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Abstract: In this paper, we present a new control technique for sustaining dynamic voltage stability
by effective reactive power control and coordination of distributed energy resources (DERs) in
microgrids. The proposed control technique is based on model-free control (MFC), which has shown
successful operation and improved performance in different domains and applications. This paper
presents its first use in the voltage stability of a microgrid setting employing multiple synchronous
generator (SG)-based and power electronic (PE)-based DERs. MFC is a computationally efficient,
data-driven control technique that does not require modelling of the different components and
disturbances in the power system. It is utilized as an online controller to achieve the dynamic
voltage stability of a microgrid system under different disturbances and fault conditions. A 21-bus
microgrid system fed by multiple DERs is considered as a case study and the overall dynamic voltage
stability is investigated using time-domain dynamic simulations. Numerical results show that the
proposed MFC provides improvements on the dynamic load bus voltage profiles and requires less
computational time as compared to the traditional enhanced microgrid voltage stabilizer (EMGVS)
scheme. Due to its simplicity and low computational requirement, MFC can be easily implemented
in resource-constrained computing devices such as smart inverters.

Keywords: microgrid; voltage stability; distributed energy resources; model-free control

1. Introduction

The voltage stability of distribution systems has a prominent position in smart grid research.
Improvements in the currently overstressed electric power grid’s generation, transmission,
and distribution capabilities, and their overall resiliency, have become increasingly important,
and voltage stability, in particular, is one of the main problems concerning electric power utilities. In
response to the growing electricity demand and the need to sustain the grid resiliency during extreme
events, distributed energy resources (DERs) in a microgrid environment have been employed. The Grid
Modernization Laboratory Consortium of the U.S. Department of Energy (DOE) proposed the concept
of a microgrid (a group of interconnected loads and DERs) as an effective way to make the power grid
more reliable and resilient against future disasters [1]. However, DERs with the intermittent nature of
renewable energy generation deteriorate the power quality and cause fast, difficult to handle voltage
fluctuations. In particular, the variable active power generation at low voltage (LV) networks, such as
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microgrids, causes distribution lines particularly prone to voltage deviations. Moreover, the high X/R
ratio of medium voltage (MV) networks causes transmission lines prone to voltage deviations as well.

High penetration of DERs presents challenging power quality issues, such as incremental power
losses, voltage violations, and voltage fluctuation for distribution systems. Global interests in DERs,
such as rooftop photovoltaic (PV) installations and wind turbines, have created the need for additional
network regulations to achieve safe and reliable operation of LV grids. Although the previous version
of the IEEE 1547 Std. [2] prohibited reactive power support by DERs in LV grids, its latest published
version [3], in addition to other several standards issued in Germany [4] and Italy [5], specify DERs
reactive power control strategies to maintain power quality levels and/or provide ancillary services for
the LV grid network.

The impact of DERs on voltage profiles and energy losses in distribution networks was investigated
in [6]. Dynamic voltage regulation services with DERs interconnected with the power grid are well
studied in the literature. In particular, the work in [7] proposed an agent-based approach to schedule
DERs for voltage control with limited communications. The work in [8] compared the performances of
voltage source inverter (VSI)-based DER in voltage and current control modes and pointed out that
only voltage controlled VSI-based DER can provide voltage regulation. The work in [9] investigated
the factors affecting the voltage control capacity of DER and proposed a dynamic voltage control of the
inverter-based DER. The work in [10] investigated the harmonic and reactive power compensation with
inverter-based distributed generation as an ancillary service. Power systems’ dynamic voltage stability
controls were demonstrated with the applications of simple and robust proportional-integral-derivative
(PID) controllers [11]. It has been shown in [12,13] that the parameters of the PID controller greatly
affect the dynamic response of the DER in the voltage regulation, and inappropriate parameters’ setting
may cause instability of the system. Hence, attention should be paid to the parameters setting of the
DER controller especially when multiple DERs are connected with the power grid and interact with
each other. In designing the parameters of the DER controller, the power network dynamics were not
accounted for. The work in [14] proposes an eigenvalue-based objective function and utilizes particle
swarm optimization algorithm in optimizing the controller parameters of wind turbines to improve
the system stability. However, this model-based method requires system parameters and real-time
system operation information and may not be suitable for practical application in a large system.

