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Abstract: This paper presents a deep analysis of different feed-forward (FF) techniques combined
with two different proportional-integral-derivative (PID) control to guide a real piezoelectric actuator
(PEA). These devices are well known for a non-linear effect called “hysteresis” which generates
an undesirable performance during the device operation. First, the PEA was analysed under real
experiments to determine the response with different frequencies and voltages. Secondly, a voltage
and frequency inputs were chosen and a study of different control approaches was performed using
a conventional PID in close-loop, adding a linear compensation and a FF with the same PID and an
artificial neural network (ANN). Finally, the best result was contrasted with an adaptive PID which
used a single neuron (SNPID) combined with Hebbs rule to update its parameters. Results were
analysed in terms of guidance, error and control signal whereas the performance was evaluated
with the integral of the absolute error (IAE). Experiments showed that the FF-ANN compensation
combined with an SNPID was the most efficient.
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1. Introduction

Piezoelectric actuators (PEAs) are positioning systems which have been widely used in the field
of micro- and nano-positioning due to their high displacement resolution (around the micrometer),
large actuation force (typically several hundred of Newtons), high speed response and vast stiffness.
They had also been employed in applications such as scanning probe microscopes (SPM), computer
components, micro-manipulators, machine tools and energy recovery [1,2]. However, the biggest
problem with PEAs are non-linearities due to the effects of hysteresis, creep, and vibrations, which can
significantly degrade the system performance and even its stability. The hysteresis loop is probably
the most studied effect in PEA since it makes the input–output asymmetrical and non-linear, thus the
complexity for modelling with equations can be laborious.

Hysteresis origins are complex since can be related to material properties and electric field
combined with mechanical strain [3] which can induce a severe open-loop position error (up to 22% of
travel range) [4]. Even though the hysteresis is an effect that cannot be excluded, a control strategy
should be designed and implemented so that the position error can be diminished and the PEA can
be used in a high precision application. State observers or feed-forward (FF) control combined with
feedback approach is often used to achieve the best precision in tracking [1]. Usually, compensation

Energies 2020, 13, 3929; doi:10.3390/en13153929 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2639-9016
https://orcid.org/0000-0002-4430-8088
https://orcid.org/0000-0002-5256-353X
https://orcid.org/0000-0003-3864-9123
https://orcid.org/0000-0003-3864-9123
http://dx.doi.org/10.3390/en13153929
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3929 2 of 16

is provided with an inverse hysteresis model where the most common ones are Prandtl–Ishlinskii
(PI) [5–7] or Bouc–Wen (BW) [8–10]; however, these models have certain limitations like complexity
to be inverse. For example, since the PI is a combination of several parameters, hence it cannot be
analytically inverted so there are approximations like direct identification or iterative algorithms based
methods [11]. Other models such as BW are efficient although the performance lowers when the device
has enough non-linear asymmetry [12].

Despite the complexity or the low performance of the inverse model compensation, another
approach is the artificial neural network (ANN) system identification which is widely used for
clustering, recognition, pattern classification, optimization and prediction [13–15]. In this case,
a FF ANN type works with one or more hidden layers which are linked between the input and output
and internally, these nodes are fully connected by weights. A common approach of ANN black-box
identification is with non-linear auto-regressive networks (NARX) [16]. In this research, an alternative
NARX framework was used for prediction, which is a time delay ANN (TDNN) [17,18] where the
inputs are added as specified delays for prediction. Even though this approach might reduce the
ANN performance but still, the architecture complexity can be simpler and the self-learning ability is
sufficiently powerful. Nonetheless, the accuracy of the prediction also depends on the amount and
quality of data, which was obtained from the real device for this research.

On the other hand, a fully connected control architecture needs to have a feedback controller
to reduce errors during the guidance. As a first approach, a proportional-integral-derivative (PID)
without FF was tested and as the system had a strong non-linearity, the performance needed to be
improved. Cutting-edge research from recent years in terms of new PID techniques for PEAs have
provided a growth in the guidance efficiency such as the single-neuron PID (SNPID) [19,20]. This
framework acts with a single neuron system which uses Hebbs self-learning law to update its weights.
The combination provided satisfactory results in comparison with the PID controller.

