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Abstract: In this paper, we examine the energy efficiency performance of the Belt and Road Initiative
(BRI) countries using a newly developed panel data stochastic frontier model that allows for estimation
of both persistent and transient efficiency while controlling for random country effects and noise. By
this, we contribute to the energy economic literature by providing a complete picture of the level of
persistent, transient, and total energy efficiency estimates from a cross country perspective for a panel
of 48 BRI countries during the period 1990–2015. Adding that there is little evidence to support energy
efficiency convergence in the energy economic literature, we went further to check whether energy
efficiency converges in the BRI countries. The results show that (1) persistent efficiencies are much
lower than transient efficiencies, suggesting that the energy problem in the BRI countries is more of
a structural issue; (2) while energy efficiency varies widely across the countries, high-income countries
perform better than the lower-income countries; (3) there is evidence of efficiency convergence and it
accelerates when trade increases, but decreases when the industrial sector increases. Based on these
findings, we propose some policy implications.

Keywords: BRI; energy efficiency; transient efficiency; persistent efficiency; efficiency convergence

1. Introduction

In 2013, the Chinese President, Xi Jinping launched the Belt and Road Initiative (BRI) to stimulate
and foster economic growth in neighboring European, Asian, and African countries. So far, this
initiative encompasses 65 countries (most of which are developing economies), representing about 60%
(i.e., 4.4 billion) of the global population. The BRI is expected to drive a new round of global economic
boom in countries along the BRI region [1], but there are concerns from experts and the international
community about the potential environmental consequences concerning energy use (https://knowledge.
wharton.upenn.edu/article/can-chinas-one-belt-one-road-initiative-match-the-hype/). Therefore, one
of the key focuses of the BRI is to improve energy supply, energy efficiency, and supply clean energy
within the region [2]. Specific policies to encourage energy efficiency have also been introduced at
the country level [3]. To ensure the success of these programs and to take full advantage of these
regional and national measures, a deeper understanding of energy efficiency assessment is essential to
set the right targets to attain the energy efficiency objectives.

In light of this, a major area of research has recently focused on assessing energy efficiency
performance within the BRI region [4–7]. However, these researchers have failed to distinguish
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between transient and persistent energy efficiency. According to the energy economic literature, energy
inefficiency is composed of two parts, one persistent and the other transient. The persistent part has
to do with the presence of structural issues in the production process, poor managerial skills, and
infrastructural bottleneck [8,9]. It may also be linked to systematic behavioral failures like failing
to replace outdated machineries for a long period. Thus, the persistent energy inefficiency captures
long-run inefficiency, which does not vary over time, unless there are some major changes in energy
policies [10,11]. On the other hand, transient inefficiency may emanate from unsystematic management
problems like the poor selection of suppliers, suboptimal resource allocation, trial-and-error processes
in unknown circumstances, and delays in the replacement of obsolete and inefficient equipment and
tools. Transient energy inefficiency therefore captures short-run inefficiency, which varies over time
and can be addressed in the short term [11].

Differentiating between the two types of efficiency will help policymakers under the BRI decide
in an informed way on what energy policy tools to adopt to increase efficiencies. Thus, for transient
inefficiency, energy policies that bring about short-term behavioral changes in energy consumption
can be given more attention. Likewise, energy policy measures aimed at encouraging innovation and
technology spillover can be considered in the long-term to reduce persistent inefficiency.

Although energy efficiency is an important topic to study, the issue of energy convergence in
the cross-country perspective has largely been ignored. Notable exceptions are Adom et al. [8],
Stern [12], and Liddle and Sadorsky [13]. According to Qi et al. [6], in the last 20 years, the BRI countries
have contributed nearly 30% to the world’s GDP using almost a 50% share of global energy, which
suggests that energy efficiency performance in several of BRI countries is low [6,14,15]. Based on this
background, we must check whether efficiency performance in these inefficient countries are generally
catching up or still falling behind to the initially higher efficient ones. Investigating whether the BRI
countries narrow their efficiency gap has potential implications for negotiating international climate
change agreements and fulfilling national and regional targets on energy security, energy efficiency,
and CO2 emission reductions [13]. Thus, in addition to energy efficiency estimation, we examined
whether countries with poor energy efficiency converges or diverges and factors that may induce
the rate of convergence or divergence.

Driven by the above, the following are the main contents of this paper:

(1) The energy efficiency performance of 48 BRI countries was first established by employing
a stochastic frontier analysis (SFA), where we measured persistent and transient efficiency.
Through this, the paper contributes to the energy economic literature by providing a complete
picture of the level of persistent, transient, and total energy efficiency estimates for the BRI
countries using a recently developed model (by Kumbhakar, Lien, and Hardaker [16]), which is
suitable for separating unobserved country-specific heterogeneity from transient and persistent
energy efficiency. The inability to control for unobserved country-specific heterogeneities when
they exist can bias the estimate of the persistent and transient component, and hence the overall
energy efficiency results.

(2) Second, we checked whether BRI countries with poor energy efficiency are generally catching up
(or falling behind) to the initially higher energy efficient ones. Attaining convergence in energy
efficiency improvements has vital implications on environmental and sustainable growth for
the BRI region. To achieve this aim, we applied the beta convergence on the estimated total
energy efficiency index.

The remainder of this paper is arranged as follows. The empirical literature is reviewed in
Section 2. The methodology and data used for estimations are discussed in Section 3. In Section 4,
the results and findings are discussed. The paper concludes with Section 5 with some highlights of
the findings and some policy implications.
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2. Literature Review

2.1. Energy Efficiency

The most cost-effective way to reduce greenhouse gas emissions is to increase energy efficiency [17,
18]. Therefore, over the years, there have been a vast number of studies on energy efficiency estimation
using a variety of indicators such as thermodynamic indicator, economic indicator, etc. [19]. From
an economic perspective, energy efficiency estimation techniques can be classified under two main
groups, namely the total factor energy efficiency (TFEE) and the single factor energy efficiency (SFEE).

