1. Descriptive statistics

Variable		Mean	Std. Dev.	Min	Max	Observations	
CO2_pc	overall	6.931061	10.7971	. 0107203	70.04223	N	$=947$
	between		10.50991	. 0298371	51.68478	n	37
	within		2.960785	-20.03132	25.2885		$=25.5946$
MVA_sh	overall	3.373243	11.49126	-61.93001	140.5818	N	$=770$
	between		4.37203	-2.517521	17.85542	n	35
	within		10.95441	-59.6154	142.8964	T	$=22$
Tertia~H	overall	44.12582	10.00238	10.56928	80.67685	N	$=896$
	between		9.731648	28.10772	80.10726	n	$=36$
	within		5.959345	24.47794	90.63082		$=24.8889$
PCI~2011	overall	17807.54	23332.49	545.2958	124024.6	N	$=1018$
	between		25076.84	746.2983	114777	n	37
	within		3901.988	-1078.977	38313.54		$=27.5135$
El_fro~s	overall	68.03868	33.82682	0	100	N	$=860$
	between		33.57601	. 4209187	100	n	32
	within		6.912954	36.17382	102.5705		$=26.875$
Politi~s	overall	5.0518	1.856907	1	7	N	$=1139$
	between		1.659042	1.806452	7	n	$=37$
	within		. 8737391	1.180832	8.632445	T-bar	$=30.7838$
Civil_~s	overall	4.924495	1.46293	1	7	N	$=1139$
	between		1.347328	1.967742	6.967742	n	$=37$
	within		. 609417	3.021269	8.053527	T-bar	$=30.7838$

2. Structural Break Tests

ID=Algeria
Clemente-Montañés-Reyes double AO test for unit root

D.InCO2_PC

ID=Angola

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1992,2003

ID=Argentina
Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1993,2005

ID=Azerbaijan

Clemente-Montañés-Reyes double AO test for unit root Test on InCO2_PC: breaks at 1996,2006

ID=Bahrain
Clemente-Montañés-Reyes double AO test for unit root

ID=Bolivia

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1994,2007

ID=Brazil

Clemente-Montañés-Reyes double AO test for unit root

D.InCO2_PC

ID=Cameroon

ID=Central African Republic

Clemente-Montañés-Reyes double AO test for unit root

ID=Chad

ID=Colombia

Clemente-Montañés-Reyes double AO test for unit root

D.InCO2_PC

ID=Democratic Republic of Congo

ID=Djibouti

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 2004,2009

ID=Ecuador
Clemente-Montañés-Reyes double AO test for unit root

ID=16=Egypt

Clemente-Montañés-Reyes double AO test for unit root

ID=17=Equatorial Quinea
Clemente-Montañés-Reyes double AO test for unit root

ID=18=Ghana

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1994,2009

D.InCO2_PC

ID=19=Indonesia

Clemente-Montañés-Reyes double AO test for unit root

ID=20=Iran

Clemente-Montañés-Reyes double AO test for unit root

D. $\operatorname{InCO} 2$ _PC

ID=21=Iraq

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 2002,2010

ID=22=Kuwait

Clemente-Montañés-Reyes double AO test for unit root

D. $\operatorname{InCO} 2$ PC

ID=23=Libya

Clemente-Montañés-Reyes double AO test for unit root

ID=24=Malaysia

Clemente-Montañés-Reyes double AO test for unit root

Test on $\operatorname{lnCO} 2$ PC: breaks at 1992,2004

D. $\operatorname{InCO} 2$ PPC

ID=25=Nigeria

Clemente-Montañés-Reyes double AO test for unit root

ID=26=Oman

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1999,2004

ID=27=Pakistan

Clemente-Montañés-Reyes double AO test for unit root

ID=28= Papua New Guinea

Clemente-Montañés-Reyes double AO test for unit root

D.InCO2_PC

ID=29=Qatar

Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1992,2007

ID=30=Russia

Clemente-Montañés-Reyes double AO test for unit root

D.InCO2_PC

ID=31=Saudi Arabia

Clemente-Montañés-Reyes double AO test for unit root

ID=32=Sudan

Clemente-Montañés-Reyes double AO test for unit root

ID=33=Trinidad and Tonago
Clemente-Montañés-Reyes double AO test for unit root
Test on InCO2_PC: breaks at 1999,2004

