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Abstract: Energy theft refers to the intentional and illegal usage of electricity by various means.
A number of studies have been conducted on energy theft detection in the advanced metering
infrastructure using machine learning methods. However, applying machine learning for energy
theft detection has a problem in that it is difficult to obtain enough electricity theft data to train a
machine learning model. In this paper, we propose a method based on anomaly pattern detection to
detect electricity theft in data streams generated from smart meters. The proposed method requires
only normal energy consumption data to train the model. Previous usage records of customers
being monitored are not needed for energy theft detection. This characteristic makes the proposed
method applicable in real situations. Experiments were conducted using real smart meter data
and artificial attack data, including the preprocessing of daily consumption vectors by standard
normalization, the construction of an outlier detection model on normal electricity consumption data
of randomly chosen customers, and the application of anomaly pattern detection on test data streams.
Some promising results were obtained, notably, that attacks of types 4, 5, 6 were detected with an
average F1 value of 0.93 and average delay of 19 days.
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1. Introduction

As power consumption increases each year, the power generation and distribution industry grows
in size, and the need for technologies to reduce power loss is increasing. The types of power losses are
generally classified into technical losses (TLs) and non-technical losses (NTLs) [1]. TLs occur in the
process of transmission, transformation and measurement of electricity, while NTLs are mainly caused
by theft, fraud or billing problems [2].

The advanced metering infrastructure (AMI) is a central part of the smart grid system, and provides
the communication and control functions needed to implement critical energy management services [3].
However, it also creates the opportunity for a new type of energy theft. Electricity theft refers to
the intentional and illegal usage of electricity by various means [4] and paying less than the cost of
the electricity actually used. Electricity theft can be accomplished by physical tampering such as
unjustified changes to the meter, or by electrically tampering with the metered data in the smart meter
network [4,5].

A number of studies have recently been conducted on the detection of energy theft in AMIs using
machine learning methods [4,6,7]. Classification methods such as SVM (Support vector machine),
decision tree, deep learning have been applied to predict normal or illegal electricity usage in AMI.
The big data obtained from smart meters can be used to apply the classification methods and promising
results have been reported. However, one serious problem in applying classification methods is a lack
of attack data. Normal usage data are easy to collect, but obtaining enough electricity theft data to
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train a classification model is difficult. On the other hand, one-class classification or outlier detection
can also be used, since their application is based only on normal data and does not require attack data.
However, abnormality predictions of individual data samples representing daily usage should be
post-processed in order to reach a decision that energy theft has occurred.

Various outlier and anomaly pattern detection methods in a data stream have been reviewed
extensively in [8]. Outlier detection aims to predict whether a data sample is an outlier. In [9],
an anomaly pattern detection method has been presented whose goal is to find a time point in
streaming data where outliers begin to occur heavily. In this paper, a method for electricity theft
detection in a data stream generated by smart meters is proposed based on the anomaly pattern
detection method in [9]. The proposed method aims to perform online monitoring of electricity
theft detection in a smart meter data stream without requiring the records of previous electricity use
by a customer to be monitored. Energy theft detection is performed in three steps: (1) An outlier
detection model is constructed using normal electricity usage data. (2) The smart meter data stream of
a customer who is being monitored is transformed to a binary-valued data stream by applying the
outlier prediction method. (3) Energy theft detection is performed in the transformed binary-valued
data stream. Experiments were performed using the smart energy data from the Irish Smart Energy
Trial [10] and simulating energy theft by six types of malicious electricity attacks as in [6].

The contributions in this paper can be summarized as follows:

• We propose a method for electricity theft detection based on anomaly pattern detection in data
streams. It focuses on online monitoring for electricity theft detection in a data stream from
smart meters.

• The training of an outlier detection model requires only normal energy usage records.
• Building the outlier detection model does not require the previous usage records of a customer

being monitored for energy theft detection. Instead, the model can be constructed using power
consumption data of other normal customers. This characteristic makes the proposed method
applicable in real situations.

