
energies

Article

A Canopen-Based Gateway and Energy Monitoring
System for Electric Bicycles

Van-Tung Bui 1, Chyi-Ren Dow 1,* , Yu-Chi Huang 1, Pei Liu 2 and Vu Duc Thai 3

1 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724,
Taiwan; bvtung@mail.fcu.edu.tw (V.-T.B.); M0328107@mail.fcu.edu.tw (Y.-C.H.)

2 Department of Transportation and Logistics, Feng Chia University, Taichung 40724, Taiwan;
peiliu@mail.fcu.edu.tw

3 Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology,
Thai Nguyen 24000, Vietnam; vdthai@ictu.edu.vn

* Correspondence: crdow@mail.fcu.edu.tw

Received: 21 June 2020; Accepted: 20 July 2020; Published: 22 July 2020
����������
�������

Abstract: The limitation of battery capacity is a cause of range anxiety that reduces the wide use of
electric bicycles (e-bikes). Therefore, many works have developed systems that provide assistance to
cyclists to deal with the range anxiety problem. However, these systems may have limited applications
since they can only work with the e-bike manufacturers’ hardware and communication protocols.
This paper proposes an energy monitoring system (EMS) for e-bikes, which is based on EnergyBus,
a standardized hardware and communication protocol for e-bikes. EnergyBus standard is based on
controller area network (CAN) bus and CANopen protocols. EMS comprises a gateway connected to
EnergyBus of e-bike and an EMS application installed on a smart device that connects to the gateway
via Bluetooth. The gateway provides CAN bus monitoring and CANopen device data access services
to the smart device. These services are modeled to determine gateway parameters to ensure the
efficient performance of the gateway and to keep the working status of the monitored e-bike safe.
The EMS application provides the cyclist information about battery status, rider efforts, and other
related information such as distance and speed. Experimental results show that the proposed gateway
can monitor data in real-time and ensure monitored system safety.

Keywords: CAN bus; CANopen; EnergyBus; e-bike; gateway; energy monitoring

1. Introduction

Transportation has a high impact on issues of air pollution, energy security, and global warming.
According to [1], combustion engine vehicles produce 25% of greenhouse gas emissions. Especially,
this impact is even higher in the city where there is a high density of vehicles. This has spiked interest in
research to develop electric vehicles (EVs) to alter the traditional means of transportation. In particular,
electric bicycles (e-bikes) have many advantages compared to others. An e-bike is a traditional bicycle
integrated with a battery unit and an electric motor to assist the cyclist while pedaling. With lightweight
and small footprint characteristics, e-bikes are the greenest vehicles among EVs. According to [2],
e-bikes are less energy consuming and carbon-dioxide producing than other types of vehicles. With the
power-assisted pedal, riding an e-bike can reduce physical effort yet still improve the health of the
rider, thus attracting people of every age to the physical activity of e-bike cycling.

Despite the advantages, it generally takes more than two hours to fully charge a battery. Such a
long waiting time may be unbearable for impatient users. In addition, the current limited battery
capacity limits the travel range of an e-bike with one single charge. Therefore, range anxiety is a big
issue reducing the wide use of e-bikes. To alleviate the range anxiety, a human–machine interface

Energies 2020, 13, 3766; doi:10.3390/en13153766 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0978-9576
http://www.mdpi.com/1996-1073/13/15/3766?type=check_update&version=1
http://dx.doi.org/10.3390/en13153766
http://www.mdpi.com/journal/energies

Energies 2020, 13, 3766 2 of 19

(HMI), which states the battery status (such as remaining capacity, state of health) and the estimated
range autonomy, is an indispensable component of e-bikes. However, due to low computing capacity
and poor connectivity characteristics of the electronic system of e-bikes, the information shown on the
HMI is generally inaccurate and not useful for inexperienced cyclists. Consequently, existing works
have developed systems using smartphones to connect with e-bikes to provide assistance to cyclists,
such as speed advisor [3], route guidance, range prediction [4], etc. In addition, the data collected
from monitoring the e-bike battery in the real-world operating conditions can be used to improve the
accuracy of battery status prediction [5]. Therefore, the interface device, which can be called the gateway
connecting the smartphone with the e-bike, plays an important role. However, previous gateways were
seldom designed for e-bikes equipped with electronic devices using a standardized communication.

Each e-bike manufacturer has his own hardware design, resulting in a high maintenance cost.
It is also hard to build public charger stations suitable for various types of e-bike batteries. To address
this issue, EnergyBus and CAN in Automation (CiA) organizations have proposed a standard for
the electronic components of e-bikes, called EnergyBus standard [6–8], which is based on CANopen
protocol [9] and specified in CiA454 document named ‘CANopen application profile for energy
management systems’ [10]. CiA454 defines communication protocols, device profiles, and a unified
connector for e-bike electronic devices connected by a CAN network. However, the standard gateway
profile of the EnergyBus application is still under development. Although CiA has specified a standard
for the gateway [11], designing an efficient gateway with low cost and ensuring system safety is still a
big challenge.

In this paper, an energy monitoring system (EMS) for e-bikes based on EnergyBus is proposed.
The system allows cyclists to use a smart device to obtain information about battery status, rider efforts,
and other related information such as distance and speed from their e-bike. In addition, the rider’s
trip is also tracked using the built-in GPS of the smart device. Moreover, all the information is saved
in the smart device’s storage for the riders to review their physical activities. The EMS consists of
an EMS App installed on a smart device and a CANopen-based gateway connected to the e-bike’s
EnergyBus. The EMS App communicates with the gateway through Bluetooth. The gateway works
on both data link layer and application layer of the data transmission model, providing CAN bus
monitoring and CANopen device data access services to the smart device, respectively. The design
of the gateway is proposed to ensure the performance of data monitoring and the transparency of
data access for the smart device while keeping the e-bike electronic system safe. A system prototype
is implemented to prove the feasibility and performance of the system. Experimental results show
that the proposed gateway based on a low-cost microcontroller can monitor data in real-time without
losing data and ensure safety of the monitored system. The rest of this paper is organized as follows:
Section 2 discusses existing works. Section 3 defines the problem of EMS and proposes our design to
solve the problem. System implementation and prototype are demonstrated in Section 4. Experimental
results are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Several smartphone-based systems have been developed for riders to improve the cycling
experience. In these systems, an interface device between e-bike and smartphone is required. In [3],
the authors proposed a wind-aware speed advisory system for e-bikes. The system continuously
monitors e-bike speed. When e-bikes are approaching a signaled intersection, the system communicates
with the traffic light controller via the infrastructure-to-vehicle communications to receive the current
traffic light state and wind information. Based on the information received, the system recommends
the optimal speed for cyclists to avoid high-power consumption scenarios (i.e., having to stop and start
at the intersections due to red traffic light signals), thus reducing the energy consumption of the e-bike.
In [4], a mobile cockpit system is presented to provide useful information to cyclists such as the battery
state of charge (SoC), battery state of health (SoH), range prediction, and route guidance. The system
collects information about the battery state, cyclist’s efforts (cadence and torque), route, and weather to

Energies 2020, 13, 3766 3 of 19

build cyclist’s profile. The range autonomy prediction is calculated based on the current battery state,
route taken, weather, and cyclist’s profile. In order to allow smartphones to be able to monitor the
e-bike’s devices, interface devices are needed. However, the aforementioned works did not take into
account the importance of designing interface devices.

Several studies have considered the design and implementation of interface devices. In [12],
the authors introduced an analysis of e-bike data usage collected through the WeBike project to identify
riders’ behavior. The data include e-bike trips and battery status, which are collected by smartphone in
real-time and are uploaded to the server whenever the smartphone is connected to the Internet. For the
smartphone to be able to obtain the battery status, an interface device, a phidget board [13], is used for
communication between the smartphone and the battery monitoring sensors. Song et al. [14] designed
a novel system to monitor e-bike battery using smartphones. The system consists of a battery control
unit and an Android client. The battery control unit monitors the battery status (temperature, voltage,
current, SoC, SoH) and controls battery charging and discharging processes. The Android client can
receive the battery status and send control commands to the battery control unit via Wi-Fi. In [15],
the authors proposed a smart e-bike monitoring system to monitor the data about power assistance
level and location. The system includes an interface board, a smartphone, and a server. The interface
board directly monitors the assistance level and sends it to the smartphone via the universal serial
bus. The smartphone uploads the data to the server for data analysis. However, these studies may
have only limited applications since they can only work with the manufacturers’ hardware and
communication protocols.

In [16], an Internet of Thing (IoT)-based cycling training solution is proposed. A trainer can
monitor information about cyclist’s activities (such as speed, cadence, and power generated by the
cyclist) online through a Web application. This information is published by hardware installed on
the traditional bicycle. The hardware including sensors (speed, cadence, and force) and an interface
device between sensors and server was designed. The interface device is responsible for collecting
and processing data from sensors, which it then sends to the server via the internet. In this system,
the interface device can be applied to regular bicycles, however, it is not suitable for e-bikes which
already have those appropriate sensors installed.