Likewise, a synchronous generator (SG) excitation control-based voltage regulator, called microgrid
voltage stabilizer (MGVS), is used to present improvements of the microgrid dynamic voltage stability
at the simulation [15] and hardware [16] levels. In [17], to achieve effective reactive power control and
coordination of a variety of different DERs, an improved version, called enhanced MGVS (EMGVS),
has been developed and tested at the simulation-level. The EMGVS employs a pole placement
methodology (PPM)-based systematic synthesizing technique to sustain the distribution systems’
voltage stability [18]. The application of the PPM-based systematic synthesizing technique requires
the transfer function of the overall system. However, the complete system must be continuously
linearized around the operating point to obtain the transfer function. This process requires an accurate,
hard to obtain, overall system model, in addition to the large computational cost – mainly due to the
computations of the Jacobian matrices. This large computational complexity poses a challenge for
real-time implementations. More recently, a model predictive control (MPC)-based energy scheduling
of a smart microgrid equipped with PV panels and energy storage systems has been proposed in [19,20].
Similar to [18], MPC-based scheduling techniques require accurate models of the system and are
computationally expensive due to the need to solve a quadratic programming problem.

To address the aforementioned challenges (the need for accurate system models and the
computational complexity), we propose a model-free control (MFC)-based strategy for achieving an
effective reactive power control and coordination of all available DERs to sustain the voltage stability
phenomenon of distribution systems and microgrids. With MFC we mean a control strategy that does
not require modeling of the system (and the associated disturbances). It only requires input-output
measurement data of the system to determine the control decisions. So, it is a data-driven control



Energies 2020, 13, 3838 3 of 17

approach. Although the MFC strategy is relatively new, it has been successfully applied in various
domains, such as the enhancement of heaving wave energy converters in [21], stabilization of active
magnetic bearing in [22], and control of building HVAC (heating, ventilation, and air conditioning)
systems in [23]. The MFC strategy is a computationally efficient, data-driven control technique
that does not require modelling of the different components and disturbances in the power system.
MFC approximates the system by an ultra-local model that is estimated in real-time from input-output
measurements. This feature of the MFC makes nonlinear systems implementation possible, as it was
previously used in the nonlinear quadrotor system [24]. Additionally, due to the low computational
requirement of MFC, it can be simply implemented on low-cost and small embedded devices as in [25].
These two features provide significant benefits for power system control since the dynamics of power
system networks are typically highly nonlinear, time-varying, and complex.

The main goal of this paper is to investigate the new MFC strategy in controlling and coordinating
the available reactive power generation of SG-based and/or power electronic (PE)-based DERs.
This paper presents one of the initial uses of the proposed MFC strategy to voltage control in power
systems. In this paper, the proposed MFC strategy is tested using the IEEE 21-bus microgrid system
shown in Figure 1. A time-domain dynamic simulation has been employed to investigate and
evaluate the system’s overall dynamic voltage stability under the proposed MFC strategy. The EMGVS
control strategy is used as a base case for comparison with the MFC strategy. In particular, the main
contributions of the research in this paper are summarized as follows:

1. Proposing an MFC strategy for dynamic voltage control that:

a. does not require any modeling effort for the different components and disturbances in the
system, in contrast to the majority of existing control methods in power systems that are
model-based control methods, such as MPC and EMGVS control strategies;

b. is straight-forward to tune, in contrast to the traditional PID controllers commonly used
in power systems that are very challenging to tune (usually depends on trial and error
methods);

c. is asymptotically stable, in contrast to the traditional PID controllers;
d. is very simple to implement in real time since it requires very light computations.

2. Testing the proposed MFC strategy on the IEEE 21-bus microgrid system.
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Figure 1. One-line diagram of the IEEE 21-bus microgrid system.

