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Abstract: Regulating performance of the main steam temperature (MST) system concerns the
economy and safety of the coal-fired power plant (CFPP). This paper develops an offset-free offline
robust model predictive control (RMPC) strategy for the MST system of CFPP. Zonotope-type
uncertain model is utilized as the prediction model in the proposed RMPC design owing to its
features of higher accuracy, compactness of representation and less complexity. An offline RMPC
aiming at the system robustness and computational efficiency is then developed to maintain the
desired steam temperature in case of wide operating condition change. The proposed RMPC is
realized by two stages: in the first stage, the RMPC law set, which is the piecewise affine (PWA) of
the MST system state is designed offline; then in the second stage, the explicit control law is selected
online according to the current state. To achieve an offset-free tracking performance, a manipulated
variable target observer is employed to update the chosen RMPC law. The control simulations
using on-site operating data of a 1000 MW ultra-supercritical power plant show that the proposed
approach can achieve satisfactory control performance and online computation efficiency even under
complicated operating conditions.

Keywords: energy system control; coal-fired power plant; uncertain model; robust model predictive
control; explicit model predictive control

1. Introduction

With the rapidly developing of human society and economy, the environmental deterioration
arising from fossil fuels firing becomes extremely urgent. However, in China, coal-fired power plants,
which are main sources of carbon dioxide and nitrogen dioxide, still produce around 70% of the whole
electricity generation [1], high efficient operation and low carbon emission for coal-fired power plant
is fulfilled with large expectation. Consequently, great concern has been paid on the control of main
steam temperature (MST), which plays a critical role for the operation of coal-fired power plant (CFPP).
The MST must be maintained within an expected range without frequent variation for the economy
and safety reasons [2]:

1. The excessively high MST results in serious damage of the superheater and inlet pipe of turbine;
2. The excessively low MST decreases the net efficiency of power plant, and moreover, the steam

in the last stage of the low pressure turbine may become wet under low MST condition,
which endangers the turbine blades;

3. The frequent temperature fluctuation worsens the heat exchanging in superheater and increases
thermal stress of the superheater and turbine cylinder, which will bring material damage to
the plant.
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In spite of the importance of MST on the operation of the CFPP, it is still challenging to control the
MST due to the large thermal inertia, high nonlinearity and various unpredictable disturbances such
as valve vibrations and coal sources variations. Conventional PID-based controllers [3,4], which are
robust to deal with the model-mismatches and unpredictable disturbances, can effectively maintain the
MST when the CFPP is operated in a given working condition; nonetheless, for a load increase from
50% working condition to 100% working condition, the static gain and time constant of the MST control
system can increase 6 and 3 times respectively due to the complex process of heat transfer and mass
transfer involved in the plant. PID controllers thus cannot achieve satisfactory control performance
due to high nonlinearity of the MST system [5,6].

In order to overcome this issue, various control strategies have been developed for the MST
regulation. Combined with feedforward compensator, a fuzzy PID control strategy with adjustable
proportional coefficient was developed and validated by simulation in [7]. Valsalam et al. [8] used
the input-output (I/O) data of MST system to update a Kalman filter, with which the PID controller
was redesigned on time, and N-step state prediction of Kalman filter was adopt as the feedback
instead of MST. Ma et al. [9] applied an inverse dynamic neuro-control strategy to the MST system in a
300 MW coal-fired power plant. A neuro network (NN) with high accuracy was developed based on
the historical I/O data and was used to approximate the inverse dynamic property of MST system.
To compensate the mismatches of the NN model, an additional PID controller was developed to
guarantee an offset-free control of the MST. An intelligent predictive optimal control method was
proposed in [10], the control vector which could make the identified NN model output close to the
set point was selected as the control action. However, physical limitations for the valve position of
attemperators were not considered in these studies. Therefore, suboptimal control performance can
only be achieved.

Model predictive control (MPC) [11,12], which originates from industry practice, is a class of
computer control technologies that employs mathematical models to predict future output of the
controlled process. At each sampling time, MPC aims to search a control sequence that makes the
predictive output follow exactly the exceptive trajectory of the system future output by solving the
optimization problem, where the input and state constraints are involved. Owing to the ability of
dealing with large inertia characteristics, multivariable coupling and input constraints, MPC has
received great concerns form researchers and control engineers. Moreover, the extensibility brings
flourishing development of MPC control strategy, which makes it possible to overcome the nonlinearity
of controlled process, realize disturbance rejection and guarantee controller robustness. An optimal
state estimation MPC method was developed in [13] to reject the unmeasurable disturbance existed in
the MST system. A multi-model-based MPC was applied to the MST regulation in [5], where several
designed local linear constraint MPCs were switched according to the load demand of power grid.
Hlava [14] proposed a nonlinear piecewise affine model-based MPC approach to overcome the
nonlinearity produced by wide range load change of the CFPP. To overcome the disturbance due to
boiler combustion changing, a multiple disturbance model-based MPC was developed in [15]. In order
to meet requirements of MST regulation practice, a nonlinear fuzzy model-based stable MPC approach
was presented in [2]. The fuzzy model was developed through combination of several state space
type local models estimated by subspace identification approach [16]; and the power output of the
unit was selected as the scheduling variable. An offset-free MPC was then designed by introducing
disturbance observer and steady-state target calculator, MST regulation simulations demonstrated that
issues caused by model mismatches and disturbance occurring were effectively overcome.

Although the effectiveness of these MPC methods was demonstrated by MST system control
simulations, none of them have been successfully employed in control engineering practice for the
following reasons:

1. Numerical optimization problem must be solved at each sampling interval; the online
computational effort of these control algorithms is too heavy;
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2. MST system is operated under complicated working circumstance, such as aging of equipment,
complicated combustion process involved in boiler and unpredictable disturbance, however,
the robustness of control strategies is rarely involved in the control design.

To resolve the aforementioned difficulties, this paper aims to develop an offline robust MPC
approach for the MST system in the CFPP.