ID=34=Tunisia

Clemente-Montañés-Reyes double AO test for unit root

D. $\ln \mathrm{CO} 2$ _PC

ID=35=Turkmenistan
Clemente-Montañés-Reyes double AO test for unit root

Clemente-Montañés-Reyes double AO test for unit root
Test on $\operatorname{InCO} 2$ PC: breaks at 2006,2010

D.InCO2_PC

ID=37=Venezuela

Clemente-Montañés-Reyes double AO test for unit root
Test on $\operatorname{InCO} 2$ PC: breaks at 1997,2004

UNIT ROOT TESTS
Ho: All panels contain unit roots
Ha: At least one panel is stationary
AR parameter: Panel-specific
Panel means: Included
Time trend: Not included
Drift term: Included
Number of panels $=37$
Avg. number of periods $=$
Asymptotics: T -> Infinity
Cross-sectional means removed
ADF regressions: 1 lag

		Statistic	p-value
Inverse chi-squared(72)	P	230.7357	0.0000
Inverse normal	Z	-9.4022	0.0000
Inverse logit t(184)	L^{*}	-10.1353	0.0000
Modified inv. chi-squared Pm	13.2280	0.0000	

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.

Fisher-type unit-root test for lnTVA	
Ho: All panels contain unit roots	Number of panels $=34$
Ha: At least one panel is stationary	Avg. number of periods $=23.24$
AR parameter: Panel-specific	Asymptotics: T -> Infinity
Panel means: Included	
Time trend: Not included	Cross-sectional means removed
Drift term: Included	ADF regressions: 1 lag
Statistic	p-value
Inverse chi-squared(66) P 155.0986	0.0000
Inverse normal Z -6.9903	0.0000
Inverse logit t(169) L* -6.9170	0.0000
Modified inv. chi-squared Pm 7.7550	0.0000
P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels.	
. xtunitroot fisher ln_PCI2 , dfuller drift demean lags(1) could not compute test for panel 14 Fisher-type unit-root test for l_{n} PCI2 Based on augmented Dickey-Fuller tests	
Ho: All panels contain unit roots	Number of panels $=37$
Ha: At least one panel is stationary	Avg. number of periods $=27.51$
AR parameter: Panel-specific	Asymptotics: T -> Infinity
Panel means: Included	
Time trend: Not included	Cross-sectional means removed
Drift term: Included	ADF regressions: 1 lag
Statistic	p-value
Inverse chi-squared(72) P 230.7357	0.0000
Inverse normal Z -9.4022	0.0000
Inverse logit t(184) L* -10.1353	0.0000
Modified inv. chi-squared Pm 13.2280	0.0000
P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels.	

```
. xtunitroot fisher ln_Power_fossils , dfuller drift demean lags(1)
Fisher-type unit-root test for ln Power fossils
Based on augmented Dickey-Fuller tests
\begin{tabular}{ll} 
Ho: All panels contain unit roots & Number of panels \(=\) \\
Ha: At least one panel is stationary & Avg. number of periods \(=26.41\) \\
& \\
AR parameter: Panel-specific & Asymptotics: T -> Infinity \\
Panel means: Included & \\
Time trend: Not included & Cross-sectional means removed \\
Drift term: Included & ADF regressions: 1 lag
\end{tabular}
\begin{tabular}{llrl}
\hline & & Statistic & p-value \\
\hline Inverse chi-squared(64) & P & 187.9303 & 0.0000 \\
Inverse normal & Z & -8.5332 & 0.0000 \\
Inverse logit t(164) & \(\mathrm{L}^{*}\) & -8.7981 & 0.0000 \\
Modified inv. chi-squared Pm & 10.9540 & 0.0000 \\
\hline
\end{tabular}
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
. xtunitroot fisher lnOil_Sh , dfuller drift demean lags(1)
Fisher-type unit-root test for lnOil_Sh
Based on augmented Dickey-Fuller tests
```