The rest of this paper is organized as follows: The MFC strategy is presented in Section 2, together
with the system model of the IEEE 21-bus microgrid system and the models for the SG-based and
PE-based DERs. In Section 3, simulation results and discussions are provided to demonstrate the
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effectiveness of the MFC strategy. The conclusion and future work are discussed in Section 4. It is
worth mentioning that preliminary results for a SG-based microgrid network using the proposed
model-free dynamic voltage control were initially presented in [26].

2. Dynamic Voltage Control Using MFC

2.1. Overview of MFC

In this section, an overview of the MFC strategy for a general single-input single-output (SISO)
system will be presented. To achieve the dynamic voltage stability in a microgrid setting without
modelling efforts and with minimal computations, the MFC strategy introduced in [27] is employed.
The unknown “complex” SISO system is replaced by an ultra-local model, F as:

.
y = F + µu (1)

where
.
y is the first-order derivative of the system (microgrid) output, u is the input of the system,

and µ is a non-physical constant (scaling) parameter. Notice that µ is selected such that µu and
.
y are

of the same magnitude. Thus, it is a tuning parameter that can be easily determined. In the MFC
framework, F is estimated by a piecewise constant function ϕ given as [27].

ϕ =
−6
L3

∫ t

t−L
[(L− 2σ)y(σ) + µσ(L− σ)u(σ)]dσ (2)

Note that ϕ is estimated using the input-output measurements of the system obtained in the last L
seconds, and accordingly F is continuously updated at every time step. Thus, a suitable approximate
estimation of ϕ necessitates a sufficiently “small” time interval. That is, it requires a small value for the
parameter L.

The function F in Equation (1) represents an approximation of the system, which is computed
online at every time step via the estimation of the first-order derivative of the output. It carries the
whole information of the control process, which might include the unknown parts of the system,
unknown disturbances, and time-varying phenomena without the need to make any distinction
between them. The ultra-local model approximation in Equation (1) and the estimation technique in
Equation (2) imply that the need for any good modelling procedure can be ignored.

Based on Equation (1), the control input u is obtained by closing the loop via the “intelligent-
proportional” controller as [27].

u =
[
−F +

.
y∗ −Kpe

]
/µ (3)

where y∗ is the output reference (desired) trajectory, e = y − y∗ in the tracking error, and Kp is the
tuning gain. So, the objective of the MFC strategy is to allow the output of the system, y to track
the desired (reference) output y*. Combining Equations (1) and (3) yields the following first-order
differential equation.

.
e + Kpe = 0 (4)

where F does not appear anymore. Let t0 be the initial time, then the solution to Equation (4) is:

e(t) = e(t0) exp
(
−Kp(t− t0)

)
(5)

Notice that Equation (5) shows that the tracking error asymptotically converges to 0 for Kp > 0.
This indicates that the MFC strategy is asymptotically stable. Furthermore, by solving for Kp in
Equation (5), the tuning of the proportional gain Kp becomes simple and straightforward to obtain a
good tracking of y∗. Finally, the selection of the other tuning parameters, µ and L, is also straightforward.
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2.2. MFC for Voltage Control

The IEEE 21-bus microgrid illustrated in Figure 1 is used in this paper as a test system for the
MFC strategy. It has three generators at buses 5, 9, and 17, and six loads at buses 7, 11, 13, 15, 19,
and 21. More details and analysis of the 21-bus microgrid system data can be obtained in [18]. Figure 2
shows the one-line diagram of the IEEE 21-bus microgrid system implemented using the Power
System Analysis Toolbox (PSAT) software [28]. PSAT is a MATLAB-based open source power system
analysis toolbox. The provided Graphical User Interface (GUI) helps users to create Simulink-based
system models by using its open component library and allows power flow, time domain simulation,
and eigenvalue analysis, etc. [28]. By adding perturbation files to the simulation, new control algorithms
and system disturbances can be implemented in the time domain simulation. The voltage magnitudes
of all buses are plotted in Figure 3 to illustrate the overall voltage profile of the IEEE 21-bus microgrid
system under normal operating condition. Drastic load loss/increase conditions will be considered to
investigate the voltage stability of the system. The effectiveness of the MFC strategy will be evaluated
against such disturbances and compared with two other base cases, specifically the no-control case
and the EMGVS case.Energies 2020, 13, x FOR PEER REVIEW 6 of 18 
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The microgrid load buses’ voltage deficiencies are used as inputs to the MFC as illustrated in
Figure 4. The difference (∆Vk err) between the dynamic voltage (Vk dyn) and the desired voltage (Vk des)
is computed for all load buses in per-unit as:

∆Vk err =
Vk des −Vk dyn

Vk des
k = 1, 2, . . . , n (6)

where the total number of load buses is n. The weighting factors for all load buses are α1, α2, . . . ,αn,
which are based on the importance of the load bus (i.e., inductive loads are more sensitive to disturbances
than resistive loads). A weighted average of ∆Vk err is considered to get an aggregate voltage deficiency,
∆Verr of the system as:

∆Verr =
α1∆V1 err + α2∆V2 err + . . .+ αn∆Vn err

α1 + α2 + . . .+ αn
(7)
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Note that ∆Verr is fed as an input to the MFC block. Remember that the objective of the MFC
strategy is to let the load bus voltages track their corresponding desired voltages (set points); this is
reflected by allowing the aggregate voltage deficiency ∆Verr to be zero. The output of this MFC
controller is VMFC, as shown in Figure 4. VMFC is the overall MFC correcting signal allocated among
all available DERs. The weighting factors, β1 , β2, . . . . βm, for all generator DER buses (1 to m)
are contingent to the generation reserves and proximity of the DERs to inductive loads. VMFC, j is
described by:

VMFC,i = βi ∗VMFC i = 1, 2, . . . , m (8)

And it is the input to the ith SG-based DER’s excitation system as shown in Figure 5, or the input
to the ith PE-based DER to change the inverter’s voltage reference as shown in Figure 6. Note that Vi is
the voltage of DER i.
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A pseudocode representation of the proposed MFC strategy for voltage control in a microgrid
system is shown in Algorithm 1 below.

Algorithm 1 MFC Strategy for Voltage Control

Input: Vk dyn(tl), k = 1, . . . , n
Initialization: Determine the values for µ, L, y∗; obtain the past L values of system output y = ∆Verr

(measurement) and input u = VMFC; Set a = 0 and b = L.
for l = 1, . . . , T

Compute ∆Verr based on (6) and (7); Let y(tl) = ∆Verr(tl). Define Y = [y(ta), . . . , y(tb)] and U = [u(ta), . . . ,
u(tb)].
Estimate F using Y and U based on (2).
Compute the error e(tl) = y(tb) − y∗.
Compute the control gain Kp based on (5).
Obtain the control input u(tl) based on (3); Let VMFC(tl) = u(tl);
Compute VMFC, i(tl) based on (8).
Update a = a + 1, b = b + 1.

end for
Output: VMFC, i(tl), i = 1, . . . , m

The following subsection describes the mathematical models for the SG-based and PE-based
DERs. However, it is worth mentioning that the description of such models is to simulate and
validate the control capability of the MFC strategy under various conditions and scenarios. In practical
implementations, the need for any detailed and good modelling is not necessary since the MFC strategy
does not require any system modelling (only requires input-output measurements).

2.3. SG-Based DER Model

SG-based DERs utilizing diesel engine generators (DEGs) are broadly utilized in remote locations,
such as households, commercial, and industrial operational applications. A DEG consists of a
synchronous generator and a prime mover as shown in Figure 7. The diesel internal combustion engine
works as a prime-mover and it is coupled to the generator. A permanent magnet generator with a
rectifier and a voltage source converter may also be utilized. An SG is mostly utilized because it does
not necessitate expensive PE devices such as voltage source inverters (VSIs). As the prime-mover and
the generator are mechanically coupled, the dynamics of the SG are not electrically decoupled from the
dynamics of the generator. The governor helps the prime mover to regulate the frequency and the
exciter helps the generator to sustain the voltage output [29].
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Figure 7. An SG utilizing an exciter and a governor.

An SG is an important active and reactive power generation unit for a microgrid. DEGs have
slow responding governors as compared to other VSI-interfaced DEGs in microgrids. A DEG must run
at high efficiency as the fuel cost increases with the use [30,31].