This paper is organized as follows: Section 2 provides a brief description of the hardware involved,
the control flow diagram that links the devices and the hysteresis analysis of the PEA in terms of
voltages and frequencies that were chosen for the forward research. In Section 3, the ANN was
explained regarding its architecture and mechanism for system identification. Section 4 is a brief
explanation of every framework used for the experiments which began from the simplest one until the
most complex. Section 5 presents the results that were obtained from the previously explained methods
and remarks the most important features in terms of errors and guidance; for a better comparison,
the two mechanisms which provided the most accurate results were contrasted separately for better
judging. The last section summarizes the essential outcomes of the research.

2. Materials and Methods

This work was based on a Thorlabs PK4FYC2 PEA (Figure 1) which is a discrete stack actuator
with four attached metal foil strain gauges in a full-bridge Wheatstone circuit (see specifications in
Table 1). The stack consists of multiple piezoelectric chips which are attached with epoxy and glass
beads. The maximum displacement provided is 38.5 µm at the maximum drive voltage whereas the
hysteresis can induce an error of 15% according to the manufacturer.

Since the displacement measurement device is a strain gauge made of resistances configured
as a Wheatstone bridge, certain issues had appeared at the moment of the measurement and it was
concluded that the environment temperature had an impact on it. Cappa [21] provided proof to this
hypothesis since these type of gauges are affected due to the change in thermal expansion coefficient.
For this reason, all the experiments were conducted on the same day and time.
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Figure 1. Piezoelectric device with the Wheatstone bridge integrated for displacement measurement.

Table 1. Thorlabs PK4FYC2 specifications.

Properties Values Units

Physical Dimensions 7.3 × 7.3 × 36 mm
Nominal displacement 38.5 µm

Max Force 1000 N
Drive Voltage Range 0–150 V

Figures 2 and 3 expose the control architecture which was designed in Simulink and embedded
on ControlDesk platform within a dSpace controller board DSP1104 which granted 0–10 V range to
driver cube. The hardware that provided the driving voltage was a PEA Controller Driver (KPZ101 by
Thorlabs) which can supply up to the maximum PEA voltage and it can work in open as well as close
loop, like in this research.

The measured displacement voltage that the strain gauge provides is between 0 and 2 V. As this
is a minuscule signal, a pre-amplifier AMP002 by Thorlabs was linked with the strain gauge reader
(KSG101 by Thorlabs) where the output is a voltage between 0–10 V. Finally, dSpace hardware reads
the signal which was displayed in ControlDesk platform.

Figure 2. Experimental setup with the involved hardware.
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Figure 3. Flow diagram of the closed loop working environment.

Pea Hysteresis Analysis

The main non-linearity analysed in this research was based on hysteresis that affected enough the
performance of the PEA at guidance during the desired position. This investigation used a triangular
wave (Figure 4) since this function reflects vastly superior the hysteresis than others and also it can be
considered as the sum of infinite harmonics and thus, the control tracking needs to be more robust and
precise than with a softer signal like a sine wave. The sampling time was set at 1 kHz to drive the PEA
since it was found to be optimal with the data acquisition and the hardware limitation.

Figure 4. Input voltage wave used for analysis.

The period of the triangle wave was not chosen arbitrarily due to the following shallow analysis.
PEA resonant frequency is 34 kHz, so the period needed to be far from the inverse of this value.
Figure 5 displays how the PEA performs at different periods for a triangular wave at maximum driving
voltage. Hence, 2 s was chosen since covers an average of all the tested samples, although the highest
difference can be seen at the maximum voltage.
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Figure 5. Experimental hysteresis curves vs. different periods.