In [17], an architecture for e-bikes control is proposed. The system includes e-bike electronic
devices, a gateway, and a smartphone. The e-bike devices are connected by CAN bus. The gateway
acts as a central device and has CAN bus and Bluetooth interfaces for communication between the
e-bike devices and the smartphone or joystick. The gateway periodically transmits messages which
carry the data about battery SoC, motor temperature, e-bike speed, etc. to the application installed on
the smartphone. The smartphone application presents the information received from the gateway to
the rider.

Table 1 shows the feature comparison of prior works described above for e-bike monitoring with
our system. For monitored data, the prior works only collect limited kinds of data, such as speed, battery
state, assistance level, cyclist effort, and temperature but our system can access any data from the e-bike
electronic system, such as the status of the energy sources to the users. For communication protocols,
the above systems are based on IEEE 802.11p, Bluetooth, USB, WiFi, UART, MQTT, and CAN [3,14–17],
but our system is based on both Enerygybus/CANopen/CAN and Bluetooth. Our design ensures that
the gateway can be used for a smart device to monitor any CANopen system in real-time without
affecting the functionality of the monitored system.

On the other hand, CANopen communication protocol complements the application layer for
CAN bus. CANopen specifications are provided by CiA301 [9] and CiA302 [18]. A CANopen
device is modeled into three components, including communication units, object dictionary (OD),
and application program. Communication units provide communication service objects, such as
network management (NMT), process data object (PDO), service data object (SDO), synchronization
(SYNC), emergency (EMCY), and heartbeat (HB). Each communication object is identified by a CAN-ID.
The OD is the interface between the application and the communication services. The OD stores

Energies 2020, 13, 3766 4 of 19

information about the configuration of services for communication units and variables of the node.
Each object in the OD is addressed by a 16-bit index and an 8-bit sub-index. Based on the CANopen core
defined in CiA301 and CiA302, some CiA draft standards define additional services for CANopen, such
as CiA305 [19] for node-ID assigning services and CiA320 [20] for sleep/wake-up services. CiA also
defines standards for CANopen application profiles such as CiA454 [10] for energy management
system of EnergyBus. The CANopen gateway can be developed based on specifications CiA309 [11],
CiA302-7 [18], CiA315 [21], and CiA457 [22].

Table 1. Comparison of prior works for e-bike monitoring applications and our system.

Features Monitored Data Communication Protocol

Reference [3] Speed IEEE 802.11p/Bluetooth

Reference [4] Battery state
Cyclist effort Bluetooth

Reference [12] Battery state USB
Reference [14] Battery state Wi-Fi
Reference [15] Assistance level UART

Reference [16] Speed
Cyclist effort USB/MQTT

Reference [17]
Battery state
Temperature

Speed

CAN
Bluetooth

Our system Full electronic system data EnergyBus/CANopen/CAN
Bluetooth

3. Energy Monitoring System

The proposed EMS for EnergyBus-based e-bikes is discussed in this section. Section 3.1 presents
overview of the EMS. Section 3.2 shows the EMS architecture in which the system is divided by layers,
such as data link, CANopen services, OD, and EMS App. The details of layers are then specified in
Sections 3.3–3.6.

3.1. System Overview

This section presents an overview of the proposed EMS for e-bikes is in Figure 1. The EMS consists
of an e-bike with its currently installed EnergyBus-based electronic system, a gateway connected to
the EnergyBus, and an EMS application installed on a smart device, which connects to the gateway
via Bluetooth. The aim of EMS is to obtain energy data from the EnergyBus devices of the e-bike as
well as the current location from the GPS sensor in the smart device and provide useful energy-related
information to the user. The energy data, location, and timestamp are then combined into tracking
logs that may be useful for further trip analysis.

The electronic system of an EnergyBus-based e-bike [23] includes a motor control unit (MCU),
a battery management system (BMS), a braking sensor unit (BSU), a pedal sensor unit (PSU),
a human-machine interface unit (HMI), and an EnergyBus controller (EBC). These devices use
the EnergyBus protocol to communicate and can be called nodes of the network. When the system is
running, nodes use the PDO services to transmit/receive process data to/from other nodes. The PDOs
are synchronously transmitted after each SYNC message that is broadcasted by the EBC. In addition,
the EBC uses the NMT services to manage the network and uses the SDO services to access data in
the OD of nodes. The EBC also is an SDO manager that provides the SDO channels to other nodes,
allowing them to access each other’s OD.

In our EMS, the energy-related information, including the battery status and the cyclist’s effort,
is provided by the BMS and PSU, transferred through the CANopen network by means of the PDOs,
and forwarded to the EMS application by the gateway. Due to incomplete energy information in the
process data, the EMS application needs to access the OD of the nodes (i.e., BMS) for further energy
information. The process is completed with the help of the gateway.

Energies 2020, 13, 3766 5 of 19

Energies 2020, 13, x FOR PEER REVIEW 5 of 19

Figure 1. System overview.

In our EMS, the energy-related information, including the battery status and the cyclist’s effort,
is provided by the BMS and PSU, transferred through the CANopen network by means of the PDOs,
and forwarded to the EMS application by the gateway. Due to incomplete energy information in the
process data, the EMS application needs to access the OD of the nodes (i.e., BMS) for further energy
information. The process is completed with the help of the gateway.

The heart of the proposed EMS is the communication gateway, which enables message exchange
between the e-bike and the smart device. The gateway is installed on the e-bike and has two
interfaces: the CANopen interface, connected to the EnergyBus of e-bike and the Bluetooth interface,
enabling wireless connection with the smart device. The gateway forwards the PDO messages which
transfer energy-related data from the CAN bus to EMS App. In addition, the gateway provides the
SDO services for the EMS App to access data from the OD of any CANopen node. This data access
process increases bus load of the CAN bus. If bus load is increased too high, it will increase the
message latency causing the loss of messages which affects the correct functionality of the e-bike
electronic system. Therefore, the design of gateway must not only ensure data exchange performance
but also ensure that the CAN bus load does not increase excessively.

The gateway is an embedded device, including a controller which can efficiently communicate
with the CAN bus and RS232, and a Bluetooth module interfacing with the controller through RS232.
Figure 2 shows the hardware block diagram of the gateway.

Figure 2. Hardware block diagram.

3.2. EMS Architecture

Figure 3 shows the system architecture of the EMS. At the Bluetooth side, the CANopen is also
employed for communication between the smart device and gateway at application layer. Due to the

Figure 1. System overview.

The heart of the proposed EMS is the communication gateway, which enables message exchange
between the e-bike and the smart device. The gateway is installed on the e-bike and has two interfaces:
the CANopen interface, connected to the EnergyBus of e-bike and the Bluetooth interface, enabling
wireless connection with the smart device. The gateway forwards the PDO messages which transfer
energy-related data from the CAN bus to EMS App. In addition, the gateway provides the SDO
services for the EMS App to access data from the OD of any CANopen node. This data access process
increases bus load of the CAN bus. If bus load is increased too high, it will increase the message latency
causing the loss of messages which affects the correct functionality of the e-bike electronic system.
Therefore, the design of gateway must not only ensure data exchange performance but also ensure that
the CAN bus load does not increase excessively.

The gateway is an embedded device, including a controller which can efficiently communicate
with the CAN bus and RS232, and a Bluetooth module interfacing with the controller through RS232.
Figure 2 shows the hardware block diagram of the gateway.

Energies 2020, 13, x FOR PEER REVIEW 5 of 19

Figure 1. System overview.

In our EMS, the energy-related information, including the battery status and the cyclist’s effort,
is provided by the BMS and PSU, transferred through the CANopen network by means of the PDOs,
and forwarded to the EMS application by the gateway. Due to incomplete energy information in the
process data, the EMS application needs to access the OD of the nodes (i.e., BMS) for further energy
information. The process is completed with the help of the gateway.

The heart of the proposed EMS is the communication gateway, which enables message exchange
between the e-bike and the smart device. The gateway is installed on the e-bike and has two
interfaces: the CANopen interface, connected to the EnergyBus of e-bike and the Bluetooth interface,
enabling wireless connection with the smart device. The gateway forwards the PDO messages which
transfer energy-related data from the CAN bus to EMS App. In addition, the gateway provides the
SDO services for the EMS App to access data from the OD of any CANopen node. This data access
process increases bus load of the CAN bus. If bus load is increased too high, it will increase the
message latency causing the loss of messages which affects the correct functionality of the e-bike
electronic system. Therefore, the design of gateway must not only ensure data exchange performance
but also ensure that the CAN bus load does not increase excessively.

The gateway is an embedded device, including a controller which can efficiently communicate
with the CAN bus and RS232, and a Bluetooth module interfacing with the controller through RS232.
Figure 2 shows the hardware block diagram of the gateway.