Uncertainty sources of the identified model originate from measured data, model structure and
parameters. The historical input/output (I/O) data corrupted by unmeasurable noise is used to identify
mathematic model, besides, there are unavoidably data gap and abnormal data. Data gap filling
methods [17,18] and data fitting methods [19,20] are thus primary concerns for modeling researchers,
and fruitful achievements were obtained with persistent efforts of predecessors. Data processing
approaches address the problem that identifying data is corrupted by unmeasurable noise and data
missing unavoidably exists. Uncertainties of model structure and parameters result from uncertain
system identification approach. Compared with Monte Carlo uncertainty analysis [21,22] and Bayesian
uncertainty analysis [23,24] which give a probabilistic description of uncertainty, the set-membership
identification (SMI) [25–31] aims to achieve a deterministic model uncertainty by bounding the error of
uncertain model. There are two kinds of SMI methods according to the uncertain description. One is
on the basis of non-parametric model, such as frequency response model [25,26], with which it is
challenging to design RMPC controller. The other is parametric model based SMI [27–31], such as
ellipsoids, paralellotopes, limited-complexity polyhedrons and zonotopes, among them, zonotope has
received much attention in the past decades [29–31] because of the advantages such as high accuracy,
good compactness of the representation and low complexity compared with polytopes and ellipsoids.
Moreover, zonotope is ideal model for RMPC controller design due to its nature of convex hull.
Inspired by zonotope based SMI method [30,31] presented an improved zonotope closed-loop based
SMI approach for uncertain system identification. A zonotope-based uncertainty model was achieved
in an iterative way via minimizing a new criterion representing the accuracy of the nominal model
and the size of uncertainty. Instead of reducing the order after performing the optimization [30], a new
optimization problem was built in this paper which aims to circumvent the problem that the order of
identified zonotope increases persistently during iteration. The effectiveness was demonstrated by
two illustrative examples.

In this paper, an uncertain model is firstly developed by zonotope-based closed-loop SMI
approch [31]; and an RMPC is then developed on the zonotope to address the control issues of
the MST system, such as high nonlinearity, large inertia, model mismatches and input constraints.
The threshold of ideal robust MPC (RMPC) control performance is initially set, the state space is
partitioned into several simplex-type subspaces recursively until ideal RMPC control performance of
each partitioned subspace is smaller than the threshold, meanwhile, the control laws with guaranteeing
robust stability of each subspace vertexes are determined offline by solving a min-max optimization.
The local RMPC laws are then linearly combined together to form the global explicit control law online
according to the simplex current state belonging to. To drive the MST to track the desired set-point
accurately, a manipulated variable target observer is developed based on the nominal model, which is
the model with center parameter of the identified zonotope. As a result that control law design is
shifted to finish offline, the online computation efficiency of control strategy is improved compared
with conventional MPC approach.

The novelties of the proposed MST regulation strategy are summarized as follows,

1. An improved offline RMPC approach is proposed by introducing two extra parameters for a
better convergence of the recursive algorithm;

2. A manipulated variable target observer is developed based on the center parameter of
zonotope-type prediction model, which can help the RMPC achieve an offset-free control of
the MST.



Energies 2020, 13, 3775 4 of 24

2. Main Steam Temperature System

2.1. System Description

The CFPP considered in this paper is a 1000 MW ultra-supercritical power plant located in
Shanghai, China. The CFPP is mainly composed by three parts: boiler, turbine and generator.
A simplified layout of the power plant is shown in Figure 1. The condensate water preheated by
steam extraction from turbine in several heat exchangers is pumped into boiler in which the feed
water absorbs the heat from coal combustion and evaporates into steam, after that steam continues
to be heated in the superheater system until the temperature increases to the rated degree (600 ◦C),
steam temperature at the outlet is nearly MST; Turbine is an energy convertor where the thermal
energy of pressured steam with high temperature is converted into mechanical energy driving the
shaft rotating; Generator is equipped on the same shaft of the turbine, in which mechanical energy of
the shaft is converted into electric energy.

Figure 1. Simplified layout of a 1000 MW coal-fired ultra-supercritical power plant.

The MST system is a crucial subsystem of boiler, whose objective is to maintain MST within
an expected range without frequent variation by adjusting the spraying water. The MST system is
symmetrically arranged by four superheater subsystems: one primary superheater, one secondary
superheater and two attemperators. Figure 2 shows the flowchart of the superheater subsystem
considered in this paper. Superheaters are heat exchangers where the pumped steam is heated by
absorbing the thermal energy of flue gas produced from combustion of coal and warmed air, and the
steam with rated temperature (around 600 ◦C) is delivered to the turbine after passing through the
secondary superheater. To guarantee the safety of metal tubes of superheaters and to regulate the
steam temperature, purified water is spayed into the steam in primary attemperator and secondary
attemperator, the steam is cooled in case of overheat at each superheater inlet. Two valves are utilized
to adjust the rate of spray water flow, which are: primary attemperator valve position and secondary
attemperator valve position u. Generally MST is regulated by u, while adjusting primary attemperator
valve position is only regarded as a rough regulation to make sure steam temperature of secondary
superheater inlet stay in an acceptable range.
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Figure 2. Flowchart of the superheater subsystem.

Figure 3 shows the operating parameters of the MST system when the unit load of CFPP decreases
from 820 MW to 450 MW. It can be seen that MST appears to have the same variation trend as the
steam temperature at the attemperator outlet with a 200 s-lag, which implies a relatively large thermal
inertia property. In addition, MST is influenced directly by steam temperature at attemperator inlet Ti
(disturbance) and manipulated variable u. At high unit load level, there is much more steam passing
through the attemperator compared with the situation at low unit load level, thus variation of u makes
MST fluctuate less; with unit load demand changing, the heat transfer from flue gas cannot match
the changed rate of the steam flow immediately, that causing Ti and MST controlled by inherent PID
controller to fluctuate sharply; however, the combustion efficiency gets worse at low unit load level,
this issue is essentially unpredictable disturbance occurring, variation of u means a larger change of
MST compares with high unit load, a poor control performance is thus achieved. Therefore, advanced
control techniques are needed to improve the conventional PID controllers.