Ho: All panels contain unit roots Ha: At least one panel is stationary

AR parameter: Panel-specific
Panel means: Included
Time trend: Not included Cross-sectional means removed
Drift term: Included ADF regressions: 1 lag

```
\begin{tabular}{llrl}
\hline & & Statistic & p-value \\
\hline Inverse chi-squared(70) & P & 276.0013 & 0.0000 \\
Inverse normal & Z & -11.3804 & 0.0000 \\
Inverse logit t(179) & \(\mathrm{L}^{*}\) & -12.6740 & 0.0000 \\
Modified inv. chi-squared Pm & 17.4103 & 0.0000 \\
\hline
\end{tabular}
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fisher-type unit-root test for lnOil2 Based on augmented Dickey-Fuller tests}} \\
\hline & \\
\hline Ho: All panels contain unit roots & Number of panels \(=35\) \\
\hline Ha: At least one panel is stationary & Avg. number of periods \(=27.57\) \\
\hline AR parameter: Panel-specific & Asymptotics: T -> Infinity \\
\hline Panel means: Included & \\
\hline Time trend: Not included & Cross-sectional means removed \\
\hline Drift term: Included & ADF regressions: 1 lag \\
\hline Statistic & p-value \\
\hline Inverse chi-squared(70) P 276.0013 & 0.0000 \\
\hline Inverse normal Z -11.3804 & 0.0000 \\
\hline Inverse logit t(179) L* -12.6740 & 0.0000 \\
\hline Modified inv. chi-squared Pm 17.4103 & 0.0000 \\
\hline
\end{tabular}
\(P\) statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
```

Fisher-type unit-root test for lnOil2
Based on augmented Dickey-Fuller tests

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
. xtunitroot fisher Tertiary_SH , dfuller drift demean lags(1)
Fisher-type unit-root test for Tertiary_SH
Based on augmented Dickey-Fuller tests

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
. xtunitroot fisher Tertiary_SH , dfuller drift demean lags(2)
Fisher-type unit-root test for Tertiary_SH
Based on augmented Dickey-Fuller tests

Ho: All panels contain unit roots	Number of panels $=36$
Ha: At least one panel is stationary	Avg. number of periods $=24.89$
AR parameter: Panel-specific	Asymptotics: T -> Infinity
Panel means: Included	
Time trend: Not included	Cross-sectional means removed
Drift term: Included	ADF regressions: 2 lags

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
. xtunitroot fisher Tertiary_SH , dfuller drift demean lags(4)
could not compute test for panel 14

Fisher-type unit-root test for Tertiary_SH
Based on augmented Dickey-Fuller tests

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.


```
. xtunitroot fisher d.Tertiary_SH , dfuller trend lags(1)
(287 missing values generated)
```

Fisher-type unit-root test for D.Tertiary_SH
Based on augmented Dickey-Fuller tests

Ho: All panels contain unit roots	Number of panels $\quad=36$
Ha: At least one panel is stationary	Avg. number of periods $=23.89$
AR parameter: Panel-specific	Asymptotics: T -> Infinity
Panel means: Included	
Time trend: Included	
Drift term: Not included	ADF regressions: 1 lag
Statistic	p-value
Inverse chi-squared(72) P 319.9763	0.0000
Inverse normal Z -11.4625	0.0000
Inverse logit t(179) L* -13.9495	0.0000
Modified inv. chi-squared Pm 20.6647	0.0000
P statistic requires number of panels to be Other statistics are suitable for finite or	finite. infinite number of panels.