Regarding to the amplitude, Figure 6 shows how the hysteresis behaves with different voltages.
Although the non-linearity appears at lower voltages such as 50 V, it can be seen that at 150 V the
hysteresis prevails more than with lower values. For this reason, the whole analysis realized during
this research was done under the mentioned amplitude and the chosen input signal period.

Figure 6. Experimental hysteresis curves vs. different maximum voltages.

3. Hysteresis Fitting with NN

The PEA non-linearity hysteresis can be considered as a mapping problem since there can be two
values for input, thus ANNs have many advantages such as self-learning and simplicity, which is
suitable to learn one hysteresis curve. The ANN architecture used to fit the hysteresis loop was a Time
Delay Neural Network (TDNN) which is a variance of a NARX but where the input weights have
tap delays associated. Hence, the output prediction y(t) depends on past values of the input and is
combined with a non-linear function f. In this case, the number of delays chosen was 5, due to the
default configuration of Matlab Deep Learning Toolbox.
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y(t) = f (u(t− 1), ..., u(t− 5)) (1)

The complexity avoidance can result as the function f is approximated to a combination of a
hidden and an output layer where each has its weights and activation functions. Regarding the training
information, a triangle wave with the previously mentioned features was used to obtain information
for 10 s such as the displacement. In terms of the training algorithm, Matlab ANN toolbox suggests
using as a first try, due to the fast back-propagation, the Levenberg–Marquardt (LM) which updates
the weights and bias in terms of a back-propagation and optimization where the main metric is the
mean squared error (MSE). Boussaada [16] provided a deep analysis of different training algorithms
where it was found that LM supplied efficient results. Since the FF compensation was expected in
terms of voltage, an inverse model was needed; then, the input voltage used to obtained the hysteresis
was the ANN target and the displacement as the input.

The Figure 7 displays the architecture of the TDNN where the weights and bias are different of
in each layer in terms of the subscripts i and j respectively. The hidden layer uses a Tansig activation
function whereas the output operates with a Purelin, which according to [22], the configuration
can approximate any function given the sufficient number of neurons. Based on a trial and error,
the amounts of neurons were determined on a range from 5 to 30 and the optimal one was found to be
22 in which the MSE was 0.004031. The convergence development was found to be optimal since the
following curves showed that model over-fitting was not an issue as Figure 8 shows.

Figure 7. Time Delay Neural Network (TDNN) architecture in terms of delay inputs.

Figure 8. Mean squared error (MSE) vs. trained epochs.
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Figure 9 is a comparison with the piezoelectric hysteresis loop and the ANN fitting with the
error on the right-hand side. Even though that the MSE was sufficiently small, the error in the
comparison is around 0.5 µm which is acceptable, but even more interestingly the ANN could manage
the asymmetrical shape that belongs to the device. The error compensation was expected to be done
by the feedback controllers which were implemented.

Figure 9. Hysteresis fitting with Artificial Neural Network (ANN) and the associated error.

4. Control Structure

At the beginning of the experiments, simple and classical algorithms were tested where the
following steps consisted of increment complexity so that the efficiency could be improved. As all
solutions were based on real tests, the controllers were tuned in real-time to achieve the best
performance. As previously mentioned, there were four structures which were evaluated:

• PID without FF compensation
• PID with Linear FF compensation
• PID with ANN FF compensation
• SNPID with ANN FF compensation

The comparison was done with the first three systems since the PID was considered as the same in
each (invariable Kp, Ki and Kd). In every structure, it was considered that the hysteresis loop curve was
not the first try since, as previously shown, the initial rise is completely different from the following
ones. The best result of these three architectures was contrasted with the fourth one, which is an ANN
FF compensation with SNPID since the performance was expected to be superior to others.

Figure 10 is an schematic Simulink block diagram which was equal for all the architectures
except for the close-loop controller and FF compensation. The First block is the triangle reference in
voltage which afterwards was transformed into displacement where the initial offset was concerned.
The output of this arrangement was the displacement reference which needed to be followed and was
the input to the FF compensation. The PEA input signal was saturated (the use of more than 150 V
can reduce the life of the device) and transformed into 0–10 V for the dSpace board. The output of the
hardware was then converted into 0–10 V and displacement. During the experiments, it was found
that the relation between the output voltage and the measured position had a factor of 4.
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Figure 10. Simulink block diagram used for experiments with feed-forward (FF).