Figure 3. Operating data of MST system during unit load varying (gray line: steam temperature at
attemperator inlet Ti; red line: MST; blue line: steam temperature at attemperator outlet).
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2.2. Simulation Model

According to the properties of MST system discussed above, we can see that the secondary
superheater is crucial for MST regulation. Based on fuzzy modeling [2] the nonlinear simulation MST
model is established with on-site operating data of the power plant, whose linear local models are
identified with I/O operating data of the MST system at unit load demand of 500 MW, 700 MW and
900 MW, respectively. The simulation model output is essentially summation of linearly weighted by
the outputs of local models, and the current unit load demand is scheduling variable. Mathematical
description of the MST simulation model is shown as follows,

y = f (W, Ti, u) (1)

where controlled variable y ∈ R is MST, manipulated variable u ∈ R is the valve position of 2nd
attemperator, W ∈ R is unit load, Ti ∈ R is steam temperature at 2nd superheater inlet which is
influenced by unit load variation and unpredictable disturbance such as combustion status change in
boiler, f : R3 → R denotes nonlinear function mapping.

To provide high-fidelity simulation of the MST system, the operating data archived from CFPP is
employed as the input W and Ti in the simulation model (1). Requirement for MST regulation system
designed in this paper is that MST must maintained at rated degree (600 ◦C) within a wide operating
range in cases of unpredictable disturbance and model-mismatch occurring.

3. Problem Formulation

RMPC strategy has been proved to have a satisfactory ability in handling the control issues
brought by large inertia, nonlinearity and model mismatch while guaranteeing robust stability [32,33].

Consider the following time-variant system with polytope based description,

xp(k + 1) = A(k)xp(k) + B(k)u(k), [A(k)|B(k)] ∈ Ω (2)

where u(k) ∈ Rm and xp(k) ∈ Rnx is the system input and state respectively, nx and m are positive
integers, A(k) ∈ Rnx×nx and B(k) ∈ Rnx×m are time-varying parameter matrices which belong to
convex hull model set Ω,

Ω =

{
[A(k)|B(k)]

∣∣∣∣∣ h

∑
j=1

ωj(k) = 1, ωj(k) ≥ 0, [A(k)|B(k)] =
h

∑
j=1

ωj(k)[Aj|Bj]

}
(3)

where [Aj|Bj](Aj ∈ Rnx×nx, Bj ∈ Rnx×m, j ∈ {1, · · · , h}) is the vertex of the convex hull Ω, ωj(k) is
weighting coefficient. For MST system, valve position of attemperator u has physical restriction such
that the following input constraint must be posed,

u− ≤ u(k + i) ≤ ū (4)

where ū = [ū1, · · · , ūm]T is positive column vector, and u = [u1, · · · , um]
T negative column vector,

superscript “T” denotes matrix transposition.
The following state feedback and infinite-horizon performance index are adopted,

u(k + i|k) = Kxp(k + i|k), ∀i ≥ 0 (5)

J∞(xp(k)) =
∞

∑
i=0

∥∥xp(k + i|k)− xs
∥∥2

Lx
+ ‖u(k + i|k)− us‖ 2

Lu
(6)

where K ∈ Rm×nx is the state feedback matrix,
∥∥xp(k + i|k)

∥∥2
Lx

= xp(k + i|k)T Lxxp(k + i|k),
whose operation is the same as ‖u(k + i|k)‖ 2

Lu
, Lx ∈ Rnx×nx > 0 and Lu ∈ Rm×m > 0 are symmetric
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positive weighting matrices. Thus, the worst case of the performance index (6) is utilized as robust
control cost in this section,

max
{A(k+j)|B(k+j)}∈Ω,j≥0

∞

∑
i=0

∥∥xp(k + i|k)− xs
∥∥2

Lx
+ ‖u(k + i|k)− us‖ 2

Lu
, s.t.(2) (7)

Define Lyapunov function V(xp) = xT
p Pxp, the inequality of matrix P > 0 means P is symmetric

positive matrix, and the following formulation must be held,

V(xp(k + i + 1|k))−V(xp(k + i|k)) ≤ −
∥∥xp(k + i|k)

∥∥2
Lx
− ‖u(k + i|k)‖ 2

Lu
(8)

Summing (8) from i = 1 to i = ∞, obtain the upper bound J∞(xp(k)) ≤ V(xp(k|k)).

Theorem 1 ([32]). Let x(k|k) be the state of the controlled system measured at sampling time k, the uncertain
model set is polytope based description defined as (3). Then the state feedback matrix K in the control law (5)
that minimizes the upper bound on the robust performance objective function at sampling time k and satisfies a
set of specified input is given by

K = YQ−1 (9)

where the symmetric positive matrix Q ∈ Rnx×nx > 0 and matrix Y ∈ Rm×nx are obtained from the solution of
the following linear objective minimization problem with LMI-type constraints:

min
Y,Q

γ

s.t. (11)
(10)

where γ is positive scalar to be optimized with the relationship P = γQ−1. The receding-horizon implementation
of the RMPC algorithm in (10) guarantees exponential closed-loop stability, once a feasible solution of the MPC
problem is found. [

1 ∗
x(k|k) Q

]
≥ 0


Q ∗ ∗ ∗

AjQ + BjY Q ∗ ∗
L1/2

x Q 0 λI ∗
L1/2

u Y 0 0 λI

 ≥ 0, j ∈ {1, · · · , h}

[
Z Y

YT Q

]
≥ 0, Z ≤ (min{ū,−u})2

(11)

The recursive feasibility is demonstrated in [32].
The optimal control input u∗(xp(k)) = K∗(xp(k))xp(k) is calculated by solving the LMIs (10) at

each control interval, which aims to drive the system (2) to the steady state (xs, us). However, the online
computation burden is too heavy for control practice, approximated explicit MPC (AEMPC) [34] is
thus proposed, whose basic idea is to achieve a suboptimal solution of (10) instead via partitioning
polytope-type initial state space Φ0 into n subspaces {Spk},(k = 1, 2, · · · , n) and the obtained
approximated control input in piece-wise affine (PWA) explicit form is shown as Formulation (12).