Figure 2. Hardware block diagram.

3.2. EMS Architecture

Figure 3 shows the system architecture of the EMS. At the Bluetooth side, the CANopen is also
employed for communication between the smart device and gateway at application layer. Due to the

Figure 2. Hardware block diagram.

3.2. EMS Architecture

Figure 3 shows the system architecture of the EMS. At the Bluetooth side, the CANopen is also
employed for communication between the smart device and gateway at application layer. Due to the
Bluetooth/RS232 working at physical layer, a data link layer (DLL) is added between these two layers.
Thus, the model of all devices in the EMS is the model of CANopen devices that includes the CAN
message transmitter, CANopen stack, object dictionary, and application program.

Energies 2020, 13, 3766 6 of 19

Energies 2020, 13, x FOR PEER REVIEW 6 of 19

Bluetooth/RS232 working at physical layer, a data link layer (DLL) is added between these two layers.
Thus, the model of all devices in the EMS is the model of CANopen devices that includes the CAN
message transmitter, CANopen stack, object dictionary, and application program.

Figure 3. Energy monitoring system (EMS) architecture.

The gateway enables data exchange between a CANopen system and a smart device via
Bluetooth. As introduced in Section 3.1, the gateway provides for the PDO forwarding and OD
accessing services. Because the gateway must not understand the process data objects of the
monitored system, the first service is done at DLL where the performance is higher than at the
application layer. In this service, one-way messages coming from the CAN bus are monitored,
filtered, and forwarded to the RS232 for smart devices. The filter ignores the unwanted CAN
messages which affect the performance of smart device. Therefore, a smart device can receive any
CAN message it needs. Then, the messages are processed at its CANopen layer. For example, smart
device can use the PDO services to receive real-time process data from nodes. Thus, the PDO
forwarding service is changed into a CAN messages forwarding service. The second service is done
at the CANopen layer. The smart device uses the SDO services to access the OD of any node
(including gateway). With this design, the gateway can limit the influence of smart device to an e-
bike electronic system, and the gateway can be used for the smart device to monitor any CANopen
system.

3.3. Data Link Layer

The main function of the DLL is the framing function for transmitting the CAN messages
between smartphone and gateway. To transmit CAN messages through the Bluetooth/RS232, CAN-
UART frames are used. Each CAN-UART frame carries a CAN message. The DLL encapsulates the
CAN message into a CAN-UART frame and vice versa. Each CAN message contains an 11-bit
message identifier (ID) (8 low bits IDL and 3 high bits IDH), a 4-bit message length (DLC) and up to
8 data bytes [24]. The format of the CAN-UART frame, as shown in Figure 4, consists of a header, a
CAN message, and 1-byte checksum. The length of the header will be discussed in Section 3.5.

Figure 4. Frame format for the data link layer (DLL).

Figure 5 shows the data flows in the DLL of the gateway. There is one flow for CAN message
forwarding service and one flow between the DLL and CANopen layer for the SDO services. For the
first flow, the DLL receives every CAN RX message from the CAN bus. Each message then goes to
the filter; only messages with an allowed ID (i.e., PDO messages) can pass to queue up in the receive
(RX) queue. Next, each message is de-queued from the RX queue and packed into the CAN-UART

Figure 3. Energy monitoring system (EMS) architecture.

The gateway enables data exchange between a CANopen system and a smart device via Bluetooth.
As introduced in Section 3.1, the gateway provides for the PDO forwarding and OD accessing services.
Because the gateway must not understand the process data objects of the monitored system, the first
service is done at DLL where the performance is higher than at the application layer. In this service,
one-way messages coming from the CAN bus are monitored, filtered, and forwarded to the RS232
for smart devices. The filter ignores the unwanted CAN messages which affect the performance of
smart device. Therefore, a smart device can receive any CAN message it needs. Then, the messages
are processed at its CANopen layer. For example, smart device can use the PDO services to receive
real-time process data from nodes. Thus, the PDO forwarding service is changed into a CAN messages
forwarding service. The second service is done at the CANopen layer. The smart device uses the SDO
services to access the OD of any node (including gateway). With this design, the gateway can limit the
influence of smart device to an e-bike electronic system, and the gateway can be used for the smart
device to monitor any CANopen system.

3.3. Data Link Layer

The main function of the DLL is the framing function for transmitting the CAN messages between
smartphone and gateway. To transmit CAN messages through the Bluetooth/RS232, CAN-UART
frames are used. Each CAN-UART frame carries a CAN message. The DLL encapsulates the CAN
message into a CAN-UART frame and vice versa. Each CAN message contains an 11-bit message
identifier (ID) (8 low bits IDL and 3 high bits IDH), a 4-bit message length (DLC) and up to 8 data
bytes [24]. The format of the CAN-UART frame, as shown in Figure 4, consists of a header, a CAN
message, and 1-byte checksum. The length of the header will be discussed in Section 3.5.

Energies 2020, 13, x FOR PEER REVIEW 6 of 19

Bluetooth/RS232 working at physical layer, a data link layer (DLL) is added between these two layers.
Thus, the model of all devices in the EMS is the model of CANopen devices that includes the CAN
message transmitter, CANopen stack, object dictionary, and application program.

Figure 3. Energy monitoring system (EMS) architecture.

The gateway enables data exchange between a CANopen system and a smart device via
Bluetooth. As introduced in Section 3.1, the gateway provides for the PDO forwarding and OD
accessing services. Because the gateway must not understand the process data objects of the
monitored system, the first service is done at DLL where the performance is higher than at the
application layer. In this service, one-way messages coming from the CAN bus are monitored,
filtered, and forwarded to the RS232 for smart devices. The filter ignores the unwanted CAN
messages which affect the performance of smart device. Therefore, a smart device can receive any
CAN message it needs. Then, the messages are processed at its CANopen layer. For example, smart
device can use the PDO services to receive real-time process data from nodes. Thus, the PDO
forwarding service is changed into a CAN messages forwarding service. The second service is done
at the CANopen layer. The smart device uses the SDO services to access the OD of any node
(including gateway). With this design, the gateway can limit the influence of smart device to an e-
bike electronic system, and the gateway can be used for the smart device to monitor any CANopen
system.

3.3. Data Link Layer

The main function of the DLL is the framing function for transmitting the CAN messages
between smartphone and gateway. To transmit CAN messages through the Bluetooth/RS232, CAN-
UART frames are used. Each CAN-UART frame carries a CAN message. The DLL encapsulates the
CAN message into a CAN-UART frame and vice versa. Each CAN message contains an 11-bit
message identifier (ID) (8 low bits IDL and 3 high bits IDH), a 4-bit message length (DLC) and up to
8 data bytes [24]. The format of the CAN-UART frame, as shown in Figure 4, consists of a header, a
CAN message, and 1-byte checksum. The length of the header will be discussed in Section 3.5.

Figure 4. Frame format for the data link layer (DLL).

Figure 5 shows the data flows in the DLL of the gateway. There is one flow for CAN message
forwarding service and one flow between the DLL and CANopen layer for the SDO services. For the
first flow, the DLL receives every CAN RX message from the CAN bus. Each message then goes to
the filter; only messages with an allowed ID (i.e., PDO messages) can pass to queue up in the receive
(RX) queue. Next, each message is de-queued from the RX queue and packed into the CAN-UART

Figure 4. Frame format for the data link layer (DLL).

Figure 5 shows the data flows in the DLL of the gateway. There is one flow for CAN message
forwarding service and one flow between the DLL and CANopen layer for the SDO services. For the
first flow, the DLL receives every CAN RX message from the CAN bus. Each message then goes to
the filter; only messages with an allowed ID (i.e., PDO messages) can pass to queue up in the receive
(RX) queue. Next, each message is de-queued from the RX queue and packed into the CAN-UART
frame. Each byte of the CAN-UART frame is then sent to UART transmit (TX) buffer to wait to be
transmitted. Finally, each CAN message is transmitted to the EMS App’s DLL and then is passed to the
CANopen layer. In short, data of the CANopen devices on the CAN bus side have been transmitted to
the EMS App.

Energies 2020, 13, 3766 7 of 19

Energies 2020, 13, x FOR PEER REVIEW 7 of 19

frame. Each byte of the CAN-UART frame is then sent to UART transmit (TX) buffer to wait to be
transmitted. Finally, each CAN message is transmitted to the EMS App’s DLL and then is passed to
the CANopen layer. In short, data of the CANopen devices on the CAN bus side have been
transmitted to the EMS App.

For the second flow, first, the request message is sent from the smart device and enters the
gateway via Bluetooth. Request messages are queued in the TX queue before going to the CANopen
services layer. The CANopen layer then completes the SDO services on the CAN bus side with the
target device. Finally, the response message returned from the CANopen layer is queued up in the
RX queue to wait to be transmitted to the smart device.