The d-q reference frame is used to model the SG, while the saturation and sub-transient reactance
are neglected. The limit constraints on the pilot exciter of machine i, output voltage VRi, and turbine
governor dynamics affecting the mechanical torque TMi applied at the shaft are neglected. The next
subsection covers the m machine, n bus system with the IEEE-Type I exciter differential and algebraic
equations as illustrated in Figure 8 [29].
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2.3.1. Differential Equations

The dynamics of the SG is represented by the differential Equations (9)–(12). The exciter dynamics
are represented by the differential Equations (13) and (14), while Equation (15) represents the turbine
governor dynamics.

T′doi

dE′qi

dt
= −E′qi −

(
Xdi −X′di

)
∗ Idi + E f di (9)

T′qoi

dE′di
dt

= −E′di −
(
Xqi −X′qi

)
∗ Iqi (10)

dδi
dt

= ωi −ωs (11)

2Hi
ωs

dωi
dt

= TMi − E′qiIqi − E′diIdi −
(
Xqi −X′qi

)
IdiIqi −Di(ωi −ωs) (12)

TEi

dE f d,i

dt
= −

(
KEi + SEi

(
E f d,i

))
E f d,i + VR,i (13)
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TFi

dRF,i

dt
= −RF,i +

KFi
TFi

E f d,i (14)

TAi

dVR,i

dt
= −VR,i + KAiRF,i −

KAiKFi
TFi

E f d,i + KAi

(
VRe f ,i − |Vi|

)
(15)

where TMi, VRe f i, |Vi| are respectively the mechanical torque applied at the shaft, reference voltage,
and voltage of machine i. E′qi, E′di are the q-axis and d-axis components of the internal voltage of
machine i. ωi, ωs, δi are the speed of machine i, synchronous speed, and machine angle, respectively.
R f i, VRi, E f di are respectively the rate feedback, pilot exciter of machine i output, and field voltage.
Iqi, Idi are the q-axis and d-axis armature currents of the machine at bus i. Xqi, Xdi are the q-axis and
d-axis reactance. X′qi, X′di are the q-axis and d-axis transient reactance. Hi, Di are the shaft inertia
constant and damper constant. KEi, TEi are an exciter’s gain and time constants at machine i. KFi, TFi
are the self/separately excited gain and stabilizer time constants. KAi, TAi are the amplifier gain and
time constant, respectively. SEi

(
E f di

)
is the value of the saturation function at E f di, which is ignored in

this study [29].

2.3.2. Algebraic Equations

The algebraic equations comprise the network and stator equations. The dynamic equivalent
circuit shown in Figure 9 is followed to derive the stator algebraic equations by applying Kirchhoff’s
voltage law (KVL).

E′di − |Vi| sin(δi − θi) −RSiIdi + X′qiIqi = 0 (16)

E′qi − |Vi| cos(δi − θi) −RSiIqi + X′diIdi = 0 (17)
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Figure 9. Two-axis dynamic circuit model of an SG.

The dynamic circuit, together with the static network and the loads, are shown in Figure 10.
The network equations for the n buses are in complex form. The following are the network equations
for load buses.

− PLi(|Vi|) −
n∑

k=1

|Vi| |VK||Yik| cos(θi − θk − αik) = 0 (18)

−QLi(|Vi|) −
n∑

k=1

|Vi| |VK||Yik| sin(θi − θk − αik) = 0 (19)
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While the generator buses’ network equations are:

Idi|Vi| sin(δi − θi) + Iqi|Vi| cos(δi − θi) + PLi(|Vi|) −
n∑

k=1

|Vi| |VK||Yik| cos(θi − θk − αik) = 0 (20)

Idi|Vi| cos(δi − θi) + Iqi|Vi| cos(δi − θi) + QLi(|Vi|) −
n∑

k=1

|Vi||VK||Yik| sin(θi − θk − αik) = 0 (21)

where Vi, θi are the voltage magnitude and angle at bus i. PLi, QLi are the real and reactive components
of loads at bus i. Yik,αik are the magnitude and angle of the admittance (Ybus) matrix element at the ith
row and jth column. Rsi is the stator resistance of machine i [29].