The SFEE, which is also called energy intensity, is measured by comparing the economic
performance of a country to its energy use. This method is simple and frequently used in the energy
economic literature [20–22], but it has a number of issues. For instance, the estimation relies on only
one key input that is, energy consumption and abandon other key inputs such as capital and labor
in the production function [23]. Additionally, it does not indicate how much energy an individual
unit can save. Rather, it simply indicates how high or low the energy consumption of a country is
compared to others.

The total factor energy efficiency (TFEE) on the other hand, considers all key production inputs
like labor, capital, and energy simultaneously in the efficiency estimation [7,24–28]. Using TFEE
requires estimating the frontier in a fashion that follows either the stochastic frontier analysis (SFA)
or the data envelopment analysis (DEA). The DEA, a non-parametric estimation technique, built on
a mathematical programming was proposed by Boles [29] and Afriat [30]. Ever since it was proposed, it
has been used widely in estimating energy efficiency. To name a few, Mukherjee [31] estimated energy
efficiency levels of the United States manufacturing sector using the DEA. Mukherjee [32] measured
the efficiency of Indian manufacturing firms using the DEA. Jebali et al. [23] examined the energy
efficiency performance of Mediterranean countries between 2009 and 2012. Gökgöz and Erkul [33]
compared the efficiency levels of European countries during the period of 2011–2015 using DEA.

The DEA imposes no functional form and distributional assumptions on the model and therefore
it is free from model specification, but this makes the DEA exposed to omission variable bias and
measurement problem. Most importantly, the DEA considers the stochastic noise as part of the inefficient
factors, which may bias the estimated efficiencies. Therefore, in the current study, we adopted the SFA
because we considered the stochastic noise relevant to be controlled in our estimation.

The SFA, proposed by Aigner et al. [34] and Meeusen et al. [35] imposes a functional form and
distributional assumptions, making the model robust to omission variable bias and measurement
errors. Generally, studies employing SFA to estimate energy efficiency use either an aggregate
production function [7,36] or aggregate demand function [37,38]. The aggregate demand approach has
the benefit of including energy prices, which, according to economic theory, has a significant influence
on the efficiency of energy services. However, the addition of energy prices to the model, often limits
studies to Organization for Economic Co-operation and Development (OECD) countries [13]. In this
study, we made an effort to consider non-OECD countries.

Filippini and Hunt [39] proposed the aggregate energy demand and had it tested in 29 OECD
countries. In the model, the authors controlled for income, price of fuel, climatic conditions, area,
industrial structure, service industry, and an underlying energy demand trend to estimate energy
efficiency. The results showed that variables such as income, country area, population, industrial
structure, service structure, and the climatic conditions had a positive and significant effect on energy
use. However, energy prices had a negative impact on energy use. In their conclusion, they stressed
that energy intensity is a bad energy efficiency proxy. Filippini and Hunt [40] estimated the residential
energy demand of 48 U.S. states and showed a positive and significant relationship between energy
consumption and variables such as income, population, average household size, heating degree days,
cooling degree days, and share of detached houses. Again, energy prices had a negative impact on
energy consumption. Filippini et al. [41] investigated the impact of energy efficiency policies on
the European Union residential sector and observed a considerable variation in energy efficiency
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between the EU member states. Furthermore, their results suggest that financial incentives and energy
performance standards play an important role in promoting energy efficiency. Marin and Palma [38]
measured the aggregate electricity consumption of the European economy. By accounting for potential
endogeneity in innovation processes and economic growth, their results showed that the efficiency
component is related to changes in the energy efficient technological content of appliances. Song and
Yu [42] examined the Chinese provincial energy efficiency levels between 1995 and 2014. While they
observed that the provincial energy efficiency during the sample period had improved, provincial
energy efficiency seems to have widened. They also noticed that investments and the development of
market mechanisms improved energy efficiency. Like, Filippini and Hunt [39,40], they concluded that
the energy intensity variable is not a good proxy for energy efficiency.

Some studies make a distinction between transient and persistent efficiency using the energy
demand function. For instance, Filippini and Hunt [40] measured the energy efficiency performance of
the U.S. economy throughout 1995–2009 using the Mundlak random effects model and the true random
effects model. They observed that addressing persistent inefficiency reduced energy consumption
by 14% whereas eliminating transient inefficiencies would cut the energy used by 4%. Filippini and
Zhang [43] estimated the persistent and transient energy efficiencies of Chinese provinces and their
empirical analysis showed that China’s average value of persistent energy efficiency was 81%, whereas
that of the transient energy efficiency was 97%. Thus, they concluded that China could save 3.3% and
19% of its energy by completely cutting transient inefficiencies and reducing persistent inefficiencies,
respectively. Zhang [44] also assessed China’s energy efficiency performance and observed that China
could save 21.9% of energy if persistent inefficiency was reduced and 3.9% if transient inefficiency was
eliminated. Alberini and Filippini [9] measured the residential energy consumption level of the U.S.
households’ from 1997 to 2009 and observed that the U.S. economy could reduce its energy intensity
by 10% if persistent inefficiency was reduced. On the other hand, 17% of energy efficiency could also
be saved if transient inefficiencies were eliminated.

All the above studies on persistent and transient energy efficiency were from a single country
perspective. The only study with a cross country evidence is by Adom et al. [8], who estimated
Africa’s persistent and transient energy efficiency levels using the model proposed by Kumbhakar
and Heshmati [45] (hereafter, the K–H model). Their result shows that Africans can save about 5.7%
of energy if transient energy inefficiency is eliminated, while decreasing persistent inefficiency can
save 84% of the total energy. Though the K–H model attempts to separate the persistent and transient
inefficiency, it fails to control for unobservable country heterogeneity. Thus, this model seems to
confound unobservable country effects as part of the inefficiency when in fact, we must treat for
unobservable country effects in such model.

To address this, Tsionas and Kumbhakar [46], Kumbhakar et al. [16], Colombi et al. [47], and
Filippini and Greene [48] suggest a model that divides the error term into four parts (i.e., persistent
inefficiency, transient inefficiency, random country-effects, and noise). Therefore, as opposed to
Adom et al. [8], we adopted the Kumbhakar, Lien, and Hardaker [16] model (hereafter, the K–L–H
model), which distinguishes between persistent and transient inefficiencies and time invariant
inefficiencies from country effects. In view of this, we contribute to the energy economic literature by
using a more recent model that estimates both persistent and transient energy efficiency for a panel of
48 BRI countries.