The gateway must control the throughput of the second flow to keep the CAN bus load in a safe
value. Therefore, the CAN bus load is a feedback value of the CANopen layer. A bus-load-monitoring
module is added to collate statistics of all messages coming from the CAN bus to calculate the
immediate CAN bus load.

Figure 5. Data flows in DLL of the gateway.

Since many devices on the e-bike can concurrently send messages to the CAN bus, we designed
a message-acceptance filter based on the message ID for letting only messages with specific allowed
IDs to go through the gateway. Based on our monitoring purpose, in the configuration phase, we
defined an array containing IDs of messages that we wanted to monitor (e.g., battery status messages,
cyclist effort messages). This filter mechanism restricts the flood of data from multiple unwanted
devices which cause an overflow in gateway.

An object, the RXFilter, is defined in the gateway’s OD to store filter configuration. As shown in
Figure 6, the RXFilter is an array with 64 elements. Since an expedited SDO can transfer up to 4 bytes
of data, we defined each element of the RXFilter as 32 bits. Hence, the filter can handle a system with
2048 specific CAN-IDs (all possible cases of 11-bit message IDs). For configuration, if the ith bit in the
RXFilter is set to 1, the CAN messages with ID i can go through the filter, as defined in Table 2. When
the gateway receives a CAN message that has ID i, the indexes of ith bit in the RXFilter are located at
[row][column], where row = i div 32 and column= i mod 32. For example, for message ID i = 35, the filter
bit is located at the RXFilter[1],[3]. This conversion allows a fast response of the filter.

Figure 6. Structure of CAN RX message filter object.

Figure 5. Data flows in DLL of the gateway.

For the second flow, first, the request message is sent from the smart device and enters the gateway
via Bluetooth. Request messages are queued in the TX queue before going to the CANopen services
layer. The CANopen layer then completes the SDO services on the CAN bus side with the target device.
Finally, the response message returned from the CANopen layer is queued up in the RX queue to wait
to be transmitted to the smart device.

The gateway must control the throughput of the second flow to keep the CAN bus load in a safe
value. Therefore, the CAN bus load is a feedback value of the CANopen layer. A bus-load-monitoring
module is added to collate statistics of all messages coming from the CAN bus to calculate the
immediate CAN bus load.

Since many devices on the e-bike can concurrently send messages to the CAN bus, we designed a
message-acceptance filter based on the message ID for letting only messages with specific allowed IDs
to go through the gateway. Based on our monitoring purpose, in the configuration phase, we defined
an array containing IDs of messages that we wanted to monitor (e.g., battery status messages, cyclist
effort messages). This filter mechanism restricts the flood of data from multiple unwanted devices
which cause an overflow in gateway.

An object, the RXFilter, is defined in the gateway’s OD to store filter configuration. As shown in
Figure 6, the RXFilter is an array with 64 elements. Since an expedited SDO can transfer up to 4 bytes
of data, we defined each element of the RXFilter as 32 bits. Hence, the filter can handle a system with
2048 specific CAN-IDs (all possible cases of 11-bit message IDs). For configuration, if the ith bit in
the RXFilter is set to 1, the CAN messages with ID i can go through the filter, as defined in Table 2.
When the gateway receives a CAN message that has ID i, the indexes of ith bit in the RXFilter are
located at [row][column], where row = i div 32 and column= i mod 32. For example, for message ID i = 35,
the filter bit is located at the RXFilter[1],[3]. This conversion allows a fast response of the filter.

Energies 2020, 13, x FOR PEER REVIEW 7 of 19

frame. Each byte of the CAN-UART frame is then sent to UART transmit (TX) buffer to wait to be
transmitted. Finally, each CAN message is transmitted to the EMS App’s DLL and then is passed to
the CANopen layer. In short, data of the CANopen devices on the CAN bus side have been
transmitted to the EMS App.

For the second flow, first, the request message is sent from the smart device and enters the
gateway via Bluetooth. Request messages are queued in the TX queue before going to the CANopen
services layer. The CANopen layer then completes the SDO services on the CAN bus side with the
target device. Finally, the response message returned from the CANopen layer is queued up in the
RX queue to wait to be transmitted to the smart device.

The gateway must control the throughput of the second flow to keep the CAN bus load in a safe
value. Therefore, the CAN bus load is a feedback value of the CANopen layer. A bus-load-monitoring
module is added to collate statistics of all messages coming from the CAN bus to calculate the
immediate CAN bus load.

Figure 5. Data flows in DLL of the gateway.

Since many devices on the e-bike can concurrently send messages to the CAN bus, we designed
a message-acceptance filter based on the message ID for letting only messages with specific allowed
IDs to go through the gateway. Based on our monitoring purpose, in the configuration phase, we
defined an array containing IDs of messages that we wanted to monitor (e.g., battery status messages,
cyclist effort messages). This filter mechanism restricts the flood of data from multiple unwanted
devices which cause an overflow in gateway.

An object, the RXFilter, is defined in the gateway’s OD to store filter configuration. As shown in
Figure 6, the RXFilter is an array with 64 elements. Since an expedited SDO can transfer up to 4 bytes
of data, we defined each element of the RXFilter as 32 bits. Hence, the filter can handle a system with
2048 specific CAN-IDs (all possible cases of 11-bit message IDs). For configuration, if the ith bit in the
RXFilter is set to 1, the CAN messages with ID i can go through the filter, as defined in Table 2. When
the gateway receives a CAN message that has ID i, the indexes of ith bit in the RXFilter are located at
[row][column], where row = i div 32 and column= i mod 32. For example, for message ID i = 35, the filter
bit is located at the RXFilter[1],[3]. This conversion allows a fast response of the filter.

Figure 6. Structure of CAN RX message filter object.

Figure 6. Structure of CAN RX message filter object.

Energies 2020, 13, 3766 8 of 19

Table 2. Value definition of every RXFilter bit.

Name Default Value Value Description

Bit i 0
0 CAN RX message ID i is not acceptable

1 CAN RX message ID i is acceptable

3.4. CAN Message Forwarding Service Model

As discussed in Section 3.3, there are parameters for the gateway, namely, CAN bus load, header
length of CAN-UART frame, and RX queue length. To determine these parameters and to evaluate
the performance of the message forwarding service, the MM1 model [25] is used to model the CAN
message forwarding service in case the filter accepts all CAN messages. The arrival rate λ is the
number of CAN messages arriving at the CAN port of the gateway per second. The service rate µ is
the number of CAN messages departing to the Bluetooth port per second.

It is noted that we distinguish the concept of CAN message and CAN frame. Each CAN message
contains 11-bit message ID, 4-bit message length, and up to 8 data bytes, whereas each CAN frame is a
packet of a CAN message used to transmit the message through physical layer.

Assume that the monitored CANopen system uses n different CAN message IDs to transmit data
between nodes. Let fi be the rate of message mi (1 ≤ i ≤ n). The arrival rate λ can be calculated by

λ =
∑n

1
fi. (1)

Let Li (bits), LDi (0 ≤ LDi ≤ 8 bytes), and RI be the length of CAN frame mi, the data length of CAN
message mi, and the baud rate of CAN bus, respectively. The bus load α can be calculated by

α =

∑n
1 Li fi
RI

, (2)

where Li can be calculated by the worst case length of CAN frame mi [26].

Li = 47 + 8LDi +
⌊33 + 8LDi

4

⌋
= 55 + 10LDi. (3)

Let L (bits) and LD (0 ≤ LDi ≤ 8 bytes) be the average length of a CAN frame and the average data
length of a CAN message, respectively.

L =

∑n
1 Li fi∑n

1 fi
= 55 +

10
∑n

1 LDi fi∑n
1 fi

= 55 + 10LD. (4)

By combining calculations in Equation (4) for Equation (1), we have:

λ =

∑n
1 Li fi

55 + 10LD
(5)

λ =
αRI

55 + 10LD
(6)

The service process includes dequeuing, packaging, and transmitting. The dequeuing and
packaging are processed for the next CAN-UART frame while each byte of the current CAN-UART
frame is transmitted at the UART controller, assuming that the time for dequeuing and packaging
processes is less than that for the CAN-UART frame transmitting process. Therefore, the service rate µ
can be calculated by

µ =
1
ttr

, (7)

Energies 2020, 13, 3766 9 of 19

where ttr is the average time required to transmit a CAN-UART frame.

ttr =
l

Ro
Lmo, (8)

where Ro is the baud rate of UART, l is the length of a UART frame (e.g., l = 10 bits for 1 start bit, 8 data
bits, and 1 stop bit), and Lmo is the average length of a CAN-UART frame. As the CAN-UART frame
structure described in Section 3.3,

Lmo = Lheader + LD + 3. (9)

The stability condition of the MM1 queue is λ ≤ µ. Thus,

αRI

55 + 10LD
<

1
l

R0
Lmo

. (10)

Therefore,

Lmo <

(
55 + 10LD

)
Ro

αRIl
. (11)

The average length of the RX queue is Q

Q =
ρ2

1− ρ
=

(
λ
µ

)2

1− λ/µ
=

λ2

µ(µ− λ)
. (12)

In short, the bus-load-monitoring module can use Equations (2) and (3) to calculate the CAN bus
load α. In the design phase, header length of CAN-UART frame and length of RX queue are required.
For the header length, Lmo must be determined first by satisfying Equation (11), then, Lheader is found
by Equation (9). The RX queue length is estimated by Equation (12).