û(xp(k)) = Hixp(k) + bi, ∀xp(k) ∈ Spk
n⋃

k=1
Spk = Φ0, Φ0

∆
= {x ∈ Rnx|Dx ≤ b} (12)
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Compared with implicit control law achieved by conventional MPC, the explicit control law
(12) tends to be clearly accepted by control engineers. In addition, AEPMC is essentially an offline
control approach, which achieves enhanced online computation efficiency. However, standard AEMPC
algorithm has poor convergence for RMPC controller design, and classical explicit MPC [34–36] cannot
deal with target tracking problem.

4. An Improved Offline Robust Model Predictive Control Approach for MST System

To overcome the drawbacks of AEMPC, an approximated explicit RMPC (OFAERMPC) method is
presented in this section, which is realized in two stages: the offline stage and online stage, the control
structure is shown as Figure 4. In the offline stage, an improved state space partition strategy is
developed to strengthen the convergence by introducing two parameters avoiding the recursive
algorithm falling into local endless loop. The whole state space is partitioned into a great number of
simplex-type subspaces and control laws corresponding to the subspaces are then designed based
on the RMPC approach stated in previous subsection. In the online stage, at each control interval
the explicit RMPC control law is searched according to the current state, and the targeted control
input is updated based on the nominal model of uncertain system identified by the SMI approach [31],
furthermore, the input variation restriction is imposed on the explicit RMPC control law.

Figure 4. The schematic of an approximated explicit robust model predictive control (OFAERMPC).

4.1. The Offline Design for RMPC Control Law

A simplex Sp in nx-dimensional space is described mathematically as,

Sp
∆
=

{
xp

∣∣∣∣∣nx+1

∑
j=1

ωj(k) = 1, xp =
nx+1

∑
j=1

ωj(k)xpj , ωj(k) ≥ 0, xpj ∈ Rnx

}
(13)
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where {xpj(j = 1, · · · , nx + 1)} are the nx + 1 vertexes of simplex Sp.
As shown in (13), a simplex in n-dimensional space is a subspace surrounded by envelope lines

composed by nx + 1 points. Simplex is fundamental component of geometries in multi-dimensional
space, a 1-dimensional simplex is an interval, a 2-dimensional simplex is a triangle and a 3-dimensional
simplex is a tetrahedron. As a result of its convexity, any point in simplex can be represented linearly
by the simplex vertexes.

An extended state matrix M of the simplex Sp is defined as M ∆
=

[
1 · · · 1

xp1 . . . xp(nx+1)

]
∈

R(nx+1)×(nx+1), thus, for any point xp ∈ Sp, the following relationship is held,

M−1
[

1 xp

]T
=
[

ω1(k) · · · ωnx+1(k)
]T

(14)

Define optimal robust predictive control vector of the simplex Sp as

U ∆
=
[

u∗(xp1) · · · u∗(xp(nx+1))
]

(15)

where u∗(xpj)(j = 1, · · · , nx + 1) is the robust predictive control input calculated by solving (10) with
xpj being initial system state, and the corresponding optimal robust cost index vector VV is defined as,

VV ∆
=
[

V∗(xp1) · · · V∗(xp(n+1))
]T

(16)

For any point xp ∈ Sp, define approximated optimal robust predictive control input as linearly
weighted summation of the optimal one of simplex vertexes,

û(xp)
∆
= UM−1

[
1 xp

]T
(17)

Approximated optimal robust cost index V̄(xp) defined as (18) is utilized.

V̄(xp)
∆
= VVM−1

[
1 xp

]T
(18)

It is expected that the explicit subspace approximated optimal control input û(xp) with explicit
PWA form is used in prescribed state instead of optimizing (10) online to achieve u∗(xp). To this end,
the situation that the smaller volume of the simplex makes V̄(xp) closer to V∗(xp) can be regarded as
the guide for state space partitioning.

Define approximated robust cost index deviation as ξ(xp)
∆
= V̄(xp) − V∗(xp), of which the

threshold σ is set, for any point xp ∈ Sp, let ξ(xp max) = max
xp∈S

ξ(xp), the state point xp max is obtained

by solving the following optimization problem.

max
γ,Y,Q,xp max

ξa(xp max) = VM−1
[

1 xp max

]T
− γ

s.t.(11), M−1
[

1 x p max

]T
≥ 0

(19)

If ξ(xp max) ≤ σ, then this simplex Sp is well partitioned, and next simplex is chosen;
if ξ(xp max) > σ, it means that chosen simplex Sp need to be partitioned into nx + 1 simplexes that the
nx + 1 simplex vertexes are replaced by the state point xp max in sequence.

