lagged real oil price series in the analysis. This results in a
data set with 228 observations, or 227 when we run NARDL estimation with the lag of the real WTI
price. (Yahoo finance datasets used to be directly accessible on the web but this feature was removed.
Yahoo finance data can still be accessed indirectly via an Application Programming Interface (API).
We used the R library ‘quantmod’ by Ryan and Ulrich [31]).

Summary statistics are presented in Table 1. The mean value of the real monthly level of the
Dow Jones index series is 62.18, and the mean value of the real lagged monthly level of the WTI crude
oil index is 0.286. The two series in Figure 1 show they appear to trend together. Both appear to be
suitable for NARDL analysis in that they do not embody uniformly positive or negative changes.

Table 1. Summary statistics.

Table 1A: Real Monthly Value of Dow Jones Index.

Summary Statistics, 2000:02-2019:02
for RDOW (228 valid observations)

Mean Median Minimum Maximum
62.179 57.520 33.205 105.07
Std. Dev. C.V. Skewness Ex. kurtosis
15.061 0.24221 1.0567 0.74540
5% perc.  95% perc. IQ Range Missing obs.
42.976 97.810 16.672 1

Table 1B: Real Monthly Value of WTI Crude Oil Index.

Summary Statistics, 2000:02-2019:02
for RWTTI (228 valid observations)

Mean Median  Minimum Maximum
0.28619 0.27188 0.10930 0.61564
Std. Dev. C.V. Skewness Ex. kurtosis
0.11102 0.38791 0.45737 —0.65485
5% perc.  95% perc. IQ Range Missing obs.
0.14651 0.45587 0.19142 1

The QQ plots in Figure 2 show both series have fat tails, and are not Gaussian. This is not
surprising, as we would expect the levels of the series to be non-stationary.

This is confirmed by Augmented Dickey Fuller (ADF) test results shown in Table 2. The tests,
undertaken with a constant, and constant and a trend, fail to reject the null hypothesis of a unit root,
as indicated by the asymptotic probability values in parentheses.

Table 3 presents simple Engle-Granger tests of cointegration between the two series, using models
with a constant, and a constant and trend. At first glance, results in Table 3 appear promising, in that
all the coefficients estimated in the Engle—Granger two-step cointegration test procedure appear to
be highly significant, whether the equation includes constant, or constant and time trend. However,
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unit root tests on the residuals from the two regressions both fail to reject the unit root null hypothesis,
which suggests that the regression results are spurious.
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Figure 1. Plots of real values of Dow Jones Index and West Texas Intermediate (WTI) Crude Oil Index.

Table 2. Augmented Dickey-Fuller (ADF) Tests.
ADF Test with Constant ADF Test with Constant and Trend
RDOW 0.319565 (0.98) —1.45083 (0.84)
LRTWI —2.71641 (0.07) —2.65379 (0.26)

Note: Asymptotic Probability Values in Parentheses.

Table 3. Engle-Granger tests of cointegration.
Coefficient Std. Error  t-Ratio p-Value

Test with constant

Constant 67.37 2.76 24.45 0.00
LRTWI —18.14 8.97 —-2.02 0.044
Test for unit root residuals —0.45 0.97

Test with Constant and Trend

Constant 55.10 1.90 28.93 0.00

LRTWI —47-49 6.01 7.9 0.00

Time 0.18 0.01 17.83 0.00

Test for unit root residuals —2.36 0.60

A potential issue is that the series spans the period of the Global Financial Crisis (GFC), usually
attributed to 2007-2009, and this raises the issue of potential structural breaks (We are grateful to an
anonymous reviewer for drawing our attention to this issue.). We used the R package ’strucchange’
to undertake Bai-Perron [32] tests for existence of structural breaks in the base series, RDOW and
LRWTI, the real monthly levels of the DOW index and the lagged real levels of the WTI oil index.
The four suggested breakpoints, after OLS regression of Real Dow in levels on lagged Real TWI levels,
were in 2005 December, 2008 October, 2013 February, and 2016 January. We estimated Engle-Granger
cointegration tests for the two base series in these four sub-periods, but the results showed no evidence
of cointegration. A potential issue is that the full sample series comprise 228 monthly observations,
so that the sub-periods examined are relatively short.
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As a further check on whether the base series exhibited trending behaviour, we estimated the Hurst
Exponent [33], (H), for the two series. The Hurst exponent for RDOW was 0.975263 and that for LRWTI
was 1.01246. A value of H in the range 0.5-1.0 indicates long-term positive autocorrelation, suggestive
of long-term memory and trending behaviour. A value in the range 0-0.5 indicates a tendency to
switch between high and low values in adjacent pairs, suggesting mean-reversing behaviour. Finally,
a value of H of around 0.5 is suggestive of Brownian motion, or a series with no memory, which follows
a random walk. The H value for both series suggests trending behaviour. Therefore, we are confident
in using cointegration tests to explore whether they trend together.