3.5. CANopen Layer

In this section, we discuss the CANopen services for the smart device. Figure 7 highlights two
main CANopen services of EMS: SDO and EMCY. The EMCY producer service is used for the gateway
to report its errors, if any, such as TX queue/RX queue overflow.

Energies 2020, 13, x FOR PEER REVIEW 9 of 19

where is the baud rate of UART, l is the length of a UART frame (e.g., l = 10 bits for 1 start bit, 8
data bits, and 1 stop bit), and is the average length of a CAN-UART frame. As the CAN-UART
frame structure described in Section 3.3, = + + 3 . (9)

The stability condition of the MM1 queue is λ ≤ µ. Thus,

55 + 10 < 1 . (10)

Therefore, < (55 + 10) . (11)

The average length of the RX queue is

= 1 − = ()1 − = (−) . (12)

In short, the bus-load-monitoring module can use Equations (2) and (3) to calculate the CAN bus
load α. In the design phase, header length of CAN-UART frame and length of RX queue are required.
For the header length, must be determined first by satisfying Equation (11), then, is
found by Equation (9). The RX queue length is estimated by Equation (12).

3.5. CANopen Layer

In this section, we discuss the CANopen services for the smart device. Figure 7 highlights two
main CANopen services of EMS: SDO and EMCY. The EMCY producer service is used for the
gateway to report its errors, if any, such as TX queue/RX queue overflow.

Figure 7. CANopen services of EMS.

The SDO services of the gateway include couples of the SDO server and SDO client to adapt
requests from the SDO clients of the smart device. Each couple works as a relay to serve an SDO
client. It may have a maximum of 127 nodes in a CANopen network. Therefore, the gateway needs
to provide 127 couples. The default channels are used for the SDO communication between the smart
device and gateway. In particular, the smart device can use the default SDO channel to communicate
with the desired node. The channels used for SDO communication between the gateway and nodes
on the CAN bus side are provided by dynamic SDO request service [18,27]. In the configuration
phase, the 127 couples are initialized as follows: the SDO server channels are assigned to default
channels of node IDs from 1 to 127 and the SDO client channels are assigned to invalid values. Each
SDO client channel of the gateway will be updated when the gateway serves an SDO client of the
smart device for the first time. There are not enough valid channels for all SDO clients of the gateway
at the same time, therefore, the gateway can use SDO release processes to release an SDO channel if
it cannot request a new channel.

These SDO services increase the CAN bus load α introduced in Section 3.4. The worst case is that
every CANopen node on the CAN bus side has only one default SDO channel, meaning that the SDO

Figure 7. CANopen services of EMS.

The SDO services of the gateway include couples of the SDO server and SDO client to adapt
requests from the SDO clients of the smart device. Each couple works as a relay to serve an SDO
client. It may have a maximum of 127 nodes in a CANopen network. Therefore, the gateway needs to
provide 127 couples. The default channels are used for the SDO communication between the smart
device and gateway. In particular, the smart device can use the default SDO channel to communicate
with the desired node. The channels used for SDO communication between the gateway and nodes on
the CAN bus side are provided by dynamic SDO request service [18,27]. In the configuration phase,
the 127 couples are initialized as follows: the SDO server channels are assigned to default channels of

Energies 2020, 13, 3766 10 of 19

node IDs from 1 to 127 and the SDO client channels are assigned to invalid values. Each SDO client
channel of the gateway will be updated when the gateway serves an SDO client of the smart device for
the first time. There are not enough valid channels for all SDO clients of the gateway at the same time,
therefore, the gateway can use SDO release processes to release an SDO channel if it cannot request a
new channel.

These SDO services increase the CAN bus load α introduced in Section 3.4. The worst case is
that every CANopen node on the CAN bus side has only one default SDO channel, meaning that the
SDO clients of gateway can only access nodes through the CANopen master (EBC). Then, if F is the
throughput of SDO commands sent from SDO clients of the smart device, the CAN bus load changes
from α to α′ as follows:

α′ = α+
4F ∗ LSDO

RI
= α+

4F ∗ (55 + 10 ∗ 8)
RI

= α+
540F

RI
, (13)

where LSDO is the maximum length of an SDO message.
In fact, we have the constraint that new CAN bus load should be less than M (maximum value for

bus load), that is,

α+
540F

RI
≤M (14)

F ≤ (M− α)
RI

540
. (15)

During the operation, the gateway periodically checks for and executes the SDO services if an
SDO request from the smart device is available. F is used to determine the SDO cycle 1/F at which the
gateway can send an SDO command to the system.

3.6. System Operation Flow

Figure 8 shows the operation flow of our EMS. First, the Bluetooth connection between the smart
device and gateway needs to be established. Then, at the first run time, the EMS App will configure
the filter of the gateway DLL. To configure the filter, the EMS App uses SDO services to update the
RXFilter object in the gateway’s OD. Finally, the EMS App can monitor, present, and record energy
data taken from the e-bike. The real-time energy information, including the battery status (such as the
remaining capacity, voltage, current, and temperature) and rider effort (such as the torque and pedal
speed), is located in the OD of the EMS App and updated automatically by the PDO service. Further
energy information about the detailed battery status (such as the state of health and cell voltage) is not
transmitted by the PDOs in the EnergyBus; therefore, the EMS App uses the SDO services to obtain
this information.

In the task of data presentation, the battery remaining time, instant range, and rider energy
consumption are also considered. Let Erm, Pcs be the battery remaining energy and the power
consumption, respectively. Erm and Pcs can be calculated as follows:

Erm = SoC ∗ SoH ∗ Er, (16)

Pcs = V ∗ I, (17)

where SoC (state of charge) is the battery remaining capacity in percentages, SoH is the state of health
of the battery in percentages, Er is the full energy capacity of the battery when it is manufactured, V is
the battery voltage, and I is the battery current. The remaining time Tr, of the battery can be calculated
as follows:

Tr =
Erm

Pcs
. (18)

Energies 2020, 13, 3766 11 of 19

The instant range d, based on the current e-bike speed v and battery remaining time Tr, can be
calculated as follows:

d = v ∗ Tr. (19)

Let Prd be the rider power and ∆t be the sampling period. The rider energy consumption Erd can
be given as follows:

Erd =
∑

Prd ∗ ∆t. (20)

Let Trd, ωpd be the torque and pedal speed, respectively. The rider power Prd can be given as
follows:

Prd =
Trd ∗ 2π ∗ωpd

60
. (21)

Energies 2020, 13, x FOR PEER REVIEW 10 of 19

clients of gateway can only access nodes through the CANopen master (EBC). Then, if F is the
throughput of SDO commands sent from SDO clients of the smart device, the CAN bus load changes
from α to α′ as follows: = α + 4 ∗ = α + 4 ∗ (55 + 10 ∗ 8) = α + 540 , (13)

where is the maximum length of an SDO message.
In fact, we have the constraint that new CAN bus load should be less than M (maximum value

for bus load), that is, α + 540 ≤ (14)

≤ (−) . (15)

During the operation, the gateway periodically checks for and executes the SDO services if an
SDO request from the smart device is available. F is used to determine the SDO cycle 1/F at which the
gateway can send an SDO command to the system.

3.6. System Operation Flow

Figure 8 shows the operation flow of our EMS. First, the Bluetooth connection between the smart
device and gateway needs to be established. Then, at the first run time, the EMS App will configure
the filter of the gateway DLL. To configure the filter, the EMS App uses SDO services to update the
RXFilter object in the gateway’s OD. Finally, the EMS App can monitor, present, and record energy
data taken from the e-bike. The real-time energy information, including the battery status (such as
the remaining capacity, voltage, current, and temperature) and rider effort (such as the torque and
pedal speed), is located in the OD of the EMS App and updated automatically by the PDO service.
Further energy information about the detailed battery status (such as the state of health and cell
voltage) is not transmitted by the PDOs in the EnergyBus; therefore, the EMS App uses the SDO
services to obtain this information.

Figure 8. Operation flow of EMS.

In the task of data presentation, the battery remaining time, instant range, and rider energy
consumption are also considered. Let Erm, Pcs be the battery remaining energy and the power
consumption, respectively. Erm and Pcs can be calculated as follows: = ∗ ∗ , (16) = ∗ , (17)

Figure 8. Operation flow of EMS.