2.2. Energy Efficiency Convergence

Recently, great emphasis has been placed on achieving a fair growth of “Sustainable Energy
for all” by 2030 (https://www.seforall.org/who-we-are). Therefore, the convergence hypothesis that
was initially used to explain the substantial heterogeneity in economic growth among countries has
renewed its status lately in the energy economic literature. While lately there have been some studies
on this subject in the energy economic literature, most of them only focus on whether energy efficiency
converges or diverges rather than what speeds up the convergence or divergence process [49–51]. In
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this study, while we explore the issue of convergence, we also examined factors that could speed up or
decelerate the convergence in energy efficiency.

Energy efficiency convergence, in particular within a developing economy, is closely linked to
industrial structure, the level of economic development, FDI, trade, and technology [52,53]. For African
countries, Adom et al. [8] concluded that energy efficiency convergence is conditional on FDI and
the industrial structure. Han et al. [54] concluded that energy efficiency convergence for BRI countries
depends on trade and regional collaboration. Considering that the energy efficiency performance of
several BRI countries is low, it is worth investigating whether efficiency converges or diverges in these
countries. Furthermore, the increased trade and investments between China and the BRI countries
make further investigations worthy of the effect of trade and FDI on energy efficiency convergence [6].
Thus, in this paper, we examined the influence of trade and FDI on energy efficiency convergence
across the BRI countries.

3. Methodology

3.1. Stochastic Energy Demand Function

We adopted the concept of input demand frontier explained in Kumbhakar el at. [55] to illustrate
the energy demand. Thus, our modeling is based on production theory where we relate energy
demand in a country to its economic activities and the actual price of energy (According to the standard
production theory, the input demand for energy is considered a derived demand). In this context,
the efficient use of energy means producing a particular level of output with minimum input. To
estimate energy efficiency, we followed Filippini and Hunt [39], who formulated an energy demand
frontier and carried out the energy efficiency estimation. Energy efficiency is the estimation of
the difference between actual energy usage and optimal energy demand, as determined by an estimated
demand frontier. Thus, the specification of the stochastic frontier approach, according to the energy
demand frontier is as follows:

EDc
t = β0 + xc

tβ+ εc
t (1)

where the dependent variable EDc
t is the aggregate energy demand in country (c) at time (t) and xc

t
represents the vector of inputs that influences the demand for energy services: price of fuel (P), gross
domestic product (GDP), population density (PD), share of value from the service sector (SS), the share
of value from the industry (IS), and underlying energy demand trend (UEDT). In Filippini et al. [41],
the UEDT captures the effect of technical progress on energy consumption, following suit, we included
a time trend to represent UEDT. β is the vector of parameters to be computed. εc

t is a two-error
component consisting of two terms, namely the noise term and the inefficiency term.

As already mentioned, we differentiated between persistent and transient efficiency using
the multistep approach proposed by Kumbhakar, Lien, and Hardaker [16]. While there are other
models (e.g., Tsionas and Kumbhakar [46], Colombi et al. [47], and Filippini and Greene [48]) that
estimate both persistent and transient efficiency, the K–L–H model proposed by Kumbhakar, Lien. and
Hardaker [16] has the advantage of avoiding strong distributional assumptions by estimating the model
using the maximum likelihood approach. To estimate the K–L–H model, we rewrote Equation (1) as:

EDc
t = β0

∗ + xc
tβ+ uc + ε

c
t (2)

where β0
∗ = β0 − E(ηc) − E

(
uc

t

)
, uc = γ− ηc − E(ηc), and εc

t = vc
t − uc

t + E
(
uc

t

)
In this specification, uc and εc

t have zero mean and constant variance. With Equation (2), we used
the 4-step approach to estimate the K–L–H model. In the first step, the standard fixed-effect panel
regression was used to estimate β̂. This technique also gives the values of uc and εc

t denoted by ûc

and ε̂c
t . In step 2, we used the predicted value of ε̂c

t from the previous step to estimate the time-varying
efficiency uc

t using the standard stochastic frontier technique. Here, we assumed that vc
t is a random

noise i.i.d N (0,σ2
v) and uc

t is N+(0, σ2
u). To this end, this procedure predicts the time-varying residual
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energy efficiency using the Battese and Coelli [56] procedure, TEEc
t = exp(−uc

t

∣∣∣εc
t ) . In step 3, we

estimated persistent energy efficiency ηc following a similar procedure as in step 2. For this, we
adopted the standard pooled half-normal stochastic frontier model to obtain estimates of the persistent
efficiency component ηc. Again, persistent energy efficiency (PEE) can be estimated using the Battese
and Coelli [56] procedure i.e. PEEc

t = exp(−η̂c). Finally, the total energy efficiency (OTE) is extracted
as the product of the persistent energy efficiency and transient energy efficiency, that is OTEc

t =

PEEc
t × TEEc

t , where the total energy efficiency index (OTE) is equal to one if the country is on
the frontier and therefore considered to be energy efficient, while an index less than one is below
the frontier and is energy inefficient.

3.2. Other Models for Robustness

While the K–L–H model has the potential to estimate persistent and transient efficiency
simultaneously, there are other models that either estimate only persistent or transient efficiency.

For example, the fixed effect model (FEM) assumes that the efficiency term does not vary over
time, but varies across countries, therefore, it estimates the persistent component of efficiency. Unlike
the FEM, which is fitted by ordinary least squares (OLS), the Greene true fixed effect model (GTFEM)
proposed by Greene [57,58] is fitted by maximum likelihood and it separates country-specific effects
from the inefficiency and allows the inefficient component to vary over time. Thus, the GTFEM only
estimates the transient component of efficiency. However, the GTFEM sometimes suffer from an
incidental parameter problem and produces an inconsistent estimation of the parameter variance [59].
Chen et al. [59] proposed the consistent true fixed effects model (CTFEM) to address the incidental
parameter problem. For robustness of results of the K–L–H model, in this paper, we applied the FEM,
CTFEM as well the K–H model adopted by Adom et al. [8] to compute the persistent and transient
efficiency and overall energy efficiency.