An offline recursive control law design with enhanced convergence is proposed in this section,
which aims at partitioning polyhedral initial state space Φ0 into simplex-type subspaces and designing
RMPC control laws of the corresponding simplexes that drive the system to the origin. The procedure
is given as follows:
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1. Partition Φ0 into several simplexes Si, i ∈ {1, 2, · · · , l} applying Delaunay triangulation [37],

i.e., Φ0 = {S1, · · · , Sl}, calculate and store respectively VVi
∆
= [ V∗(xp1) · · · V∗(xp(nx+1)) ]T

and Ui
∆
= [ u∗(xp1) · · · u∗(xp(nx+1)) ]T at simplexes vertexes state points via (10), build Mi,

preset threshold σ, α and β, let i = 1;
2. If i ≤ l, select the current simplex Si and turn to Step 3; if i > l, algorithm ends, return

U ∆
= [U1 · · · Uh ] and M ∆

= [ M1 · · · Mh ], h is size of well-partitioned space Φ0;
3. Compare the size of α and conditional number of Mi, if cond(Mi) > α, delete Si, l = l − 1,

and turn to Step 2; if cond(Mi) ≤ α, turn to Step 4;
4. Obtain max

xp max∈S
ξa(xp max), xp max, V∗(xp max) and u∗(xp max) via (19), if max

xp max∈S
ξa(xp max) ≤ σ,

i = i + 1, and turn to Step 2; if max
xp max∈S

ξa(xp max) > σ, replace the nx + 1 vertexes of Si with xp max

in sequence yielding nx + 1 new simplex, add them to Φ0, and delete Si, l = l + nx, turn to Step 5;
5. Determine whether the longest side is β times longer than the shortest side, if not, turn to Step 2;

if yes, take the midpoint of the longest side as a new point xpz, calculate V∗(xpz) and u∗(xpz),
two end points of the longest side are replaced with xpz in sequence, then two simplexes yield,
delete Si, l = l + 1, turn to Step 2.

Remark 1. This proposed algorithm of offline design for RMPC control is developed on the AEMPC. However,
when applying AEMPC to design offline RMPC method the convergence problem arises, the reality that the
optimal solution xp max of (19) in current simplex Si approaches closely one of vertexes or the longest side of
Si results in partitioning current simplex too many times, falling into endless loop can even occur. Therefore,
the proposed method introduces two parameters α and β to accelerate convergence rate. Another disadvantage
is that AEMPC cannot effectively deal with control target tracking problem for MST system, because during
MST system normal operation the control input target is generally unknown owing the nonlinearity of dynamic
property and unmeasurable disturbance existing, the relevant solution will be proposed in following subsection.

Remark 2. If σ decreases, then the approximated optimal control input û(xp) is closer to the optimal one,
but the size of partitioned simplexes and the calculation offline burden become larger, it is recommended that both
criterions max

xp max∈Si
ξa(xp max)/V∗(xp max) < σr and max

xp max∈Si
ξa(xp max) < σa are adopted, i.e., the current

simplex is considered to be appropriate as long as either of conditions is true; if α increases, then offline
computational burden will reduce, and the possibility of extended state matrix M being illness will larger and
the volume of the simplex Si will decrease accordingly, causing xp max to be too closer to one of the vertexes,
which must yield a worse convergence; if β increases, then offline computational burden will reduce, and the
point xp max will tend to approach the longest side of the simplex Si, which must yield a convergence problem.

The designed offline control law is (M, U), in which M and U illustrate the well partitioned
subspace and control law set respectively. In addition, according to (17), we see that the approximated
RMPC control law û(xp(k)) essentially has an explicit PWA formulation with respect to the current
state xp(k).

4.2. The Online Implementation for Offline Designed RMPC Control Law

The basic requirement of the MST regulation system is to maintain the constantly at the set
point; however, the control input target is actually unknown and varies frequently during the
routine operation, which will deliver the control result with offset when applying offline RMPC
approach [34–36]. On the other hand, to alleviate wear and tear of the attemperator valve, a control
input variation rate restriction must be involved in controller design. For these reasons, an offset-free
online implementation of offline RMPC with input amplitude and variation rate constraints is
developed in this subsection.
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To this end, control of MST system is viewed as target tracking with controlled state set point
xr(k) and unknown control input set point ur(k), which can be solved by driving the system to track
the control target (xr(k), ur(k)). On the basis of PWA-type RMPC control law designed in Section 4.1,
the offset-free control input with unknown control input set point ur(k) is shown as follows,

u(k) = Ui M−1
i

[
1 xc(k)− xr(k)

]T
+ ur(k) (20)

where xc(k) ∈ Rnx×nx is the measured system state at time instant k, the matrix Ui ∈ Rm×(nx+1) and
Mi ∈ R(nx+1)×(nx+1) i ∈ {1, 2, · · · , h} are obtained by searching in the U and M with tracking error
xc(k)− xr(k) at time instant k, h is the size of well-partitioned subspaces.

With control law (20), an offset-free control strategy can be achieved by estimating the unknown
control input set-point ur(k) online according to historical I/O data. Consider the nominal model
identified by zonotope based closed-loop set-membership identification method [31], and let
x0(k− 1) = xc(k− 1) at time instant k− 1, we have

x0(k)− xr(k) = A0(xc(k− 1)− xr(k− 1)) + B0(u(k− 1)− ur(k− 1)) (21)

where the parameter matrices A0(k) and B0(k) are the model with center parameter of zonotope-type
uncertain model.

Given that there exists a control input ub(k− 1) holding the following relation,

xc(k)− xr(k) = A0(xc(k− 1)− xr(k− 1)) + B0ub(k− 1) (22)

We have ub(k− 1) = B+
0 (xp(k)− xr(k)− A0(xp(k− 1)− xr(k))), the superscript “+” is pseudo

inverse operator. (22) subtracts (23), we have the nominal state error,

xc(k)− x0(k) = B0(ub(k)− u(k− 1) + ur(k− 1)) (23)

For the nominal system (21), let ur(k− 1) be the estimation of unknown ur(k),

x0(k + 1)− xr(k + 1) = A0(xc(k)− xr(k)) + B0(u(k)− ur(k− 1)) (24)

Since ur(k) is unknown at the current instant k, the nominal system prediction output x0(k + 1)
must be biased from the target xr(k + 1). To alleviate this issue, historical nominal state error
xc(k)− x0(k) is used to compensate the future nominal state value in (24), i.e., both left and right side
of Formulation (23) times a compensation coefficient a (0 ≤ a ≤ 1) and then sum (24), we have,

x0(k + 1)− xr(k + 1) + a(xc(k)− x0(k))
= A0(xc(k)− xr(k + 1)) + B0(u(k)− (a(u(k− 1)− ub(k)) + (1− a)ur(k− 1)))

(25)

According to (25), a control input target observer is thus obtained as ûr(k) = a(u(k− 1)− ub(k)) +
(1− a)ur(k− 1).