4. System Implementation and Prototype

We implemented a gateway and an EMS App to realize the proposed EMS. The gateway prototype
includes a peripheral interface controller (PIC) 18F2680 40-MHz low-cost microcontroller and HM10
Bluetooth module, as shown in Figure 9. The PIC microcontroller is programed by a MPLAB X IDE [28]
with the C18 compiler [29]. The CANopenNode v1.10 [30], which is a CANopen open source program
for microcontrollers, is adopted to program the PIC18F2680. The HM10 Bluetooth module [31] is a
Bluetooth low energy module interfacing with the microcontroller and smartphone through the UART
serial communication and Bluetooth, respectively. The EMS App is implemented by an Android Studio
IDE. The EMS App prototype, as shown in Figure 10, includes aggregate monitor, battery monitor,
and history data report interfaces. The aggregate monitor interface is the main interface. The battery
monitor interface shows battery status in detail, and the history data report interface presents the
rider’s past physical activities. Riders can use the EMS for EnergyBus devices such as the battery
(Figure 11a), the battery and charger (in charging process) (Figure 11b), or the e-bike (Figure 11c).

Energies 2020, 13, 3766 12 of 19
Energies 2020, 13, x FOR PEER REVIEW 12 of 19

(a) (b)

Figure 9. Gateway prototypes. (a) Version 1.0. (b) Version 2.0.

(a) (b) (c)

Figure 10. EMS App prototypes. (a) Aggregate monitor, (b) battery monitor, (c) history data report.

(a) (b) (c)

Figure 11. System prototypes. (a) Battery monitoring, (b) battery charging monitoring, (c) e-bike
monitoring.

Table 3. Transmit process data objects (T-PDOs) of the EnergyBus system simulator.

Node’s Name TPDOs’ CAN-ID (hex) Length (bytes)

EBC
181 8
281 8

MCU 18A 8

Figure 9. Gateway prototypes. (a) Version 1.0. (b) Version 2.0.

Energies 2020, 13, x FOR PEER REVIEW 12 of 19

(a) (b)

Figure 9. Gateway prototypes. (a) Version 1.0. (b) Version 2.0.

(a) (b) (c)

Figure 10. EMS App prototypes. (a) Aggregate monitor, (b) battery monitor, (c) history data report.

(a) (b) (c)

Figure 11. System prototypes. (a) Battery monitoring, (b) battery charging monitoring, (c) e-bike
monitoring.

Table 3. Transmit process data objects (T-PDOs) of the EnergyBus system simulator.

Node’s Name TPDOs’ CAN-ID (hex) Length (bytes)

EBC
181 8
281 8

MCU 18A 8

Figure 10. EMS App prototypes. (a) Aggregate monitor, (b) battery monitor, (c) history data report.

Energies 2020, 13, x FOR PEER REVIEW 12 of 19

(a) (b)

Figure 9. Gateway prototypes. (a) Version 1.0. (b) Version 2.0.

(a) (b) (c)

Figure 10. EMS App prototypes. (a) Aggregate monitor, (b) battery monitor, (c) history data report.

(a) (b) (c)

Figure 11. System prototypes. (a) Battery monitoring, (b) battery charging monitoring, (c) e-bike
monitoring.

Table 3. Transmit process data objects (T-PDOs) of the EnergyBus system simulator.

Node’s Name TPDOs’ CAN-ID (hex) Length (bytes)

EBC
181 8
281 8

MCU 18A 8

Figure 11. System prototypes. (a) Battery monitoring, (b) battery charging monitoring,
(c) e-bike monitoring.

To demonstrate the monitoring functions of the EMS, we conducted two scenarios for battery
charging and battery discharging. In the charging monitoring scenario, we used an ST2 battery and a
charger manufactured by TD HiTech Energy Inc. The ST2 battery is a 48 V, 17 Ah, 814 Wh lithium-ion
battery. In the discharging monitoring scenario, we used a real e-bike equipped with the ST2 battery.
To evaluate the gateway, we simulated an EnergyBus e-bike system [23] that consists of nodes, such as
EBC, BMS, MCU, HMI, BSU, PSU, a light control unit, and a security unit, as shown in Figure 12.
We used Micorchip EVM boards APP001 and CANopenNode v1.10 to implement the nodes of the

Energies 2020, 13, 3766 13 of 19

CANopen system. The configuration of transmit-PDOs (TPDOs) in an EnergyBus system for each node
is described in Table 3. Each node has a heartbeat producer that produces a heartbeat message per
second. The EBC is the master node that manages the network and produces the SYNC for synchronous
TPDOs. The TPDOs are transmitted with every SYNC. Every byte in the data field of every TPDO is 0.
The CAN baud rate is 250 k baud.

Energies 2020, 13, x FOR PEER REVIEW 13 of 19

28A 8
38A 8

HMI 1C0 3

PSU
1CD 2
2CD 6

BSU
1CB 2
2CB 6

BMS
192 8
292 8
392 8

Light
1A6 8
2A6 8

Security 1C8 4
Gateway None -

Figure 12. EnergyBus system simulator.

5. Experimental Results

In this section, two main results are presented: (1) the evaluation of the gateway real-time
performance and safety features, and (2) the experimental results of the EMS application.

5.1. Real-Time Monitoring Performance of the Gateway

To determine the parameters of the gateway, including the RX queue length and the UART baud
rate, we simulated the relationship between the average data length and average RX queue length

 with the given CAN baud rate RI, UART baud rate Ro, and CAN bus load α, as shown in Figure 13.
The value of RI is 250 k. We set up three simulation experiments with three values of Ro, which were
115.2 k, 230.4 k, and 460.8 k, as illustrated in Figure 13a–c, respectively. It is noted that must be
limited with respect to memory available of the microcontroller. In the experiments, we let
be 3 bytes, let vary from 0 to 8 bytes, and tried to slightly increase the α from 10% until it reaches
100% or until approaches the upper bound, which can cause packet loss (in these experiments, the
upper bound was set to 300). is computed by Equation (12).

The experimental results in Figure 13 show that when decreases, increases, and vice
versa. With the UART baud rate of 460.8 k, which is larger than the CAN baud rate of 250 k, the
gateway always ensures monitoring a CAN bus load of 100%, as the value of is kept less than 1
(Figure 13c). However, with the UART baud rate at 115.2 k and 230.4 k, which are smaller than the
CAN baud rate of 250 k, the gateway can monitor a CAN bus load of 42% and 84%, as shown in
Figure 13a,b, respectively. The average queue length increases dramatically in comparison with bus
load and average data length. Therefore, the UART baud rate should be 460.8 k if that speed is
available in the Bluetooth module, otherwise, it should be 230.4 k since at this baud rate, the gateway

Figure 12. EnergyBus system simulator.

Table 3. Transmit process data objects (T-PDOs) of the EnergyBus system simulator.

Node’s Name TPDOs’ CAN-ID (hex) Length (bytes)

EBC
181 8

281 8

MCU

18A 8

28A 8

38A 8

HMI 1C0 3

PSU
1CD 2

2CD 6

BSU
1CB 2

2CB 6

BMS

192 8

292 8

392 8

Light
1A6 8

2A6 8

Security 1C8 4

Gateway None -

5. Experimental Results

In this section, two main results are presented: (1) the evaluation of the gateway real-time
performance and safety features, and (2) the experimental results of the EMS application.

Energies 2020, 13, 3766 14 of 19

5.1. Real-Time Monitoring Performance of the Gateway

To determine the parameters of the gateway, including the RX queue length and the UART baud
rate, we simulated the relationship between the average data length LD and average RX queue length
Q with the given CAN baud rate RI, UART baud rate Ro, and CAN bus load α, as shown in Figure 13.
The value of RI is 250 k. We set up three simulation experiments with three values of Ro, which were
115.2 k, 230.4 k, and 460.8 k, as illustrated in Figure 13a–c, respectively. It is noted that Q must be
limited with respect to memory available of the microcontroller. In the experiments, we let Lheader be
3 bytes, let LD vary from 0 to 8 bytes, and tried to slightly increase the α from 10% until it reaches 100%
or until Q approaches the upper bound, which can cause packet loss (in these experiments, the upper
bound was set to 300). Q is computed by Equation (12).

Energies 2020, 13, x FOR PEER REVIEW 14 of 19

can monitor a CAN bus load of 84%, which is larger than the usual recommended CAN bus load that
does not exceed 80%.

(a) (b)

(c)

Figure 13. Relationship between average RX queue length and average length of data with a
given CAN bus load α and UART baud rates Ro. (a) 115,200 baud, (b) 230,400 baud, (c) 460,800 baud.