3.3. Energy Efficiency Convergence

Aside from estimating efficiency, we also investigated the efficiency convergence by means of
the β-convergence. The β-convergence means that less energy efficient countries tend to grow quickly
as they try to catch up to the efficient ones. According to the convergence hypothesis, the unconditional
β-convergence specification is stated as in Equation (3):

ln
(

OTEt
c

OTEc, t−1

)
= α+ βlnOTEc, t−1 + ε

t
c (3)

where OTEt
c denotes the energy efficiency of country (c) at year (t). α is the constant term; OTEc, t−1 is

the reciprocal value of first-order lagged energy efficiency; and β represents the speed of convergence.
A negative β, which is significantly different from zero, means that β-convergence is confirmed. εt

c is
the stochastic error term.

As stated earlier, we examined the role of FDI and trade on energy efficiency convergence. FDI is
a crucial channel for energy efficient technologies and innovations to be transferred from one country
to another. Thus, we expect that the inflow of FDI should increase energy efficiency convergence. Trade
improves efficiency when better technologies are imported and used in production. Importing a wide
range of high–tech machinery and equipment will contribute enormously to improving efficiency. We
therefore envisage the net effect of trade on energy efficiency convergence to be positive.

In addition to FDI and trade, we controlled for the industrial structure in the model. The industrial
structure is also one of the major factors that determine the energy intensity level of a country [60,61].
The BRI countries (which are mainly developing economies) are more dependent on secondary
industries that are energy intensive than developed countries, whose tertiary industries are highly
developed. Thus, we expect the industrial structure to have a negative effect on energy efficiency
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convergence. We also controlled for unobserved country effects within the model by adding the fixed
effect term (µc) in Equation (4), Thus, we have:

ln
(

OTEt
c

OTEc, t−1

)
= α+ βlnOTEc, t−1 + γFDIt

c + γTradet
c + Indust

c + µc + ε
t
c (4)

3.4. Variables and Their Sources

In this paper, we initially considered all 65 BRI countries, however, due to data unavailability, we
limited ourselves to a sample of an unbalanced panel dataset of 48 countries for the period of 1990
to 2015 (see Table A1 in Appendix A for the list of countries). The energy price index data were also
not available for the sample countries, so we used the real crude oil price as a proxy for energy price
and assumed that the price of energy is different for years, but not across different countries [8]. In
other words, we assumed that the BRI countries are influenced by a common crude oil energy trend.
We used a total of ten variables. Table 1 defines all variables and their sources, while Table 2 shows
the descriptive statistics of all variables.

Table 1. Variables, definitions, and sources.

Variables Symbols Definition Source

Energy Demand lnED The natural logarithm of energy use WDI

Fuel price lnPrice The natural logarithm of real crude oil price
measured in US$/barrel BPE

Gross Domestic
Product lnGDP The natural log of GDP measured in constant

US dollar. WDI

Population density lnPD The natural logarithm of population density
computed as people per sq. km of land area WDI

Share of value from
the Industry Service Value added by industry measured as share

of gross domestic product WDI

Share of value from
the Service sector Indus Value added by services measured as share of

gross domestic product WDI

Per capita income lnincome The natural log of per capita income
measured in constant US dollar. WDI

Trade Trade The sum of exports and imports measured as
a share of gross domestic product. WDI

Foreign Direct
Investment FDI Net inflows measures as percentage of GDP WDI

Underlying Energy
Demand Trend Trend Underlying Energy Demand Trend (UEDT).

Energy Efficiency
Index EE Total Energy Efficiency Index extracted from

the K–H model

Note: BPE: BP Statistical Review of World Energy; WDI: World Development Indicator. Source: Authors’ compilation.
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Table 2. Descriptive summary statistics.

Variable Obs Mean S.D. Min Max

lnED 1248 7.28 0.98 4.75 9.40
lnPrice 1248 3.91 0.56 2.95 4.80
lnGDP 1209 24.45 1.74 20.30 30.03
lnPD 1248 4.41 1.30 0.34 8.96

Service 1241 48.80 10.74 11.35 95.80
Indus 1187 32.14 11.44 9.37 74.61

lnIncome 1207 7.976 1.395 4.553 10.950
FDI 1145 4.328 8.358 −43.463 198.074

Trade 1197 93.928 54.916 15.675 441.604

Source: Authors’ compilation.

4. Empirical Results and Discussion

4.1. Results for the Energy Demand Function

Table 3 presents the results for the energy demand frontier function using the FEM and CTFEM.
As some variables are in log–log form, their coefficients can be interpreted as elasticity. Starting with
energy price, it has a significant and negative effect on energy demand. In both models, the price
elasticity is negative and very low. On average, a percentage increase in fuel price will result in
a decrease of about approximately 0.067% in energy consumption, all else being equal. Filippini and
Hunt [10,39] also found similar results for the U.S. and OECD economies, respectively.

On the other hand, the variable for income is positive and significant in both models. On average,
a 1% growth in GDP will increase energy demand by 0.33%. The income elasticity of energy demand
is, as expected, relatively high in the BRI countries, since they are predominantly emerging economies.
Similar results were found in Filippini and Zhang [43] for China and Adom et al. [8] for Africa.
However, this is in contrast to those found for OECD countries in Marin and Palma [38].

As for population density, the estimated coefficient is negative and statistically significant in
the models, suggesting that a percentage increase in population will lead to a decrease of 0.13–0.15% in
energy consumption. To reduce commuting time, there is the tendency for highly-populated areas to
switch to the use of the less-energy intensive mode of transportation (e.g., motorcycles) and non-energy
way of transportation (e.g., bicycles and trekking). This is typical in highly populated countries
like China and India. This result reflects previous studies who found that an increase in population
increased the energy efficiency [8,10,62].