2.4. PE-Based DER Model

The structure of a grid-connected PE-based DER model utilizing solar photovoltaic generator
(SPVG) is shown in Figure 11. The PV array, DC/DC and DC/AC converters, and overall system
control unit are the main subsystems of the structure [32]. A DC/DC converter generally performs the
maximum power point tracking (MPPT) to regulate the desired voltage level in SPVGs. The response of
the MPPT is almost instantaneous for system stability analysis since there are no moving parts in such
systems. The dynamic modelling requirements of other system components such as grid-connection
devices, inverter, and DC bus are similar to the ones for the variable speed wind turbines.

The centralized SPVG farms are considered in this paper. The characterization of the system
buses using two electrical quantities (out of P, Q, V, and θ) is commonly applied. For the overall
system study of a centralized SPVG, the buses are usually described as reactive power controls or
active power injections with voltage magnitude. The distributed SPVG units, such as roof-top PVs,
cannot regulate the network voltage at the connection point. Some limited voltage control may
be considered based on centralized SPVG farms’ reactive power control capabilities. Accordingly,
centralized farms can be modelled as constant P-Q or P-V generators (depending on the chosen control
mode), and distributed SPVG units are modelled as constant P-Q negative loads [33]. The functional
model used in this paper is a constant P-V, as shown in Figure 12, and its detailed block diagram is
given in Figure 13 [34]. The closed-loop controller transfer function and the first-order function with
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unity steady-state gain are perhaps the most appropriate models for the inverter transfer function out
of many other models [35]. The first order function with unity steady-state gain model is used in this
study. Additionally, the main inverter transient stability characteristics are captured by a first-order
model. This approach is typically used in the modelling of voltage source inverters such as the static
synchronous compensator (STATCOM) inverter models in [36]. Note that the voltage regulator block
in Figure 13 is not part of the proposed MFC strategy, but it is part of the SPVG model so it can function
in constant P-V mode. The current set points in this study can be obtained based on the measurements
of the terminal voltage in the d-q reference frame and the desired active and reactive powers as:[

id
iq

]
=

[
Vd Vq

Vq −Vd

]−1[
P
Q

]
(22)
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3. Simulation Studies and Discussions

The MFC strategy presented in Section 2.2 is applied to tackle the major voltage stability problems
of the DER-based IEEE 21-bus microgrid system in Figure 1. The key parameters used for this study
are tabulated in Table 1.

Table 1. Key parameters of the simulation study.

α1 for Bus 7 α2 for Bus 11 α3 for Bus 13 α4 for Bus 15 α5 for Bus 19 α6 for Bus 21

0.2029 0.2063 0.2021 0.0782 0.0979 0.2126

β1 for Bus 5 β2 for Bus 9 β3 for Bus 17 µ L

0.33 0.33 0.33 1 3 s

The following three case studies are considered:

Case 1—Microgrid with two PE-based and one SG-based DERs.
Case 2—Microgrid with all PE-based DERs.
Case 3—Microgrid with all SG-based DERs.

The microgrid system has six loads at buses 7, 11, 13, 15, 19, 21, and three DERs (10 MVA each) at
buses 5, 9, and 17. The effectiveness of the MFC control strategy has been investigated against a drastic
load increase situation and compared to the EMGVS and no-control strategies. The overall dynamic
voltage stability of the system has been investigated and evaluated with PSAT, a MATLAB-based
time-domain dynamic simulation. The hardware environment is a laptop with Intel (R) CoreTM

i7-8650U 1.90 GHz CPU, and 16.00 GB RAM.
In Case 1, a microgrid system employing two PE-based DERs (PVs at buses 5 and 9) and one

SG-based DER at bus 17 was investigated. The effectiveness of the MFC strategy was tested under a
25% load increase on all six load buses. The simulation time is considered as 60 s, where the disturbance
occurred at t = 3 s of the simulation time and lasted until t = 30 s. Figure 14 provides all the load bus
voltages and reactive power generation of all the generation units.