Therefore, the control action at time instant k will be imposed on the controlled system shown
as (26),

u(k) =


u(k− 1) + (1− a)(ur(k− 1)− u(k− 1)) + Ui M−1

i

[
1 xc(k)− xr(k)

]T
−

aB+
0 (xc(k)− xr(k)) + aB+

0 A0(xc(k− 1)− xr(k− 1)), (xc(k)− xr(k)) ∈ Φ0

u(k− 1), (xc(k)− xr(k)) /∈ Φ0

(26)

where Φ0 is the well-partitioned state space in the offline design stage.
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Remark 3. As shown in (26), at time instant k the final explicit control input has the same mathematical
representation as the one of digital PID controller, in (26) aB+

0 (A0(xc(k) − xr(k)) − (xc(k) − xr(k))) +

Ui M−1
i

[
1 xc(k)− xr(k)

]T
illustrates “Proportion” action and aB+

0 (A0(xc(k − 1) − xr(k − 1)) −
(xc(k)− xr(k))) illustrates “Integration” action. We see that the final control input (26) becomes essentially
nonlinear PI controller by introducing a control input target observer, since the integral action with respect to the
tracking error is included in the control input, the offset-free tracking is guaranteed with the proposed approach.

As for MST system, the control input variation rate restriction must be imposed in case of the
wear and tear of the attemperator valve.

du ≤ u(k)− u(k− 1) ≤ du (27)

where du and du is upper and lower bound of control input variation rate.

5. Simulation Results

The proposed offline RMPC approach for MST system is tested by control simulations in this
section. A zonotope-type uncertain model for controller design is achieved firstly in a recursive way,
and then proposed control strategy for MST system is demonstrated via comparison with PID and
other MPC methods.

5.1. Establishment of the Zonotope-Type Uncertain Model for MST System

In this section, on-site data of an ultra-supercritical CFPP located in in Shanghai, China is recorded
to establish the prediction model for controller design through a closed-loop identification method for
uncertain system, and the principles of algorithm realization are referred to reference [31]. Figure 5
shows 3000 groups of routine operating data of MST system around unit load 700 MW with sampling
interval of 5 s. The last 2000 groups of I/O data are utilized to identify uncertain model for MST system
and the first 1000 groups of I/O data are used as verification data set to demonstrate the effectiveness
of the identified model.

The model structure, which is compatible with identification data set, can be achieved by

the asymptotic method [38], i.e., G(z−1) = b1z−1

1+a1z−1 , there are two parameters to be identified,
and the order of zonotope is 3, thus, the zonotope-type uncertain model at time instant k is

AFSS(k) =
{

θ = [ a1 b1 ]
T |θ ∈ c⊕ HB3

}
, in which B3 means an 3-order unitary box, let the

model with center parameter c = [ a0 b0 ]T be the nominal model of AFSS(k), and HB3 illustrates
variation range of the parameters a0 and b0. Initial nominal parameter vector can be estimated via the
output error identification method [39], and HB3 must be set large enough to cover the true parameter,
to this end, the initial zonotope-type uncertain model is shown as (28).

AFSS(0) =

[
−0.978
−0.005

]
⊕
[

0.02 0 0
0 0.01 0

]
B3 (28)

where the notion “⊕” denotes the Minkowski summation of two sets X1 and X2, i.e., X1 ⊕ X2 =

{x|x1 + x2, x1 ∈ X1, x2 ∈ X2}.
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Figure 5. Routine operating data for main steam temperature (MST) system identification
and verification.

Essential parameters of closed-loop identification method [31] are set in Table 1 .

Table 1. Parameters of the identification algorithm.

Order of pre-estimation model 8
Error bound to be restrained Γ 1.76

Weighting ratio wH/we 50

The final uncertain model is achieved by applying the recursive closed-loop identification
method [31] shown as (29).

AFSS(2000) =

[
−0.9866
−0.0018

]
⊕
[

0.0029 −6.41× 10−7 0
0.0012 0 −1.55× 10−5

]
B3 (29)

where vi, (i = 1, 2, · · · , 6) are vertexes of the convex hull listed as Table 2.

Table 2. Vertexes of identified model (30).

v1 v2 v3 v4 v5 v6

−0.989561 −0.983721 −0.989562 −0.983721 −0.983722 −0.989562
−0.002991 −0.000593 −0.002991 −0.000562 −0.000562 −0.002960

Model validation is conducted via the verification data set, the result is shown as Figure 6. We see
that the nominal output and the output bound of the uncertain model has the similar variation trend
to the one of the real output. However, the difference from the ideal simulation experiment is that
the output of uncertain model identified with the on-site operating I/O data cannot cover the whole
real output, because complicated uncertain disturbances unavoidably influence MST system, there is
information deviation between identification data set and verification data set, moreover, in the
identification and verification period MST system show different nonlinearity. Nonetheless, compared
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with the model with sole parameter, parameters of the uncertain model belong to specific model
set causes the output to cover the real output, which illustrates the uncertain model has improved
descriptive ability for MST system.

Figure 6. Verification of identified uncertain model (blue thin line: identified nominal model output;
blue heavy line: identified uncertain model output bounds; black line: real output).

Step response test of the identified uncertain model (44) is shown as Figure 7, the upper part of
Figure 7 illustrates the valve position (input of model (44)) variation, and the lower part illustrates the
MST (output of model (44)) variation with the valve position varying. At t = 50 s, the valve position
steps from 47.73% to 52.73%, the output decreases slowly from 600 ◦C, the nominal model output
approaches to 599.3 ◦C at t = 1600 s, while the uncertain output is a range between 598.7 ◦C and
599.7 ◦C with a transient time of 1400–2000 s, the dynamic characteristics shows with a large thermal
inertia. We can see that the identified uncertain model with a varying static gain and transient time is
essentially nonlinear, with which it is effective to describe the dynamic features of MST system that the
static gain and transient time will keep changing with the unit load following the command from the
power grids.