The remainder of the paper is organized as follows. In Section 2, energy theft detection methods
based on machine learning are reviewed. In Section 3, we present an energy detection method using
anomaly pattern detection on a data stream. In Section 4, the experimental results demonstrate the
competence of the proposed method. Discussions follow in Section 5. Conclusions are given in
Section 6.

2. Related Work

Jiang et al. discussed the background of AMI and major security requirements that AMI
should meet [11]. AMI energy-theft detection schemes were summarized into three categories,
such as classification-, state estimation-, and game theory-based ones, and extensive comparisons and
discussions on them were presented [11].

Support vector machine (SVM) is widely used in classification-based energy theft detection. In [6],
if a nontechnical loss in the total energy consumption of a neighborhood is detected, for each customer
on that neighborhood, an SVM model is constructed using the previous usage data of the customer and
six types of synthetic attack data. A prediction of normality or attack for daily electricity usage data is
performed. If an attack is suspected m or more times within a predetermined period, the customer is
determined to be a case of electric theft. However, SVM model construction requires the past usage
data of an individual customer. This poses a limitation to the method, in that it is difficult to obtain
historical usage data for a long period of time for every customer who is being monitored.

In [4], electric theft at different levels, such as transmission, distribution, and consumer levels
was dealt with. At the consumer level, a decision tree was used to compute the expected electricity
consumption of the customers from input variables such as the number of appliances, the number of
residents, temperature, season, and time slot. The classification of consumers as normal or theft was
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performed using a SVM model with the actual and expected electricity consumption as inputs along
with the previously defined input variables. However, this method can be used effectively only when
both normal and theft data are sufficiently large.

Many other studies for energy theft detection based on SVM can be found in the literature [12–14].
In [12], the SVM-based fraud detection model (FDM) used customer load profile information and
additional attributes to expose abnormal behavior that is known to be highly correlated with NTL
activities. FDM was extended by the inclusion of human knowledge and expertise and the introduction
of a fuzzy inference system (FIS) in [13].

In [7], five attributes were chosen to describe the power consumption pattern of each customer over
the last six months: the average, maximum, and standard deviation in power consumption, the sum
of inspection remarks, and the average power consumption in the residential area of the customer.
C-means fuzzy clustering was performed to group consumers with similar power consumption
patterns, and a fuzzy membership matrix of the distances between clusters and consumers was
obtained. From the past and present fuzzy membership matrices obtained using the data from the
last 6 months and the previous 6 months from one year ago, respectively, the Euclidean distance
representing the degree of consumption change of each consumer is calculated. From the Euclidean
distance, the outlier index is calculated, and consumers who exceeded a threshold are judged to be
negative consumers. However, there is a limitation to this method, in that historical consumption data
for at least the past 18 months are required.

In [15], a fraud detection strategy based on class imbalance research was presented. Individual
classifiers such as One Class SVM, Cost Sensitive SVM (CS-SVM), Optimum Path Forest (OPF) and C4.5
Tree were combined by using combination functions adapted to the imbalance between classes. In [5],
McLaughlin et al. proposed an AMI intrusion detection system that uses information fusion to combine
the sensors and consumption data from a smart meter. Meter audit logs of physical and cyber events
were combined with consumption data to more accurately model and detect theft-related behavior.

Various deep learning models were used for energy theft detection. In [16], deep learning
algorithms, CNN (Convolutional neural network) and LSTM (long- and short-term memory),
were applied to classify normal users and theft users using the energy consumption data from
a one-year period. The missing value estimation was applied, and synthetic data generation was
also used to compensate low count of electricity theft users. In [17,18], Deep RNN (Recurrent neural
network) and wide and deep CNN were used to exploit the time series nature of the customers’
electricity consumption.

3. Energy Theft Detection by Anomaly Pattern Detection

Energy theft using the streaming data of daily energy usage collected from a smart
meter usually involves illegal energy consumption committed continuously for some period.
Hence, beyond predicting whether the energy usage in a day is abnormal or not, energy theft
detection needs to consider a pattern, where the prediction for abnormal energy consumption is
repeated. Anomaly pattern detection on streaming data aims to find a time point on a data stream
where outliers begin to burst abnormally. We apply the anomaly pattern detection method from [9] for
energy theft detection in smart meter stream data. The three steps employed for energy theft detection
are presented in the following subsections.