The performance of each framework was compared using the integral of the absolute magnitude
of the error (IAE) over time as a metric, which has the expression of Equation (2). The use of the error
magnitude in the integral results in a sensitive expression either for positive or negative values.∫ ∞

0
|e(t)|dt (2)

4.1. PID without FF Compensation

First, a simple and classic approach based on feedback structure was used with a PID controller
(Figure 11). Certainly, this might no be the most accurate aisle but was an acceptable starting point
to undertake the following frameworks. The conventional PID Equation (3) was embedded into the
Simulink canvas for the experiment.

u(k) = Kpe(k) + Ki

k

∑
n=1

e(i)∆t + Kd[e(k)− e(k− 1)] (3)

Figure 11. Simple proportional-integral-derivative (PID) on feedback.

4.2. PID with Linear FF Compensation

The second approach proposed was a linear compensation with the previous PID (same constants)
as Figure 12 shows. Surely, in this case, the linear FF block is a supposition that considers that the
PEA behaves linearly as well. Consequently, this was reflected as the Figure 13 displays where the
maximum and minimum displacement were used to generate a straight line that could resemble the
linearity. In this circumstance, the feedback controller was expected to produce more compensation
due to the hypothesis previously mentioned as the errors increased.

Figure 12. PID on feedback and linear compensation on FF.
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Figure 13. Linear interpolation.

Since the hysteresis has a different shape during the first cycle in which the PEA starts at zero
displacement and the following periods tend to a convergence where the initial displacement is not
zero anymore due to the device properties and therefore, the curves are in a path to a common shape.
During this research, a linear compensation was taken into account and hence, a straight line was
interpolated between the initial offset and maximum value since the PEA was not expected to work
only during the first cycle.

4.3. PID with ANN FF Compensation

A linear compensation might not be the best option since it can deliver enough error due to the
high non-linearity during the whole cycle. Nevertheless, the FF can be non-linear using the mentioned
ANN obtained (Figure 14). The system explained in Section 3 was used as an inverse PEA model
which behaves with better precision than a straight line. Hence, it was expected that the guidance
performance was going to increase compared to the architectures previously presented.

Figure 14. PID on feedback and ANN compensation on FF.

4.4. SNPID with ANN FF Compensation

Even though the performance could increase with the previous architecture, PID constants were
still switched by trial and error but since the system has sufficient non-linearity, the constants might
not be optimal in each moment. Therefore, an optimization path for the controller could increase the
demeanour (Figure 15). The avoidance of manual tuning was found to be possible with a self-adaptive
PID. The error input to the controller was discomposed into three variables (X1 , X2 and X3) in a
similar way to a conventional PID but there will be three associated weights (W1 , W2 and W3) which
are adjusted by normalization and a learning rate. Therefore, the Hebb supervised learning rule is used
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to self-tune the weights and the whole controller behaves like a “single neuron”; this is a non-linear
process unit which is helped by the mentioned rule to adapt for a control process.

The error that went through decomposition or also called “transducer”, complied with
Equation (4), which is an expression that is related to a conventional PID controller as well. The
three new variables were fed into the single neuron with the learning where the algorithm corresponds
with the Equations (6). Afterwards, the output of the SNPID is the ∆ue which is finally added with the
delayed signal like in Figure 16.

Xi =


X1 = ∆e(k)

X2 = e(k)

X3 = ∆e(k)− ∆e(k− 1)

(4)

∆ue(k) = K(x1w1 + x2w2 + x3w3) (5)

Based on [16], the weight that is more important due to environment is mainly akin with X1 and
X2 and then, a simplification of the previously presented equation can be achieved where the main
control structure is related to a weight update with the following normalization for calculation cut
down and final control law.

wi(k) = wi(k− 1) + ηi[e(k) + ∆e(k)]ue(k− 1)e(k)

w′i(k) =
wi(k)

∑3
i=1 |wi(k)|

ue(k) = ue(k− 1) + K ∑3
i=1 w′i(k)xi(k)

(6)

Figure 15. SNPID on feedback and linear compensation on FF.