Q-Q plot for RDOW
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Q-Q plot for LRTWI
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Figure 2. QQ plots of real values of the Dow Jones Index and WTI Crude Oil Index.

A further benefit, of the Shin et al. [1] NARDL approach is that it provides a simple and flexible
nonlinear dynamic framework capable of simultaneously and coherently modelling asymmetries,
both in the underlying long-run relationship and in the patterns of dynamic adjustment. They claim
that the approach makes four contributions: the first is the derivation of a dynamic error correction
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representation associated with the asymmetric long-run cointegrating regression, resulting in the
nonlinear autoregressive distributed lag (NARDL) model. The second is that, in the process, they use
a bounds-testing procedure for existence of stable long-run relationship, irrespective of whether the
underlying regressors are 1(0), I(1), or are mutually cointegrated.

Their third contribution is that they derive asymmetric cumulative dynamic multipliers that
permit the tracing out of the asymmetric adjustment patterns following positive and negative shocks
to the explanatory variables. Their approach is sufficiently flexible to accommodate four combinations
of long- and short-run asymmetries.

By means of Monte Carlo experiments, they validate their estimation and inference framework,
and reveal little estimation bias and high power in test statistics. They also compute p-values for
cointegration tests and confidence intervals for the dynamic multipliers by a non-parametric bootstrap.
Thus, their approach is sufficiently general to permit its application to our two series, and will be valid
whether or not the two series are cointegrated.

4.2. Nardl Analysis

We applied the R package nardl’ by Zaghdoudi [2] to implement the estimation procedures for
the relationship between the real monthly level of the Dow Jones Index RDOW and the lagged real
monthly level of Texas West Intermediate crude oil LRWTI using four lags.

The results of estimation in Table 4 suggest the NARDL model successfully captures asymmetries
in the responses of the real level of the Dow Jones index to changes in the real levels of lagged TWI
crude oil prices. The responses to lagged negative changes are stronger than to lagged positive changes.
This is apparent in values of long-run coefficients presented in the right-hand side of Table 4, in which
the coefficient on the lagged positive change in TWI crude oil (LRTWI_p_1) is —40.24, while the coefficient
on the lagged negative change in TWI crude oil (LRTWI_n_1) is approximately —70.50, or almost
double the amount.

The adjusted R-squared for the fitted model is 0.06617, and the F statistic for the model is highly
significant. The Jarque-Bera (JB) test rejects the hypothesis that the residuals conform to a Gaussian
distribution, but the Lagrange Multiplier (LM) test finds no evidence of serial correlation, while the
ARCH test shows no presence of autoregressive conditional heteroscedasticity.

Figure 3 plots the CUSUM test of the residuals, which reveals that, as the model progresses beyond
160 observations of the total sample of 226 monthly values, the residuals are on the red borderline
boundary at the 5% level, which suggests they are becoming borderline non-stationary. The simple
Engle—Granger test of cointegration rejected the null of cointegration between the two series.

Thus, the NARDL specification, as used in this paper, can detect evidence in support of
cointegration in circumstances in which the simple Engle-Granger approach might fail to do so.

Figure 4 plots the impact of the Dynamic Multiplier of positive and negative changes in real LTWL
The blue line in Figure 4 captures the impact of positive changes and the red line that of negative
changes. The difference between the two is depicted by the broken line. It can be seen in Figure 4 that
it takes about 12 to 13 months for the multipliers to work through their effects until a relatively stable
impact is achieved. Falls in oil prices appear to have a larger impact on the Dow Jones Index than do
increases in oil prices. The difference in the impacts appears to be at its greatest 9-12 months after it
occurs, according to the evidence in Figure 4.