3.1. Step1: Construction of Outlier Detection Model

Power consumption records can be collected on a smart meter at fixed time intervals, such as
15 or 30 minutes. Let us denote power consumption for a day as a vector x = (x1, . . . xn). We call
vector x a data sample and xi an attribute. Let X be a set of data samples representing the daily power
consumption of normal consumers for a certain period. In order to minimize variations that may
occur with different lifestyles during the season, weekdays, and weekends, a normalization such as
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min–max normalization or the standard normalization in Equations (1) and (2) can be processed for
x = (x1, . . . xn).

Min–max normalization:

xi ←
xi − min{xi : 1 ≤ i ≤ n}

max{xi : 1 ≤ i ≤ n} − min{xi : 1 ≤ i ≤ n}
(1)

Standard normalization:

xi ←
xi − mean{xi : 1 ≤ i ≤ n}

standard_deviation{xi : 1 ≤ i ≤ n}
(2)

An outlier detection model is built based on the normal data samples in X. By applying k-means
clustering on a subset of X, the normal data region is covered by k hyperspheres where each hypersphere
is represented by a center and a distance from the center to the farthest data sample within it. When a
new data sample is included in one of hyperspheres, it can be considered a normal data sample.
By partitioning X into M subsets and applying k-means clustering to each subset, we can obtain M
models representing the different boundary descriptions of normal data regions. When a new data
sample is not considered as normal in any of the M models, it can be predicted as an outlier. If a large
number k is used in k-means clustering, the boundary of the normal data region is described tightly,
while a small number k gives a loose boundary description.

3.2. Transformation of a Smart Meter Data Stream into a Binary-Valued Data Stream

Assume that a data stream, x1, x2, · · · , from a smart meter of a customer is being received.
The outlier detection model constructed on the normal training data X is applied for each of the data
samples in a data steam. Denoting outlier prediction by 1 and normal prediction by 0, the data stream
is transformed into a stream of binary values.

3.3. Energy Theft Detection in a Binary-Valued Data Stream

In a binary-valued data stream, APD-HT (Anomaly Pattern Detection based on Hypothesis
Testing) [9] is applied where a reference window is set in the beginning part of the stream, which is
considered to correspond to normal power consumption and a detection window is moved forward
one by one as a new data sample arrives in the data stream. The binomial distributions within two
windows are compared to detect the burst of 1’s in the detection window. The difference in binomial
distributions in the two windows is detected by hypothesis testing. The hypothesis is set to test the
equivalence of the proportions in the binomial distributions of the reference window and the detection
window. If an outbreak of outliers is detected in a detection window, energy theft detection is signaled.
Otherwise, the detection window moves forward and the same process is repeated.

4. Experimental Results

To test the performance of the proposed energy theft detection method, we used the smart energy
data from the Irish Smart Energy Trial [10]. It contains electricity usage reports collected through
smart meters from over 5000 Irish homes and businesses during 2009 and 2010. For each customer,
half hourly metering reports for an average 511 days are given where the report date is indexed from
195 to 730. By summing successive half hourly usages up into an hourly usage, daily electricity usage
can be represented as a 24-dimensional vector.

Since all of the participants were expected to be legal electricity users, energy theft was simulated
using six types of malicious attacks, as in the paper [6]. For a vector x = (x1, . . . , x24) representing a
normal daily usage, six types of attack data were generated as follows for t = 1, · · · , 24.