Figure 16. Single neuron PID (SNPID).

5. Experimental Practices and Results

The experiments were obtained from the hardware distribution that is displayed in Figure 2,
where the four architectures were tested. The presentation began from an elementary PID (no FF
compensation); the following comparisons were merged to show up the performance improvement as
the complexity increases. Finally, the last comparison was made with two most sophisticated ones
since the guidance, error and control signal were more suitable to compare.



Energies 2020, 13, 3929 11 of 16

The PID gains were obtained from a trial and error in real-time during the first three experiments,
where the values are shown in Table 2. Furthermore, Kp and Ki were increased respectively to limits
where the input voltage was not critical for the device. On the other hand, the SNPID constants such
as K were switched in real-time as well on the same way whereas the learning rates η1, η2 and η3 were
assumed as less than 0.5 as the references suggested [20], in this manner were set to 0.4. The constants
of SNPID are summarized in the Table 3.

Table 2. PID parameters value.

Constant Value

Kp 10.6
Ki 1000
Kd 0

Table 3. SNPID constants value.

Constant Value

K 8.5
η1 0.4
η2 0.4
η3 0.4

5.1. PID without FF Compensation Results

The first experiment was the close feedback loop with a PID as a controller. Figure 17 displays the
guidance embedded with the error where it can be seen that the peaks of the signal reduced the control
performance since there was a sign change in the behaviour. In the following sections, this feature
will be analysed in depth. The IAE had a value of 0.578 during the period that is shown and it will be
compared with the following results.

Figure 17. Comparison of guidance and error with a PID as a controller in the close loop.

5.2. PID with Linear FF Compensation Results

The second try is a contrast with the previous showed result but now with a linear FF
compensation. The new architecture increased the performance since the guidance and error were
worthy reduced as it is shown in the Figures 18 and 19 respectively, due to the FF addition. For this
reason, the guidance efficiency had increased substantially although the values are still unreliable for a
precision device. The IAE values had significantly decreased to 0.1659, which is 3.48 times less due to
the improved framework.
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Figure 18. Comparison of guidance with a PID as a controller in the close loop contrasted with a linear
FF compensation.

Figure 19. Comparison of error with a PID as a controller in the close loop contrasted with a linear
FF compensation.

5.3. PID with ANN FF Compensation Results

Certainly, the addition of a sophisticated FF compensation such as an ANN was expected to
improve the performance and this was reflected in Figures 20 and 21 where the tracking had improved
adequately. The error is fairly reduced compared to the previously presented architectures and for this
reason, it will be analysed in-depth during the following subsection with the most advance framework.
As it was also expected, the IAE was reduced to 0.0683 with this approach and this results on a
2.42 times less than the previous framework.
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Figure 20. Comparison of guidance with a PID as a controller in the close loop contrasted with linear
and ANN FF compensation.

Figure 21. Comparison of error with a PID as a controller in the close loop contrasted with linear and
ANN FF compensation.

5.4. SNPID with ANN FF Compensation Results

Finally, the last architecture tested was the SNPID. Since the results were close contrast
regarding to guidance, the comparison was analysed with profundity especially in terms of error and
control signal.

Figure 22 reveals the error progression along with two triangle reference as previously shown.
The performance had undoubtedly increased since the mean error value tends to be very near to
zero in both cases. However, the perception of the SNPID had increased essentially the efficiency
around peaks (where the top values are in 1 and 3 s whereas the lower one is in 2 s). The FF with
ANN compensation merged with the PID on feedback shows that after the lower peaks, the error
increased its amplitude extensively and takes several fractions of a second to reduce it. Nevertheless,
the framework with a SNPID corrects these effects with a small perception which resembles in a brief
error increment which has less amplitude than the contrasted method; another advantage that can be
appreciated is the fast error correction since the PID architecture had a slow demeanour to correct the
error, the SNPID had the ability to avoid this situation.