As expected, the value added by the service sector had a negative effect on the demand for
energy and it was significantly different from zero. Thus, a 1%-point increase in the service sector
will reduce energy consumption by 0.008%. This suggests that a shift to a less energy intensive area
like the service sector reduces energy use. Similar results were found in Adom et al. [8]. The value
added by the industrial sector on the other hand appears to have a positive, but has a statistically
insignificant impact on energy demand. The impact of time trend on energy consumption is negative
and statistically significant. By insinuation, a negative time trend, combined with a negative price
elasticity, indicates that energy-saving technology would be adopted over time and the demand for
energy would drop in the BRI countries [10].
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Table 3. Energy demand frontier function results.

Model
Independent Variables

(1)
Fixed Effect Model

(2)
Consistent True Fixed Effect Model

lnPrice −0.0685 *** −0.0667 ***
(0.0172) (0.0171)

lnGDP 0.323 *** 0.337 ***
(0.0194) (0.0208)

lnPD −0.150 *** −0.131 ***
(0.0463) (0.0484)

Service −0.00879 *** −0.00914 ***
(0.001) (0.00121)

Indus 0.00212 0.00190
(0.0015) (0.00147)

Trend −0.009 *** −0.0107 ***
(0.0019) (0.00208)

Constant 0.791 *
(0.471)

sigma_u 0.9499

sigma_e 0.1669

Usigma Constant

Vsigma Constant

Sigma2 Constant 0.0404 ***
(0.005)

Lambda 0.9881 ***
(0.252)

Observations 1185 1185
Cross−section 48 48

Standard errors in parentheses: *** p < 0.01, * p < 0.1. Source: Authors’ Compilation.

4.2. Energy Efficiency Analysis

After the energy demand frontier function, we went ahead to compute the persistent, transient,
and overall average energy efficiencies based on the four models. In Table 4, we present the descriptive
statistics of the transient, persistent, and overall average energy efficiency from these models. As
expected, the mean value of transient efficiency was much higher than the persistent efficiency [10].
The mean persistent energy efficiency for FEM is the same as those produced by the K–H model
(0.204). In contrast, the mean persistent efficiency of the K–L–H model was 0.465, twice as high as
the averages for the FEM and K–H models. The reason for this disparity has to do with the fact
that the K–L–H model separate unobserved persistent country effects from inefficiencies that can be
confounded in persistent inefficiencies. Thus, the models such as FEM and K–H model that fails
to control for unobserved persistent country heterogeneity tend to over-estimate inefficiency scores,
hence generating lower estimates of persistent efficiencies. The mean persistent efficiency for BRI
countries was higher than those estimated by Adom et al. [8] for African countries (16%), but it is much
lower than those estimated by Filippini and Hunt [10] for the U.S. (86%). Given that high persistent
inefficiency is attributed to the use of inefficient technology, a low persistent efficiency of 47% implies
that it will take time and resources for BRI countries to increase persistent efficiency. It is in this
regard that some of the energy infrastructure and policy reforms envisaged in the BRI may address
the long-term energy technology problem of the region.

The mean transient technical efficiencies obtained from the CTFEM were 0.895, while both K–H
and K–L–H models produced the same values (i.e., 0.934). Thus, average transient energy efficiency
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for the K–H and K–L–H models appears to be higher than those of CTFEM, suggesting that there
is a downward bias in CTFEM. Nevertheless, the difference is not that significant. A high transient
energy efficiency score of 93% suggests that BRI countries, on average, gradually progress toward
the benchmark technology in the short term.

Table 4. Summary statistics of persistent, transient, and overall energy efficiency.

Variable Obs. Mean S. D Min Max

Persistent efficiency
FEM 1185 0.204 0.193 0.019 1
K–H Model 1185 0.204 0.193 0.019 1
K–L–H Model 1185 0.465 0.195 0.112 0.802

Transient efficiency
CTFEM 1185 0.895 0.038 0.626 0.978
K–H Model 1185 0.934 0.016 0.806 0.974
K–L–H Model 1185 0.934 0.016 0.806 0.974

Total efficiency
FEM×CTFEM 1185 0.183 0.174 0.016 0.942
K–H Model 1185 0.191 0.181 0.018 0.955
K–L–H Model 1185 0.434 0.182 0.101 0.765

Note: EM, K–H, and K–L–H models estimate persistent efficiency. The CTFEM, K–H, and K–L–H models estimate
transient efficiency. Total efficiency is estimated by the K–H model, and the K–L–H model for the interaction terms
for FEM and CTFEM.

Despite the high transient energy efficiency recorded in the BRI countries, the average total energy
efficiency for the region remains low due to the low persistent efficiency. The results imply that
for most countries, persistent energy efficiency has a priority for policy consideration compared to
transient energy efficiency since persistent efficiency contributes largely to the low total efficiency.
The mean total energy efficiency obtained from the FEM×CTFEM (i.e. the product of FEM and CTFEM),
K–H, and K–L–H models was 0.18, 0.19, and 0.43, respectively. As mentioned earlier, the persistent
inefficiency scores in the FEM and K–H model tend to be over-estimated due to the failure to control
for unobserved country heterogeneity. Thus, the persistent efficiencies score obtained in the FEM and
K–H model tends to be lower than those in the K–L–H model. Considering that the true measure of
efficiency may be presented by the K–L–H model, our conclusions are therefore based on the K–L–H
model. This means that the BRI countries can save around 67 per cent of total energy by improving
both persistent and transient efficiency.

Next, we grouped the BRI countries into six regions, and Table 5 shows the summary statistics of
the efficiency levels of each region. For persistent efficiency, the Central and Eastern Europe led with
a score of 54%, closely followed by central Asia with 52%. The rest including the Middle East and
Africa, South Asia, Southeast Asia, and Northeast Asia had a score of 47%, 44%, 36%, and 34% with
an energy saving potential of 53%, 54%, 54%, and 56%, respectively. For the transient efficiency, on
average, all regions had a high score and energy saving ability of about 0.1% when transient energy
inefficiency was completely reduced.

Generally, Central and Eastern Europe performed better than other regions. This is expected, as
countries in this region are mostly developed with improved industrialization and technology. In
a similar study, Qi et al. [6] observed that the energy efficiency level for Central and Eastern Europe
was greater than for other regions, which is in line with the outcome here. However, regions such
as the Middle East and Africa, South Asia, Southeast Asia, and Northeast Asia with relatively low
economic growth and poor energy infrastructure have lower energy efficiency scores. This suggests
a potential link between the level of development and efficiency performance.
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Table 5. Energy efficiency score from a regional perspective.