The results in this paper suggest that downward movements in oil prices have larger negative
impacts on the Dow Jones Index than do upward movements. The results can be contrasted with a
recent study by Jiang et al. [34], which uses a structural VAR to decompose oil price changes into oil
supply shocks, global demand shocks, and oil specific demand shocks. However, their VAR analysis is
all in differences. They impose restrictions on the VAR model, appealing to two prior models. The first
model is a variant of the model advanced by Kilian [35].
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Table 4. Nonlinear autoregressive distributed lag (NARDL) analysis.
ESTIMATES LONG RUN COEFFICIENTS
Coefficients Estimate St.Error t Value Estimate  St.Error t Value
Const 3.42705 1.01640  3.372***
RDOW_1 —0.05658 0.01726 ~ —3.277 ***
LRTWI_p_1 —2.27671 1.79029 —1.272 —40.2408 122512 —3.2846 ***
LRTWI_n_1 —3.98850 196948  —2.025**  —70.4967  21.4666  —3.2840 ***
D.RDOW_1 —0.05659 0.06823 —0.830 —1.0003 0.3054  —3.2745***
D.RDOW_2 —0.12431 0.06922 -1.796 * —2.1971  0.670542 —3.2767 ***
D.RDOW_3 —0.05703 0.07173 —0.795 —1.0079 0.3078  —3.2745***
D.RDOW_4 0.01684 0.07198 0.234 0.2977 0.0907 3.2793 ***
D.LRTWI_p_1 4.70325 14.50059 0.324 83.1301 254168  3.2707 ***
D.LRTWI_p_2 —25.00977 1434213  —1.744*  —442.0481 134.8485 —3.2781***
D.LRTWI_p_3 —15.05225  14.44845 —1.042 —266.0488  81.1257  —3.2795 ***
D.LRTWI_p_4 —30.79094 1443954 —2.132* 5442303 165.9888 —3.2787 ***
D.LRTWI_n_1 6.27525 11.65583 0.538 110.9151 33.8112  3.2804 ***
D.LRTWI_n_2 21.93929 12.40570 1.768 * 387.7773 1182812  3.2784 ***
D.LRTWI_n_3 2.36444 12.75230 0.185 41.7916 12.6578  3.3016 ***
D.LRTWIL_n_4 20.18801 11.87684 1.700 * 356.8234  108.7410  3.2814 ***
Adjusted R-Squared 0.06617
F-statistic 2.044 **
Model Diagnostic tests
JB test 41.50852 ***
LM test (4 lags ) 1.587934
ARCH test (4 lags) 8.74709

Long-Run Asymmetry test

F. Statistic

17.9658 ***

Emperical fluctuation process

CUSUM of Squares Test

Note: ***, ** * indicate significance at the 1%, 5%, and 10% levels.

— CUSUM of squarss
— 5% significance

50 100 150 200

Figure 3. CUSUM of squares test.

The second model is a parsimonious version of Caldara, Cavallo, and Iacoviello [36] that facilitates
joint identification of both oil supply and demand elasticities. Jiang et al. [34] argue that these three
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different shocks should have different effects on equity markets. They claim to be able to earn excess
returns on portfolios constructed on the basis of their modelling, which is not consistent with the
existence of time-varying risk premia. However, to identify their models, they need to make restrictive
assumptions and do not include the information captured in the levels of their series.

Our results suggest that price decreases have a larger impact than price increases, but are not
based upon assumptions made re the state of supply and demand in the relevant markets.

We would suggest that the NARDL framework, as used in this paper, has the merit of including
both levels and differences of the relevant series, and that the bounds testing framework applied
means that it can accommodate I(0) and I(1) sequences of variables, or combinations of both.

Dynamic multiplier

— LRTWI_p_1
— LRTWI_n_1
-~ Difference

20
|

-40
|

Figure 4. Dynamic multiplier.

5. Conclusions

The coefficients reported in Table 4 suggest that both increases and decreases, or positive and
negative movements in the price of oil, are both associated with Dow Jones Index declines, but that
negative movements have larger effects. The exploration of these effects is a topic of future research.
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