To estimate the RX queue length more accurately, we conducted experiments comparing the
difference between average and maximum queue lengths at different bus loads. The average queue
length is computed in theory by Equation (12), whereas the maximum queue length is measured in
the real world. To obtain the real maximum queue length, we let the gateway continuously report
the value of maximum queue length, connected the gateway with the EnergyBus system simulator,
and monitored the maximum queue length value. We adjusted the bus load by changing the SYNC
cycle in the EBC. In this experiment, the average data length was fixed as 6.2, which is the average
data length of all messages in Table 3; the UART baud rate was set as 230.4 k and 460.8 k; the bus
load was increasing from 60%. As shown in Figure 14, when the baud rate was 460.8 k, the maximum
RX queue lengths were stable at one frame. The same stability is found with the maximum queue
length when the baud rate was 230.4 k. At each baud rate, the higher the set bus load, the smaller the
gap measured between the maximum and average queue lengths. At the maximum bus load that the
gateway can monitor, the average queue length is asymptotic to the maximum queue length.
Therefore, the RX queue length can be estimated more accurately by Equation (12) with the given
maximum bus load.

Figure 13. Relationship between average RX queue length Q and average length of data LD with a
given CAN bus load α and UART baud rates Ro. (a) 115,200 baud, (b) 230,400 baud, (c) 460,800 baud.

The experimental results in Figure 13 show that when LD decreases, Q increases, and vice versa.
With the UART baud rate of 460.8 k, which is larger than the CAN baud rate of 250 k, the gateway
always ensures monitoring a CAN bus load of 100%, as the value of Q is kept less than 1 (Figure 13c).
However, with the UART baud rate at 115.2 k and 230.4 k, which are smaller than the CAN baud rate of
250 k, the gateway can monitor a CAN bus load of 42% and 84%, as shown in Figure 13a,b, respectively.
The average queue length increases dramatically in comparison with bus load and average data length.
Therefore, the UART baud rate should be 460.8 k if that speed is available in the Bluetooth module,

Energies 2020, 13, 3766 15 of 19

otherwise, it should be 230.4 k since at this baud rate, the gateway can monitor a CAN bus load of 84%,
which is larger than the usual recommended CAN bus load that does not exceed 80%.

To estimate the RX queue length more accurately, we conducted experiments comparing the
difference between average and maximum queue lengths at different bus loads. The average queue
length is computed in theory by Equation (12), whereas the maximum queue length is measured in
the real world. To obtain the real maximum queue length, we let the gateway continuously report
the value of maximum queue length, connected the gateway with the EnergyBus system simulator,
and monitored the maximum queue length value. We adjusted the bus load by changing the SYNC
cycle in the EBC. In this experiment, the average data length LD was fixed as 6.2, which is the average
data length of all messages in Table 3; the UART baud rate was set as 230.4 k and 460.8 k; the bus
load was increasing from 60%. As shown in Figure 14, when the baud rate was 460.8 k, the maximum
RX queue lengths were stable at one frame. The same stability is found with the maximum queue
length when the baud rate was 230.4 k. At each baud rate, the higher the set bus load, the smaller the
gap measured between the maximum and average queue lengths. At the maximum bus load that the
gateway can monitor, the average queue length is asymptotic to the maximum queue length. Therefore,
the RX queue length can be estimated more accurately by Equation (12) with the given maximum
bus load.
Energies 2020, 13, x FOR PEER REVIEW 15 of 19

Figure 14. Difference between the average and maximum RX queue lengths.

5.2. Effect of the Gateway’s SDO Services on the CAN Bus Side

During the operation, the smart device can frequently or periodically send SDO commands to
access the OD of specific devices of the e-bike. These commands are queued in the TX queue, as
shown in Figure 5. The gateway periodically checks two things. The first thing it checks is the TX
queue to see whether there is any new requests. The second thing it checks is the execution status of
the current SDO command to see it is completed. If both are yes, the new SDO command is executed
and puts a new loading into the CAN bus. The period of time for that checking is called the SDO
cycle. Of course, the shorter the SDO cycle, the more loading the bus receives.

In this section, we use the EnergyBus system simulator to examine the effect of SDO services on
a CANopen system under variations of SDO cycles and original CAN bus load values α, assuming
that there are always new requests in the TX queue. The duration of SDO cycles varies from 90 ms
down to 2 ms. We adjusted the original bus load by changing the SYNC cycle in the EBC. The
experiment was performed in 1800 s. The immediate CAN bus load α′ is calculated by Equation (13)
based on the original CAN bus load and the addition bus load caused by the SDO services. The
number of CANopen TX frames lost in every node is recorded. The results help us to determine which
SDO cycles can be used for monitoring a CANopen system.

Figure 15 shows the experimental results. The effect of the gateway’s SDO services on CAN bus
load α of the e-bike simulator is shown in Figure 15a. In each case of bus load α, starting the SDO
cycle from 90 ms, bus load α’ is slightly increased at the beginning its gain improves over time. When
the SDO cycle was less than 10 ms, the bus load changed unpredictably. This abnormality was caused
by the fact that 10 ms is the smallest time period required to complete an SDO command. When the
SDO cycle is less than 10 ms, the gateway must wait for more SDO cycles until the previous SDO
command is finished. The actual SDO cycle, therefore, is longer than current SDO cycles.

(a) (b)

Figure 15. The effect of the gateway’s SDO services. (a) Effect on CAN bus load, (b) effect on frame
loss.

Figure 14. Difference between the average and maximum RX queue lengths.

5.2. Effect of the Gateway’s SDO Services on the CAN Bus Side

During the operation, the smart device can frequently or periodically send SDO commands to
access the OD of specific devices of the e-bike. These commands are queued in the TX queue, as shown
in Figure 5. The gateway periodically checks two things. The first thing it checks is the TX queue to see
whether there is any new requests. The second thing it checks is the execution status of the current
SDO command to see it is completed. If both are yes, the new SDO command is executed and puts a
new loading into the CAN bus. The period of time for that checking is called the SDO cycle. Of course,
the shorter the SDO cycle, the more loading the bus receives.

In this section, we use the EnergyBus system simulator to examine the effect of SDO services on a
CANopen system under variations of SDO cycles and original CAN bus load values α, assuming that
there are always new requests in the TX queue. The duration of SDO cycles varies from 90 ms down
to 2 ms. We adjusted the original bus load by changing the SYNC cycle in the EBC. The experiment
was performed in 1800 s. The immediate CAN bus load α′ is calculated by Equation (13) based on
the original CAN bus load and the addition bus load caused by the SDO services. The number of
CANopen TX frames lost in every node is recorded. The results help us to determine which SDO
cycles can be used for monitoring a CANopen system.

Figure 15 shows the experimental results. The effect of the gateway’s SDO services on CAN bus
load α of the e-bike simulator is shown in Figure 15a. In each case of bus load α, starting the SDO cycle
from 90 ms, bus load α’ is slightly increased at the beginning its gain improves over time. When the
SDO cycle was less than 10 ms, the bus load changed unpredictably. This abnormality was caused by

Energies 2020, 13, 3766 16 of 19

the fact that 10 ms is the smallest time period required to complete an SDO command. When the SDO
cycle is less than 10 ms, the gateway must wait for more SDO cycles until the previous SDO command
is finished. The actual SDO cycle, therefore, is longer than current SDO cycles.

Energies 2020, 13, x FOR PEER REVIEW 15 of 19

Figure 14. Difference between the average and maximum RX queue lengths.

5.2. Effect of the Gateway’s SDO Services on the CAN Bus Side

During the operation, the smart device can frequently or periodically send SDO commands to
access the OD of specific devices of the e-bike. These commands are queued in the TX queue, as
shown in Figure 5. The gateway periodically checks two things. The first thing it checks is the TX
queue to see whether there is any new requests. The second thing it checks is the execution status of
the current SDO command to see it is completed. If both are yes, the new SDO command is executed
and puts a new loading into the CAN bus. The period of time for that checking is called the SDO
cycle. Of course, the shorter the SDO cycle, the more loading the bus receives.

In this section, we use the EnergyBus system simulator to examine the effect of SDO services on
a CANopen system under variations of SDO cycles and original CAN bus load values α, assuming
that there are always new requests in the TX queue. The duration of SDO cycles varies from 90 ms
down to 2 ms. We adjusted the original bus load by changing the SYNC cycle in the EBC. The
experiment was performed in 1800 s. The immediate CAN bus load α′ is calculated by Equation (13)
based on the original CAN bus load and the addition bus load caused by the SDO services. The
number of CANopen TX frames lost in every node is recorded. The results help us to determine which
SDO cycles can be used for monitoring a CANopen system.

Figure 15 shows the experimental results. The effect of the gateway’s SDO services on CAN bus
load α of the e-bike simulator is shown in Figure 15a. In each case of bus load α, starting the SDO
cycle from 90 ms, bus load α’ is slightly increased at the beginning its gain improves over time. When
the SDO cycle was less than 10 ms, the bus load changed unpredictably. This abnormality was caused
by the fact that 10 ms is the smallest time period required to complete an SDO command. When the
SDO cycle is less than 10 ms, the gateway must wait for more SDO cycles until the previous SDO
command is finished. The actual SDO cycle, therefore, is longer than current SDO cycles.

(a) (b)

Figure 15. The effect of the gateway’s SDO services. (a) Effect on CAN bus load, (b) effect on frame
loss.