Regions
Persistent Energy

Efficiency
Transient Energy

Efficiency
Total Energy

Efficiency

FEM K–H K–L–H CTFEM K–H K–L–H FEM*CTFEM K–H K–L–H

Central & Eastern
Europe 0.251 0.251 0.577 0.897 0.935 0.935 0.225 0.234 0.540

Central Asia 0.233 0.233 0.554 0.895 0.935 0.935 0.209 0.218 0.518
Middle East & Africa 0.198 0.198 0.499 0.893 0.934 0.934 0.177 0.185 0.465
South Asia 0.184 0.184 0.475 0.894 0.933 0.933 0.165 0.172 0.443
Southeast Asia 0.141 0.141 0.389 0.895 0.934 0.934 0.126 0.132 0.363
Northeast Asia 0.189 0.189 0.365 0.896 0.935 0.935 0.169 0.177 0.341

Source: Authors’ compilation.

To further study the efficiency in these regions, we examined the changes in energy efficiency in
each country. Table 6 shows the energy efficiency score for each country. Given that the true measure
of energy efficiency is provided by the K–L–H model, our discussion on changes in energy efficiency in
each country is based on the results of this model.

Table 6. Average energy efficiency performance of each country.

Countries
Persistent Energy

Efficiency
Transient Energy

Efficiency Total Energy Efficiency

FEM K–H K–L–H CTFEM K–H K–L–H FEM*CTFEM K–H K–L–H

Brunei Darussalam 1.000 1.000 0.802 0.897 0.935 0.935 0.897 0.935 0.750
Singapore 0.757 0.757 0.776 0.897 0.935 0.935 0.679 0.708 0.726
United Arab
Emirates 0.562 0.562 0.743 0.885 0.932 0.932 0.498 0.524 0.692

Estonia 0.550 0.550 0.740 0.909 0.939 0.939 0.500 0.516 0.695
Slovenia 0.390 0.390 0.691 0.911 0.933 0.933 0.355 0.364 0.645
Cyprus 0.359 0.359 0.677 0.900 0.936 0.936 0.323 0.336 0.634
Czech Republic 0.334 0.334 0.665 0.897 0.935 0.935 0.300 0.312 0.622
Slovak Republic 0.322 0.322 0.658 0.888 0.938 0.937 0.286 0.302 0.617
Lithuania 0.304 0.304 0.648 0.903 0.938 0.938 0.274 0.285 0.608
Oman 0.301 0.301 0.646 0.894 0.934 0.934 0.269 0.281 0.604
Bulgaria 0.294 0.294 0.642 0.898 0.935 0.935 0.264 0.275 0.600
Latvia 0.268 0.268 0.624 0.904 0.937 0.937 0.243 0.251 0.584
Belarus 0.267 0.267 0.623 0.898 0.935 0.935 0.240 0.250 0.583
Israel 0.264 0.264 0.620 0.900 0.935 0.934 0.237 0.246 0.579
Lebanon 0.245 0.245 0.605 0.899 0.935 0.935 0.220 0.229 0.566
Moldova 0.234 0.234 0.595 0.893 0.938 0.938 0.209 0.219 0.558
Ukraine 0.225 0.225 0.587 0.898 0.935 0.935 0.202 0.211 0.549
Hungary 0.215 0.215 0.577 0.901 0.938 0.938 0.194 0.201 0.541
Kazakhstan 0.214 0.214 0.576 0.896 0.936 0.936 0.192 0.201 0.539
Croatia 0.214 0.214 0.576 0.909 0.933 0.933 0.194 0.200 0.537
Bosnia and
Herzegovina 0.196 0.196 0.555 0.859 0.913 0.912 0.166 0.179 0.507

Azerbaijan 0.195 0.195 0.554 0.863 0.922 0.922 0.168 0.180 0.511
Saudi Arabia 0.178 0.178 0.533 0.898 0.935 0.935 0.159 0.166 0.498
Georgia 0.157 0.157 0.502 0.881 0.932 0.932 0.138 0.146 0.468
Jordan 0.152 0.152 0.495 0.898 0.935 0.935 0.137 0.142 0.463
Mongolia 0.152 0.152 0.494 0.898 0.935 0.935 0.136 0.142 0.462
Poland 0.147 0.147 0.486 0.897 0.938 0.938 0.132 0.138 0.455
Romania 0.142 0.142 0.478 0.893 0.934 0.934 0.127 0.133 0.446
Malaysia 0.135 0.135 0.466 0.893 0.934 0.934 0.121 0.126 0.435
Russia 0.130 0.130 0.455 0.898 0.936 0.936 0.117 0.122 0.426
Albania 0.113 0.113 0.420 0.895 0.934 0.934 0.101 0.106 0.392
Iran 0.112 0.112 0.417 0.900 0.932 0.932 0.101 0.104 0.389
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Table 6. Cont.

Countries
Persistent Energy

Efficiency
Transient Energy

Efficiency Total Energy Efficiency

FEM K–H K–L–H CTFEM K–H K–L–H FEM*CTFEM K–H K–L–H

Kyrgyz Republic 0.111 0.111 0.416 0.890 0.933 0.933 0.099 0.104 0.388
Thailand 0.083 0.083 0.343 0.886 0.932 0.932 0.073 0.077 0.320
Tajikistan 0.075 0.075 0.321 0.884 0.930 0.930 0.066 0.070 0.299
Sri Lanka 0.061 0.061 0.277 0.897 0.935 0.935 0.055 0.057 0.259
Turkey 0.061 0.061 0.275 0.899 0.936 0.936 0.055 0.057 0.258
Nepal 0.061 0.061 0.275 0.899 0.936 0.936 0.055 0.057 0.257
Cambodia 0.049 0.049 0.234 0.904 0.935 0.934 0.045 0.046 0.219
Egypt, Arab Rep. 0.047 0.047 0.227 0.896 0.935 0.935 0.042 0.044 0.212
Vietnam 0.043 0.043 0.211 0.895 0.935 0.935 0.039 0.040 0.197
Philippines 0.040 0.040 0.198 0.900 0.936 0.936 0.036 0.037 0.185
Pakistan 0.038 0.038 0.193 0.900 0.936 0.936 0.035 0.036 0.181
Indonesia 0.036 0.036 0.181 0.899 0.936 0.936 0.032 0.033 0.170
China 0.033 0.033 0.172 0.892 0.933 0.933 0.030 0.031 0.160
Yemen, Rep. 0.029 0.029 0.153 0.897 0.935 0.935 0.026 0.027 0.143
India 0.021 0.021 0.117 0.897 0.935 0.935 0.018 0.019 0.110
Bangladesh 0.019 0.019 0.112 0.893 0.934 0.934 0.017 0.018 0.105

Source: Authors’ compilation.