On the other hand, Figure 23 shows the control signal which is the sum of the feedback controller
and the FF compensation. It can be seen that both signals are almost equal although and there were
not any drastic changes or significant saturation which could reduce the lifespan of the actuator or
make the system unstable.
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Figure 22. Error comparison with a Neural FF compensation with a conventional PID and a SNPID.

Figure 23. Control signal of a Neural FF compensation with a conventional PID and a SNPID.

As the analysis showed, this case had the best performance and this was reflected in the IAE.
In this state, the value was 0.0499 which means that it has been reduced 1.36 times in contrast with the
case from Section 5.3. The Table 4 is a comparison of all the IAE values that were exposed.

Table 4. Integrals of the absolute error (IAEs) comparison.

Controller IAE

PID 0.578
PID + Linear FF 0.1659
PID + Neural FF 0.0683

SNPID + Neural FF 0.0499

6. Discussion and Conclusions

This research has made a deep analysis of to compensate the hysteresis effect which started
with elementary approaches until highly complex control algorithms in the feedback loop as well
as in the FF which all of them, took place under experimental tests with real devices. Furthermore,
the controllers were tuned under a rapid control prototyping type since most of the parameters were
set in real-time to achieve the best performance for a genuine operation.

The analysis began with the device inspection in terms of frequency and different amplitudes
where parameters were chosen to persist with the control design and especially, the ANN design.
The FF neural compensation was first contrasted with real data in terms of the hysteresis. The result
was acceptable since the interpolation had a small error which could be sufficient for the following
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compensation. The crucial improvement was the fitting along with the asymmetrical shape of the
non-linearity since it was found in the references that this is a problematic feature to model with
analytical techniques.

The first control architecture used was a simple one with a PID on the feedback where the results
were as expected due to the high non-linearity presence of the device. The errors obtained were not
acceptable since the position guidance was the main achievement to be improved. The following
contrast was against a linear-compensation and certainly, it was found that even an inaccurate
compensation could improve the performance since the IAE had a value of which was 3.48 times less
than the first basic control architecture. Although the performance was improved, the value was still
not sufficient because the linear interpolation was between two points of the hysteresis curve and this
might not be the best solution, due to the asymmetric effect explained.

The last two approaches, which are the most complex ones, provided better outcomes than the
previous ones. The addition of an ANN compensation surely was expected to provide better results
since the fitting efficiency was higher due to the flexibility of the ANNs. As a result, the IAE decreases
reasonably in comparison with the linear compensation and it resembled on the performance as it was
showed (2.42 times less than the previous). Since this approach was found to be the best one until
that point it was chosen for a final comparison with a SNPID which was already known for its high
performance. The FF compensation with SNPID improved the process were the conventional PID had
a weak response like after a peak. It was found that the SNPID neglects and corrects the errors during
these violent slope changes. The IAE for the last framework result in dramatic decrease since the value
was 1.36 times less than the third approach; for this reason, this method is considered to be the best of
the ones that were tested.

Since the last two methods were found to have a satisfactory response, the control signal was
studied. It was found that the control signals for both schemes were acceptable since there were
no significant or fast action which can compromise the hardware due to input signal generated.
For this reason, it is expected that both approaches can have a valuable (and probably much better)
performance for a smoother curve like a sine wave since a triangular was chosen for its high complexity
representation and requirement.

Future studies scheduled can be related to many options since these ideas are still widely open to
different frameworks. The implementation of diverse learning rules for the SNPID like Delta Learning
rate rule, Oja’s rule, etc. are an option since the changes are mostly in the controller expressions.
Regarding to the FF, the combinations can be less restricted since the ANNs are probably more flexible
and efficient tools than classic analytical ones.
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