Figure 7. Step test of identified uncertain model (blue thin line: identified nominal model output;
blue heavy line: identified uncertain model output bounds).
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5.2. Control Simulation for MST System

In this section, the proposed OFAERMPC method is utilized to design controller for MST system
of 1000 MW ultra-supercritical power plant, the control objective is that MST is kept at 600 ◦C with
less fluctuation under complicated operating conditions while guaranteeing the stability by adjusting
the valve position of 2nd attemperator.

Simulation platform: matlab2015b with yalmip solver [40]; computer hardware: CPU—Intel Core
i5-2410M, RAM-DDR3 6 GB.

The corresponding parameters of OFAERMPC and standard AEMPC are set as follows: initial
state space Φ0 = {x ∈ R| − 15 ≤ x ≤ 15}; σ = 0.005, α = 3, β = 1000; weighting coefficients Lx = 1
and Lu = 0.01 ; compensation coefficient a = 0.1 ; sampling interval Ts = 5 s; amplitude and variation
rate constraints of manipulated variable are 0 ≤ u(k) ≤ 100% and −4% ≤ u(k)− u(k − 1) ≤ 4%.
The offline computation time and number of partitioned subspaces are listed in Table 3.

Table 3. Offline performance of OFAERMPC and standard approximated explicit model predictive
control (AEMPC).

Computation Time Number of Subspaces

Standard AEMPC 3619 s 1914
OFAERMPC 170 s 108

In the offline control law design stage, OFAERMPC consumes much less time than standard
AEMPC, and obtains a state space partition with fewer subspaces. We can see that standard AEMPC
achieves a poor convergence when designing MST controller, which is actually an SISO system.
However, when applying the basic idea of AEMPC to design RMPC controller for the MIMO system,
the control algorithm may suffer from falling into endless loop.

Three case studies are considered to demonstrate the effectiveness of the proposed
OFAERMPC method.

Case 1. Power plant unit load varies

During the routine operation of power plant, to hold the power grid frequency constant the unit
load must trace the load demand from the grid, therefore, the unit load daily varies according to the
demand of electricity users. However, the steam temperature of attemperator inlet Ti and dynamic
property of MST system will change correspondingly when the unit load W varies, the valve position of
attemperator u must be regulated to hold MST constant with less fluctuation. Objective of this control
simulation is to test control performance of the proposed OFAERMPC during unit load variation.

Simulation condition: initial MST and valve position of attemperator is 600 ◦C and 29.4%,
the on-site operating data of unit load W and steam temperature of attemperator inlet Ti, which is
produced at the period of increasing unit load from 500 MW to 950 MW, is utilized as the input
variables of the simulation system, shown as Figure 8.

Four control strategies are employed in this control simulation.

1. the proposed OFAERMPC;
2. incremental model predictive controller (IMPC) based on the nominal model of the identified

zonotope (29) with weighting coefficients Lx = 1 and Lu = 0.01, control horizon 5, prediction
horizon 500 and sampling interval Ts = 5 s;

3. digital PI controller with proportional coefficient 5.26 and integral time 292.22 (design by matlab
PID controller tuning modular);

4. standard AEMPC.

The control simulation results are shown in Figures 9 and 10, and control performance is listed in
Table 4, where the performance index is mean square of the dynamic error. OFAERMPC has achieved
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the best performance index, and fluctuation of MST is the smallest among four controllers. Standard
AEMPC obtains a satisfactory dynamic error, however, when dynamic process approaches the steady
state (7000–1000 s), owing to the set point of control variable being unknown, there exists steady-state
deviation that is unacceptable for control application. Both PI and IMPC can realize the offset-free
control for MST system. The control action of IMPC is faster and lack of robust stability guarantee,
we can find from Figures 9 and 10 that the attemperator valve position of IMPC varies sharply, causing
strong fluctuations of MST, especially when the regulation approaches the steady state. Since the
variation of attemperator valve position is smooth, the poor cooling effect of the PI controller results in
the largest dynamic deviation. It also indicates that all the four controllers can meet the requirement
for control variable restraint. On control performance: OFAERMPC is the best, PI controller has the
largest dynamic deviation and IMPC shows a poor stability when process approaches the steady
state, standard AEMPC is unfit for MST regulation system design. From the perspective of online
computational burden: the total simulation time is shown in Table 4, the one of PI controller is the
least, and OFAERMPC is better than IMPC and standard AEMPC. In summary, the control simulation
illustrates the proposed OFAERMPC achieves a satisfied control performance for a unit load variation,
an excellent applicability for real-time control is demonstrated because its online simulation time is a
little more than that of PI and a stronger robustness is shown.

Table 4. Four control methods performance in Case 1.

PI IMPC OLRMPC OFAERMPC

Performance index 10.04 9.32 8.80 8.10
Total Simulation time 0.24 11.94 8.74 0.96

Figure 8. On-site operating data W of and Ti for a 500 MW–950 MW unit load variation.
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Figure 9. MST for a 500 MW–950 MW unit load variation (blue line: OFAERMPC; green line:
incremental model predictive controller (IMPC); red line: PI; gray line: standard AEMPC; black
line: set point of MST).

Figure 10. Valve position of MST for a 500 MW–950 MW unit load variation (blue line: OFAERMPC;
green line: IMPC; red line: PI; gray line: standard AEMPC).

Case 2. Unpredictable disturbance occurs

Since complicated coal combustion process is involved in the boiler, unpredictable combustion
status may change arising from coal sources variation, the heat exchange is thus disturbed. The steam
temperature of attemperator inlet Ti and dynamic property of MST system will change when
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unmeasurable disturbance exists, the valve position of attemperator u must be regulated to hold
MST constant with less fluctuation. Objective of this control simulation is to test disturbance rejection
performance of the proposed OFAERMPC.