On average, the overall energy efficiency ranged from 10% to 75%, suggesting a wide variation
across BRI countries (Of the 48 countries, about 50% lie below the average energy efficiency). The average
energy efficiency score was 43%, which is generally low, except for Brunei Darussalam (77%), Singapore
(73%), the United Arab Emirates (70%), Estonia (69%), Slovenia (64%), and Cyprus (63%). For most
of these countries, their per capita income was far above a high-income country’s average, allowing
them to invest in energy-efficiency-enhancing technologies. For example, Brunei Darussalam, with
a population just over 400,000, enjoys a high standard of living and is ranked the nineteenth country
with the highest per capita gross domestic product (GDP) in the world [63]. Singapore’s export-oriented
economy has a high degree of trade openness and technology innovation [64]. Slovenia, a country
with a high per capita income, has invested substantially in energy efficiency over the past 12 years
(Since 2008, the Government of Slovenia has stopped the operations of certain energy intensive
industries) [65].

In contrast, in Table 6, countries with a relatively low level of economic development such as
Indonesia, China, India, Yemen, the Philippines, Pakistan, and Bangladesh are extremely below
the average energy efficiency score. However, such countries have great potential for energy
conservation once they experience rapid economic development and developments in energy
technology [6], which is what the BRI seeks to offer.

As can be seen in Table 6, of the 48 countries, China’s energy efficiency ranked 44th with a score
of 16%, which was much lower than the overall mean efficiency score of 46%. Qi et al. [6] estimated
the energy efficiency of 15 EU and 60 BRI countries, where China ranked 58th out of a total of 75
countries. Similarly, Zhang et al. [15] ranked China as 42nd out of 56 BRI countries. Thus, there is
a significant gap between China and the energy efficiency of other BRI countries.

Additionally, the BRI countries (except for Brunei Darussalam) experience high levels of persistent
inefficiency, which suggests that the energy issue is more structural in these countries. Thus, efficiency
improvement will benefit more from long-term policies (that promote innovation and adoption of
energy technology) than from short-term policies.

4.3. Energy Efficiency Convergence

Having established the energy efficiency performances of the BRI countries, we went on to
examine if these countries were converging or diverging with respect to energy efficiency. Therefore,
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with the β-converge analysis, we investigated whether countries that lagged behind could catch up
with other countries in the long run, given whether or not some influential factors in the convergence
process are examined. The results of the β-convergence, which are based on the total energy efficiency
of the K–L–H model, are reported in Table 7.

Table 7. Energy efficiency convergence.

Variables Pooled OLS
Fixed Effect Model

Without Controls With Controls

LnOTE t−1 −0.00105 * −0.183 *** −0.157 ***
(0.0005) (0.015) (0.015)

FDI −0.00023
(0.0002)

Indus −0.0051 ***
(0.0019)

Trade 0.0039 ***
(0.0011)

Constant −0.0007 −0.171 *** −0.150 ***
(0.0005) (0.014) (0.0173)

Obs. 1200 1200 1051
Number of ID 48 48 48

Note: Standard errors in parentheses *** p < 0.01, * p < 0.1. Source: Authors’ compilation.

First, the pooled regression, representing unconditional converge has a coefficient of lnOTEt−1

(i.e., the convergence rate) to be negative and significant at the 10% confidence level. Generally, this
implies that the BRI countries exhibit some trend of convergence in energy efficiency. In other words,
lagging countries are in some way catching up with the advance economies in the long run, which
confirms the results of Han et al. [54] for BRI countries, but contradicts that of Adom et al. [8] for
African countries.

Next, we controlled for some influential unobserved country effects and the coefficient of lnOTE t−1

was still negative, but now highly significant at the 5% confidence level. This shows that the energy
efficiency convergence among BRI countries is subject to country-specific effects such as technological
level. Adom et al. [8] and Stern [12] found similar results for African countries.

Finally, we introduced our conditional variables: FDI, trade, and industrial structure in the model.
The coefficient of the coefficient of lnOTE t−1 still remained negative and significant at the 5% confidence
level. The coefficients for the industrial sector and FDI are negatively related to energy efficiency
convergence, which shows that both variables cause divergence in efficiency, but the latter is insignificant.
Trade, on the other hand, exerts a positive and significant impact on efficiency convergence, which
implies that trade may speed up the convergence in energy efficiency. Han et al. [54] also found similar
results for the BRI countries.

4.4. Discussion

It is clear from the results that energy efficiency varies widely across the BRI countries. High
variability in efficiency clearly shows the presence of significant unobserved country heterogeneity
in our sample data, and therefore should be controlled in efficiency modeling and specifications.
Given that BRI countries perform much better in transient energy efficiency than in persistent energy
efficiency suggests that the problem of energy inefficiency is more of a structural and long term issue.
Thus, efforts that promote technological innovation should be given more attention. Considering
that the BRI is to connect several countries and regions, it has the potential of transferring technical
innovation from its source of origin to some different places through trade and FDI in the region.
Therefore, policies that promote international trade and interaction should be given much attention.
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From the results, most high-income BRI countries perform much better than the lower-income
countries, probably because of economic growth level, better technology, improved management
systems, less energy intensive industries, and use of cleaner energy.