1. h1(xt) = αxt, α = random (0.1, 0.8)
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2. h2(xt) = βtxt, βt = 0 for start-time< t < end-time, and 1 else start-time = random (0, 23-minOffTime)
duration = random (minOffTime, 24) end-time = start-time + duration here minOffTime = 4

3. h3(xt) = γtxt, γt = random (0.1, 0.8)
4. h4(xt) = γt mean(x), γt = random(0.1, 0.8)
5. h5(xt) = mean(x)
6. h6(xt) = x24−t

The anomaly pattern detection model was applied to a test data stream where simulated energy
theft data follows a data sequence of normal energy consumption. The starting point of energy
theft should be detected with minimum delay. If the detection is performed successfully after the
theft point, then it is considered to be a TP (true positive) and the distance between the actual theft
point and detection point is counted as Delay. If the detection is issued before the real theft point,
it is considered an NP (negative positive). If the detection is not done until the end of the test data
stream, it is considered a FN (false negative). Over multiple test data streams, TP, FP, and FN are
accumulated and Delay is averaged. From the accumulated TP, FP, and FN, the F1 value is calculated
using Equation (3) [19].

F1 =
2∗precision ∗ recall
precision+ recall

, where precision =
TP

TP+ FP
and recall =

TP
TP+ FN

(3)

4.1. When Model Construction Is Based on the Normal Energy Consumption Data of Consumers Unrelated
to Testing

The energy consumption records of normal consumers can be easily obtained, compared with
the records of malicious users. In this test, the outlier detection model is constructed using the data
of normal users whose energy usage pattern might be different from a particular consumer being
monitored. The outlier detection model is applied for energy theft detection on a smart meter data
stream of the consumers whose previous usage data is not used for model construction.

A total of 300 customers were randomly chosen, and their daily power consumption data during
the first one year up to the date index 560 were used to build an outlier detection model. To simulate
the occurrence of energy theft in a smart meter data stream, a test data stream was constructed as
follows. We randomly selected 300 customers who were not previously chosen for model construction.
By concatenating the normal data sequence starting from the date index 561 of one customer and a
sequence of attack data transformed from the normal data sequence of the same customer, a total of 300
test data streams were constructed per each attack type. The transition point between the two sequences
is considered the occurrence point of the energy theft. Figure 1a illustrates the experimental setting.

For the construction of the outlier detection model, the number of models by k-means clustering,
M, was set as 3, and the number of clusters, C, was set as 3000. The sizes of a reference window and
a detection window were set as 50. The energy theft detection was employed to test data streams.
Over 300 test data streams, TP, FP, and FN were accumulated, and F1 value and average Delay were
computed. This test process of constructing the outlier detection model and applying the model for
test data streams was repeated 10 times.

Table 1 shows the energy theft detection performance for six types of attacks. We report the average
F1 and Delay after 10 repetitions. Standard deviations are also indicated in parentheses. Processing by
standard or min–max normalization gave better performance than no normalization. This shows that
a normalization process is necessary due to the diversity in energy consumption patterns. However,
for the type 1 attack, the normalization process tends to make it difficult to distinguish between normal
data and attack data. This is because the type 1 attack is generated by multiplying randomly chosen
values. While low F1 values were obtained for types 1~3, highly competent performance was obtained
for types 4~6. When standard normalization was used, for the types 4~6, an average F1 value of
0.93 was obtained and the average Delay ranged from 12 to 28 days. However, we note that overall,
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the standard deviation of the Delay value is high, unlike the standard deviation of the F1 value. In order
to stably detect within a short time after the attack has occurred, further investigation is necessary.
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Figure 1. Illustration of experimental setting. Red circles denote the attack data generated from the
normal data. If the symbols of attack data and normal data are same, it means that attack data was
generated from the normal data of the same customer. (a) when model construction is based on the
normal energy consumption data of consumers unrelated to testing and a test data stream is composed
of the normal data of one user and attack data generated from that normal data. (b) when model
construction is based on the normal energy consumption data of consumers unrelated to testing and a
test data stream is composed of the normal data of one user and the attack data generated from another
random user’s data. (c) when model construction is based on the previous energy consumption data of
the consumer being tested.

Table 1. The energy theft detection performance for a test data stream composed of the normal data of
one user and attack data generated from that normal data.