Simulation condition: initial MST and valve position of attemperator is 600 ◦C and 75.5%, at t = 0 s
unpredictable disturbance occurs that results in steam temperature of attemperator inlet Ti varying
frequently, the on-site operating data of unit load W and Ti are used as the input variables of the
simulation system, shown as Figure 11.

In this control simulation, OFAERMPC, PI and IMPC control strategies are employed,
the corresponding control parameters are set the same as those in Case 1 The control simulation
results are shown in Figures 12 and 13 and Table 5. It can be seen that control action of IMPC is
faster and PI is slower compared with OFAERMPC; the dynamic deviation of OFAERMPC is the
lowest; the dynamic deviation of IMPC is medium, variation of MST fluctuates sharply, oscillation
occurs when process approaching the steady state; the variation of PI controller output is smooth and
dynamic deviation is the largest. All of PI, IMPC and OFAERMPC can meet the requirement for control
variable restraint when unpredictable disturbance occurs. On control performance: OFAERMPC is the
best, PI controller achieves the largest dynamic deviation and a smooth control result, the dynamic
deviation is satisfied for IMPC controller, but a poor stability is obtained when process approaches the
steady state. From the perspective of online computational burden: the required calculation time of
OFAERMPC is larger than that of the PI controller, while much less than the one of IMPC. In summary,
this control simulation illustrates the proposed OFAERMPC achieves a satisfied control performance
and applicability for real-time control when unpredictable disturbance occurs.

Figure 11. On-site operating data W of and Ti when unpredictable disturbance occurs.

Table 5. Three control methods’ performance in Case 2.

PI IMPC OFAERMPC

Performance index 5.05 0.71 0.55
Total Simulation time 0.22 0.05 0.98
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Figure 12. MST when unpredictable disturbance occurs (blue line: OFAERMPC; green line: IMPC;
red line: PI; black line: set point of MST).

Figure 13. MST when unpredictable disturbance occurs (blue line: OFAERMPC; green line: IMPC;
red line: PI).

Case 3. Plant behavior changes

The real dynamic property of MST system may deviate from the designed one due to aging of
equipment, which may cause performance degradation of the control system. The objective of this
control simulation is to test the control performance of OFAERMPC strategy when an unknown change
of dynamic property of controlled system occurs.
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Simulation condition: initial MST and valve position of attemperator is 600 ◦C and 75.5%,
at t = 2000 s unpredictable disturbance occurs, the on-site operating data of unit load W and Ti are
used as the input variables of the simulation system, shown as Figure 11.

OFAERMPC, PI and IMPC control strategies are employed in this simulation, the corresponding
control parameters are set the same as those in Case 1.

The control simulation results are shown in Figures 14 and 15 and Table 6. They indicate that
control performance of all the three control strategies get worse in case of plant behavior change.
Among them, the performance degradation of OFAERMPC is smaller than that of PI after t = 2000 s.
Compared with the lines in Figures 12 and 13, due to the restriction of control action getting worse
of OFAERMPC regulation is more serious than that of PI regulation when t = 5000–6000 s and
t = 7500–8500 s, the robustness of OFAERMPC is better for the other time; the trend of getting worse
for IMPC is obvious, and oscillation aggravates when the process approaches the steady state. PI, IMPC
and OFAERMPC can meet the requirement for control variable restraint when dynamic property of
MST system changes. Regarding the control performance, OFAERMPC has the similar robustness
to PI, and robustness of IMPC is the poorest. From the perspective of online computational burden:
the required calculation time of OFAERMPC is larger than that of the PI controller, but much less
than that of IMPC. In summary, this control simulation illustrates the proposed OFAERMPC achieves
a satisfied control performance and applicability for real-time control when strong plant behavior
change occurs.

Table 6. Three control methods performance after an unknown behavior change in Case 3.

PI IMPC OFAERMPC

Performance index (unchanged behavior) 5.36 0.88 0.68
Performance index (changed behavior) 7.17 3.32 2.28

Total Simulation time 0.23 10.36 0.98

Figure 14. MST for an unknown change of dynamic property of controlled system (blue line:
OFAERMPC; green line: IMPC; red line: PI; black line: set point of MST).



Energies 2020, 13, 3775 21 of 24

Figure 15. Valve position for an unknown change of dynamic property of controlled system (blue line:
OFAERMPC; green line: IMPC; red line: PI).

6. Conclusions

Due to large thermal inertia, high nonlinearity and various unpredictable disturbances, the MST
system is challenging to regulate with guaranteeing robust stability and less online computational
effort. This paper presents a novel offline RMPC approach based on zonotope-type uncertain model,
which acquires the following contributions:

1. In the offline design stage, an explicit RMPC control law design method with improved
convergence is proposed by introducing two extra parameters;

2. Based on the nominal model of zonotope, a manipulated variable target observer is developed to
make control results no offset exists.

To demonstrate the effectiveness of the proposed OFAERMPC, three control simulations of MST
system are conducted. Compared with standard AEMPC, the computation burden in offline design
stage of OFAERMPC largely reduces with a simpler subspace partition. In addition, as for control
performance, the proposed OFAERMPC achieves the least dynamic deviation, and provides satisfied
robustness with less online computational burden, which is useful to overcome the most urgent
concern in thermal process control practice.
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Abbreviations

The following abbreviations are used in this manuscript:

AEMPC Approximated explicit model predictive control
CFPP Coal-fired power plant
MIMO Multiple inputs multiple outputs
MPC Model predictive control
MST Main steam temperature
NN Neural network
OFAERMPC Offset-free approximated explicit robust model predictive control
PWA Piecewise affine
PID Proportion integration differentiation
RMPC Robust model predictive control
SISO Single input single output
SMI Set membership identification
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