Regarding the energy efficiency convergence, the BRI countries are generally converging, but
the rate of convergence is influenced by an increase in trading activities. Trade has the potential to
reduce energy intensity through technological transfer and adoption [66]. Thus, major technological
breakthroughs may be expedited by greater trading activities, which may improve end-use energy
efficiency. Hübler [67] examined the effect of trade on energy consumption and concluded that trade
could increase energy-saving technology and reduce energy consumption. However, the industrial
structure slows the efficiency convergence rate in the region. Within the BRI region, the industrialization
process accounts for a large number of secondary industries, which turns out to be energy-intensive
and emit more greenhouse gas.

Concerning the insignificant effect of FDI on efficiency convergence; first, this may be due to
poor human capital development, particularly in low-income countries where domestic firms are
unable to effectively absorb FDI technologies. Thus, FDI is not likely to be beneficial enough to reduce
the technological gap and efficiency convergence of BRI countries. This outcome shows the need
to improve human capital and absorptive ability, particularly in low-income BRI countries. Second,
due to weak environmental regulations in developing countries [68,69], FDI may fail to increase
energy efficiency, which confirms the “pollution haven” hypothesis. According to the hypothesis,
pollution-intensive industries tend to migrate from developed countries to underdeveloped countries
due to the less stringent environmental regulations in underdeveloped countries.

5. Conclusions and Policy Recommendations

In this paper, we attempted two things: first, we estimated the total energy efficiency for 48 BRI
countries by differentiating between transient and persistent energy efficiency using a series of models.
Next, we investigated the beta convergence of efficiency for the BRI countries as well as the possible
influencing factors. The major findings are as follows:

(1) In the energy demand frontier function, we found that while rising energy price, population
density, service sector, and technical change reduces energy consumption, high economic activities,
growing urban population, and the industrial sector increases it.

(2) Persistent inefficiencies are much higher than transient inefficiencies, suggesting a more structural
energy problem in the BRI countries, which can be addressed with long-term policies such as an
increase in technical progress.

(3) Energy efficiency varies widely across the BRI countries, suggesting the presence of significant
unobserved country heterogeneity.

(4) We found evidence of energy efficiency convergence, but the convergence rate accelerates even
more when there is an increase in trade in the BRI countries. The industrial sector, on the other
hand, slows the convergence rate, and FDI does not affect the convergence process.

Based on these findings, we propose the following policy implications:

1. BRI countries (both high and low-income countries) need to increase energy technology to
significantly reduce persistent inefficiency. Under the BRI, more investments should go into
energy-related infrastructure to increase technological progress.

2. The level of human capital may be low in BRI countries. Low-income countries must therefore
focus more on developing their human capital in order to improve their ability to absorb
technological diffusion from FDI and trade to reduce the technological gap and speed up
the energy efficiency convergence

3. Considering the different resource endowment of each BRI country, with mutual cooperation
under the BRI, China and the Middle East oil-producing countries can improve energy
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efficiency and security. For instance, China’s investment in energy projects such as oil and
gas pipelines, nuclear power, and liquefied natural gas terminals may create a better and
more energy-efficient network (https://theasiadialogue.com/2018/03/30/chinas-energy-revolution-
strategy-opportunities-and-challenges/). Additionally, the construction of these liquefied natural
gas terminals and gas pipelines will enable Qatar, Iran, Indonesia, and Australia to increase
the production of natural gas as a cleaner substitute for coal and oil.

4. Since the industrial sector of the BRI region is energy-intensive, efforts to invest in less
energy-intensive industrial technology should be a priority in the BRI region. This can be done
by setting up research and development (R&D) funds (if not yet done) and provide low-interest
loans for entrepreneurs investing in energy R&D projects. Furthermore, like in Slovenia, countries
should take a deliberate step to stop operations of some energy intensive industries.

5. Considering that some developing countries (e.g., China) restrict imports from developed
countries, especially those of high-tech goods [70], it is appropriate that these policies be revised
under the BRI to encourage transfers of innovation, technology, and spillover activities.

6. Last, but not least, BRI countries (especially the developing ones) should raise the threshold of
entry for dirty industries, control exports of pollution and energy-intensive industries, or develop
new export competitive advantages.
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Appendix A

Table A1. Sample Belt and Road Initiative Countries.

Southeast Asia Central & Eastern
Europe

Middle East
& Africa South Asia Northeast

Asia Central Asia

Vietnam Ukraine Egypt Sri Lanka China Kyrgyz Rep.
Thailand Turkey Israel Pakistan Mongolia Kazakhstan
Singapore Slovak Republic Jordan India Tajikistan

Philippines Slovenia Lebanon Bangladesh Georgia
Malaysia Albania Oman Nepal Azerbaijan
Indonesia Belarus Saudi Arabia

Cambodia Bosnia &
Herzegovina

United Arab
Emirates

Brunei
Darussalam Bulgaria Iran

Croatia Yemen
Estonia

Czech Republic
Moldova
Lithuania

Latvia
Hungary
Cyprus
Russia

Romania
Poland

8 19 9 5 2 5

https://theasiadialogue.com/2018/03/30/chinas-energy-revolution-strategy-opportunities-and-challenges/
https://theasiadialogue.com/2018/03/30/chinas-energy-revolution-strategy-opportunities-and-challenges/
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Table A2. Hausman test.

Coefficients (b-B)
Difference

sqrt(diag(V_b-V_B))
(S.E.)(b)

Fixed
(B)

Random

lnPrice −0.0343283 −0.0236043 −0.010724 0.0027465
lnGDP 0.255418 0.2279398 0.0274782 0.006843
LnPD −0.2302651 −0.2143666 −0.0158985 0.0271285

Service −0.006711 −0.0062211 −0.0004899 0.0002204
Indus 0.0019625 0.0025773 −0.0006147 0.0002536
Time −0.0145202 −0.0134028 −0.0011174 0.0006685

b = consistent under Ho and Ha; obtained from xtreg. B = inconsistent under Ha, efficient under Ho; obtained from
xtreg. Test: Ho: difference in coefficients not systematic. Chi2(7) = (b-B)’[(V_b-V_B)ˆ(-1)](b-B) = 36.00. Prob>chi2 =
0.0000.
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