Attack Type
Standard Normalization Min–Max Normalization No Normalization

F1 Delay F1 Delay F1 Delay

type 1 0.01 (0.017) 45.4 (21.1) 0.02 (0.014) 52.2 (20.4) 0 -

type2 0.32 (0.059) 78.4 (37.3) 0.52 (0.084) 68.1 (40.6) 0.01 (0.008) 87.7 (16.1)

type 3 0.45 (0.035) 54.7 (40.4) 0.37 (0.018) 58.0 (43.1) 0 -

type 4 0.95 (0.01) 12.1 (8.4) 0.95 (0.008) 12.0 (8.1) 0 -

type 5 0.94 (0.012) 16.8 (20.2) 0.87 (0.04) 37.4 (40.9) 0 -

type 6 0.90 (0.01) 27.5 (23.3) 0.90 (0.014) 33.0 (25.9) 0.43 (0.04) 89.9 (53.4)

The test in Table 1 was performed by concatenating the normal data sequence of one customer
and an attack data sequence transformed from the normal data of the same consumer as shown in
Figure 1a. In the next test, the attack data were generated using the normal data of a different consumer
that was randomly chosen. Figure 1b shows that the attack data were marked as different from the
normal data. The experimental results in Table 2 show the improvement in F1 values for the attack
types 1~3 compared with the results in Table 1. When standard normalization was used, an average F1
value of the attack types 1~3 increased from 0.26 to 0.44. In case of min–max normalization, it was
improved from 0.3 to 0.5. However, for the attack types 4~6, no big difference was noticeable.
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Table 2. The energy theft detection performance when the test data stream was composed of the normal
data of one user and the attack data generated from another random user’s data.

Attack Type
Standard Normalization Min–Max Normalization No Normalization

F1 Delay F1 Delay F1 Delay

type 1 0.37 (0.04) 52.7 (42.6) 0.38 (0.034) 50.4 (42.7) 0.11 (0.02) 65.5 (51.2)

type2 0.35 (0.065) 72.5 (40.0) 0.60 (0.068) 56.3 (39.3) 0.24 (0.031) 80.1 (59.6)

type 3 0.60 (0.025) 43.4 (38.3) 0.53 (0.024) 45.0 (38.0) 0.12 (0.022) 60.7 (57.8)

type 4 0.96 (0.009) 12.5 (11.1) 0.95 (0.008) 12.5 (10.2) 0.09 (0.023) 60.3 (59.1)

type 5 0.96 (0.018) 18.8 (23.5) 0.87 (0.035) 36.5 (40.7) 0.14 (0.018) 68.6 (62.7)

type 6 0.89 (0.021) 31.0 (27.7) 0.89 (0.015) 33.6 (29.8) 0.54 (0.033) 70.2 (55.7)

4.2. When Model Construction Is Based on the Previous Energy Consumption Data of the Consumer
Being Tested

In the next test, an outlier detection model was constructed using the past normal energy usage
data of the customer who was being monitored for energy theft detection. By randomly choosing one
customer, the outlier detection model was built using his/her daily power consumption data for the
first year. A test data stream was constructed by concatenating the consumption data sequence of the
same customer for the second year and the sequence of attack data transformed from it. The energy
theft detection was performed on the test data stream. The experimental setting is displayed in
Figure 1c. This test was repeated 300 times. Table 3 compares the F1 value and the average Delay
when the number of models (M) and clusters (C) were variously set during the construction of the
outlier detection model. Unlike the experiments in Section 4.1, the F1 value is calculated from the
TP, FP, and FN accumulated in the repeated tests of 300 times, so the standard deviation from the
F1 value cannot be calculated. The standard normalization was used to preprocess the daily energy
consumption vectors. Compared with the results in Tables 1 and 2, a higher F1 value was obtained for
the attack of type 2, but no big difference was noticeable for the other attack types. This shows that in
the proposed method the historical consumption data of consumers being monitored for energy theft
detection is not necessarily needed.

Table 3. The energy theft detection performance when an outlier detection model was constructed
from past usage data of the consumer being monitored for energy theft detection.