In the remaining of this section, we focus on investigating the voltage at bus 21 since it has the
lowest steady-state voltage point among other load buses. We also select the reactive power of the
DER at bus 9 for further investigation. As illustrated in Figure 15, the MFC provides the best load
voltages while effectively controlling and coordinating the DERs’ reactive power generation. Moreover,
the input, output, and desired trajectory (setpoint) of the MFC are shown in Figure 15c to illustrate
how closely the MCF follows the desired setpoint. The desired voltage trajectories, Vk des for the
MFC were set to the steady state values during the simulation. Such desired trajectories forced the
aggregate voltage deficiency ∆Verr to become zero in a short period of time. The correcting voltage
signal generated from the MFC strategy properly changed the respected DERs’ excitation system
voltage and the inverter voltage reference. As a result, the voltage fluctuations at load buses were
minimized. The no-control strategy showed that the lack of proper correcting voltage signals to the
DERs’ excitation system and the PE-based DERs’ inverter voltage reference caused a poor reactive
power generation coordination. Thus, voltage violations observed at load buses. Furthermore, in this
scenario, the EMGVS was not able to correct the voltage and bring it back to a value above 0.95 pu,
which is the critical lower limit for voltage violation.
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Figure 14. Simulation results for the IEEE 21-bus microgrid system with two PE-based DERs and
one SG-based DER under a 25% load increase at all load buses (Case 1)—(a) reactive power at bus 5;
(b) reactive power at bus 9; (c) reactive power at bus 17; (d) load voltage at bus 7; (e) load voltage at
bus 11; (f) load voltage at bus 13; (g) load voltage at bus 15; (h) load voltage at bus 19; (i) load voltage
at bus 21.

The simulation results for Case 2, where the microgrid system utilizing all PE-based DERs (PVs at
buses 5, 9 and, 17), are shown in Figure 16 under a 25% load increase at all load buses. In addition,
the simulation results for Case 3, where the microgrid system using all SG-based DERs (SGs at buses 5,
9 and, 17), are shown in Figure 17 under the same disturbance. Similar observations to Case 1 were
witnessed in these cases, where they successfully demonstrate the effectiveness of the MFC strategy on
dynamic voltage stability. Note that MFC does not need to have a system model or a transfer function
for the microgrid system to operate. This feature is a major advantage of the MFC strategy over the
EMGVS control strategy.
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Figure 16. Simulation results for the IEEE 21-bus microgrid system with all PE-based DERs under a
25% load increase at all load buses (Case 2)—(a) load voltage at bus 21; (b) reactive power at bus 9;
and (c) i/o of the MFC.
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Figure 17. Simulation results for the IEEE 21-bus microgrid system with all SG-based DERs under a
25% load increase at all load buses (Case 3)—(a) load voltage at bus 21; (b) reactive power at bus 9;
and (c) i/o of the MFC.

Under the used software and hardware resources, the computational time for each iteration
(time step) for the MFC strategy was 0.017 s, while it was 0.216 s for the EMGVS control strategy.
This illustrates the light computational requirement of the proposed MFC strategy, which makes it a
good candidate for real-time applications.

4. Conclusions and Future Work

A new control method for sustaining dynamic voltage stability by effective reactive power control
and coordination of DERs in microgrids was introduced in this paper. A dynamic model-free voltage
stability control strategy is applied to the IEEE 21-bus microgrid environment utilizing SG-based and
PE-based DERs, and its performance is evaluated and compared to the EMGVS and the no-control
strategies. Simulation results showed that the MFC strategy more effectively controls and coordinates
the available reactive power of the available DERs. In addition, the MFC strategy is about 13 times
faster than the EMGVS control strategy. Thus, as compared to the EMGVS strategy, the MFC does not
require to have a model of the system, and it can be easily implemented in real-time due to its modest
computational cost.

Future work will focus on studying distributed voltage control versus centralized voltage control
utilizing the MFC strategy. Another future direction is to compare the performance of the proposed
model-free voltage control strategy with the MPC. In addition, a future extension activity of this
work is to investigate hardware-in-the-loop and field-testing capabilities for the proposed MFC
strategy. Such capabilities allow real-time testing and account for the nonlinear grid dynamics and
communication delays that are usually ignored in simulation-only environments.
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