Attack Type
M = 3, C = 30 M = 3, C = 50 M = 1, C = 50

F1 Delay F1 Delay F1 Delay

type 1 0.05 25.9 (31.0) 0.07 26.2 (30.2) 0.03 7 (5.8)

type2 0.85 37.9 (24.1) 0.72 39.8 (19.9) 0.81 37.7 (24.2)

type 3 0.50 50.1 (37.1) 0.50 54.1 (39.8) 0.57 57.3 (40.2)

type 4 0.92 24.2 (15.4) 0.91 30.3 (11.6) 0.91 23.7 (14.8)

type 5 0.87 35.0 (34.8) 0.89 35.7 (25.8) 0.85 31.1 (27.7)

type 6 0.91 27.7 (21.0) 0.90 31.8 (15.3) 0.90 28.6 (23.3)

4.3. Parameter Sensitivity

We investigated the impacts of various parameters on the performance of the proposed method.
The parameter values to be determined are the number of ensemble members and clusters in the
construction of the outlier detection model by k-means clustering, and the size of reference and
detection windows in APD-HT algorithm. Figure 2 compares the average F1 value and Delay when
the number of ensemble members is 1 or 3. The number of clusters and the window size were fixed to
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3000 and 50, respectively. For the attack types 1 and 2, the performance is slightly better when the
number of ensemble members is 1. However, there was no big difference in other cases. Figure 3
compares the performance when the window size is set to 40, 50 or 60. When the window size is 60,
the F1 value is higher but the Delay is also longer. The difference is not big except in the attack type 1.
Figure 4 shows the performance when the number of clusters is set to 2000, 3000, 4000. As in Figures 2
and 3, for the attack types 4~6, the difference in the F1 value and Delay is not noticeable.Energies 2020, 13, x FOR PEER REVIEW 8 of 10 
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5. Discussion

While the proposed method is an unsupervised method where it only needs normal data to build
a model, most energy theft detection methods are supervised learning where a classification model
is built using both normal and attack data. In [16], in order to reduce the disparity in the amount
between normal users and theft users, synthetic theft data were generated. A classifier model utilizing
CNN-LSTM-based deep learning techniques was trained using power consumption data for one year
of both normal and theft users. The trained model was used to classify theft users. In [17], artificial
attack data of six types was generated as in [6] and a classification model was trained using both normal
and attack data of daily power consumption and was used to predict abnormal energy consumption
days. In [18], using power consumption data for 1035 days of thieves and normal users, a classification
model was built and used to predict energy thieves.

Another major characteristic of the proposed method is that it works in a streaming data of daily
power consumption generated from smart meters. The goal of the proposed method is to detect a
time point in a streaming data as accurately and fast as possible when malicious attack occurs. On the
other hand, the methods in [16–18] perform the classification for data samples which represent energy
consumption days or energy usage records for a certain period.

Energy theft detection performance of the proposed method was tested in the simulated data
streams using artificial attack data. By preprocessing daily consumption vectors using standard
normalization, training an outlier detection model on normal usage data of randomly chosen customers,
and applying anomaly pattern detection on the test data streams, attacks of types 4, 5, 6 were detected
with an average F1 value of 0.93 and average Delay of 19 days. On the other hand, detection
performance for type 1, 2, 3 attacks low. It is conjectured that the normalization process is not effective
for those attacks, since the three attack types include multiplication by a randomly chosen value.
As a future work, we plan to conduct performance tests for the proposed method using real energy
theft data.

6. Conclusions

In this paper, a method for detecting energy theft in a smart meter streaming data is presented,
based on anomaly pattern detection. Beyond predicting abnormal energy consumption days, it focuses
on detecting a time point in the data stream where the occurrence of the energy theft begins. Importantly,
the proposed method does not require the past usage records of individual customers in order to
monitor their illegal usage. Here, the usage records of other legal customers were used to construct the
model. Since the size of training data is one of the important factors to effectively use the machine
learning method, the difficulty of collecting sufficient amount of illegal power consumption data can
be a big problem in applying the machine learning method to the detection of energy theft. Taking into
account that it is easy to obtain normal data compared to malicious data and the proposed method
only needs normal data to build a model, the proposed method has strong potential in its application
to various industrial problems as well as energy theft detection in AMI.
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