Figure 15. The effect of the gateway’s SDO services. (a) Effect on CAN bus load, (b) effect on frame loss.

The effect of the gateway’s SDO services on frame loss on all of the nodes of the e-bike simulator
is shown in Figure 15b. The higher the set bus load, the higher the number of lost frames that may
occur. With bus load α of 81% and 91%, the frame loss occurs at every SDO cycle. With bus load α
of 73% and 66%, the frame loss occurs when the SDO cycle is less than 10 ms and 2 ms, respectively.
The number of lost frames is zero at every SDO cycle in the case of bus load α of 60%.

Table 4 summaries the number of lost frames at different values of CAN bus load α and α′. It can
be observed that if the original CAN bus load α is not greater than 73% and the CAN bus load α′ is less
than 85%, then the SDO services will not affect the performance of the monitored system (the number
of lost frames is zero). This result satisfies the rule that the CAN bus load of a system should not be
greater than 80% (α ≤ 0.8). Therefore, the SDO cycle should be chosen such that the bus load does not
exceed 80% (M = 0.8).

Table 4. Summary of the number of lost CAN frames at different values of α and α′.

CAN Bus Load α CAN Bus Load α′ Number of Lost CAN Frames

91% From 93% to 100% From 99 to 2970

81% From 82% to 100% From 0 to 166

73% From 89% to 92% From 0 to 49

73% From 75% to 89% 0

66% From 85% to 91% From 0 to 2

66% From 68% to 85% 0

60% From 63% to 89% 0

5.3. Visualization of Monitored Data

This section demonstrates the energy monitoring and data visualization features of the EMS in
the two scenarios described in Section 4. For the first scenario, a battery charging process is monitored
and the monitored data are illustrated in Figure 16. Charging starts at 4:11 AM with SoC 3% and ends
at 10:42 AM with SoC 100%. The battery charging process occurs in two stages. In the first stage,
the current is constant and the voltage is ascending. In the second stage, the current is descending and
the voltage is constant. This charging method is good for the battery due to the fact that if the voltage
is constant from the beginning, the charging current will be very high and thus cause damage to the
battery. According to Figure 16, the charging current is equal to C/4 where C is the ampere rate of

Energies 2020, 13, 3766 17 of 19

the battery. In the first state, the SoC increases linearly with a slope. With the same charging current
(C/4), if the slope is higher than normal value (the charging time is shorter), the battery quality may be
worse. Moreover, battery temperature is observed gradually increasing in the first stage, whereas it
is gradually decreasing in the second stage. It is believed that battery temperature changes due to
electric current and this change is proportional.Energies 2020, 13, x FOR PEER REVIEW 17 of 19

Figure 16. Battery charging process.

Figure 17. Battery and rider energy consumption during a trip.

6. Conclusions

In this paper, we proposed an EMS for the CANopen-based e-bikes. A gateway is designed for
an EMS application installed on the rider’s smart device to monitor his e-bike via the Bluetooth. The
EMS application can monitor and access the CANopen devices of the e-bike to provide useful
information, such as the status of the energy sources to the users. The gateway uses the CANopen
protocol to communicate with the smart device. For the smart device to communicate with the
CANopen devices on the e-bike, the gateway provides two main services. The first is the CAN
message forwarding service that monitors, filters, and forwards the messages from the CAN bus side
to the Bluetooth side. The filter is configured by a proposed RXFilter array located in the gateway’s
OD. This service is modeled to calculate its parameters and ensure its performance. The second is the
SDO services which are couples of the SDO server and SDO client working as relays between the
SDO clients of the smart device and the SDO servers of the nodes on the e-bike. The gateway controls
the throughput of its SDO services flow to keep the CAN bus load under safe value. The EMS
application uses an SDO client to access the RXFilter array in the gateway to configure the filter so
that it passes only PDO messages carrying energy-related data. The EMS application also uses its
SDO client to access the OD of any node. The result shows that for the safety of the monitored system,
the CAN bus load should not be greater than 80%. Our design ensures that the gateway can be used
for a smart device to monitor any CANopen system in real-time without affecting the functionality
of the monitored system. In the future, the system may be improved to connect to the cloud for further
research and applications.

Author Contributions: Conceptualization, C.-R.D., V.-T.B., and Y.-C.H.; methodology, V.-T.B.; system
implementation, V.-T.B. and Y.-C.H.; performing the simulations and experiments, V.-T.B. and Y.-C.H.;
analyzing the simulation and experimental results, V.-T.B., C.-R.D., and P.L.; writing—original draft
preparation, V.-T.B.; writing—review and editing, C.-R.D., P.L., and V.-T.B.; visualization, V.-T.B. and V.-D.T.;

Figure 16. Battery charging process.

For the second scenario, an experience trip is monitored. The battery SoC and energy consumed
by the rider during the trip are shown in Figure 17. The trip starts at 5:42 PM and ends at 8:00 p.m.
The data on the elevation of the terrain are retrieved using the phone’s GPS. For a higher slope, the SoC
decreases faster. On a steep downhill road, the SoC increases slightly because the motor acts as a
generator and recharges the battery. The rider’s energy consumption increases quickly at the beginning
but the gain decreases over time. This indicates that the rider’s power level decreases along the trip.
With this report, riders can track their energy expenditure in physical activity of cycling.

Energies 2020, 13, x FOR PEER REVIEW 17 of 19

Figure 16. Battery charging process.

Figure 17. Battery and rider energy consumption during a trip.

6. Conclusions

In this paper, we proposed an EMS for the CANopen-based e-bikes. A gateway is designed for
an EMS application installed on the rider’s smart device to monitor his e-bike via the Bluetooth. The
EMS application can monitor and access the CANopen devices of the e-bike to provide useful
information, such as the status of the energy sources to the users. The gateway uses the CANopen
protocol to communicate with the smart device. For the smart device to communicate with the
CANopen devices on the e-bike, the gateway provides two main services. The first is the CAN
message forwarding service that monitors, filters, and forwards the messages from the CAN bus side
to the Bluetooth side. The filter is configured by a proposed RXFilter array located in the gateway’s
OD. This service is modeled to calculate its parameters and ensure its performance. The second is the
SDO services which are couples of the SDO server and SDO client working as relays between the
SDO clients of the smart device and the SDO servers of the nodes on the e-bike. The gateway controls
the throughput of its SDO services flow to keep the CAN bus load under safe value. The EMS
application uses an SDO client to access the RXFilter array in the gateway to configure the filter so
that it passes only PDO messages carrying energy-related data. The EMS application also uses its
SDO client to access the OD of any node. The result shows that for the safety of the monitored system,
the CAN bus load should not be greater than 80%. Our design ensures that the gateway can be used
for a smart device to monitor any CANopen system in real-time without affecting the functionality
of the monitored system. In the future, the system may be improved to connect to the cloud for further
research and applications.

Author Contributions: Conceptualization, C.-R.D., V.-T.B., and Y.-C.H.; methodology, V.-T.B.; system
implementation, V.-T.B. and Y.-C.H.; performing the simulations and experiments, V.-T.B. and Y.-C.H.;
analyzing the simulation and experimental results, V.-T.B., C.-R.D., and P.L.; writing—original draft
preparation, V.-T.B.; writing—review and editing, C.-R.D., P.L., and V.-T.B.; visualization, V.-T.B. and V.-D.T.;

Figure 17. Battery and rider energy consumption during a trip.

6. Conclusions

In this paper, we proposed an EMS for the CANopen-based e-bikes. A gateway is designed for an
EMS application installed on the rider’s smart device to monitor his e-bike via the Bluetooth. The EMS
application can monitor and access the CANopen devices of the e-bike to provide useful information,
such as the status of the energy sources to the users. The gateway uses the CANopen protocol to
communicate with the smart device. For the smart device to communicate with the CANopen devices
on the e-bike, the gateway provides two main services. The first is the CAN message forwarding
service that monitors, filters, and forwards the messages from the CAN bus side to the Bluetooth
side. The filter is configured by a proposed RXFilter array located in the gateway’s OD. This service is

Energies 2020, 13, 3766 18 of 19

modeled to calculate its parameters and ensure its performance. The second is the SDO services which
are couples of the SDO server and SDO client working as relays between the SDO clients of the smart
device and the SDO servers of the nodes on the e-bike. The gateway controls the throughput of its SDO
services flow to keep the CAN bus load under safe value. The EMS application uses an SDO client to
access the RXFilter array in the gateway to configure the filter so that it passes only PDO messages
carrying energy-related data. The EMS application also uses its SDO client to access the OD of any
node. The result shows that for the safety of the monitored system, the CAN bus load should not be
greater than 80%. Our design ensures that the gateway can be used for a smart device to monitor
any CANopen system in real-time without affecting the functionality of the monitored system. In the
future, the system may be improved to connect to the cloud for further research and applications.

Author Contributions: Conceptualization, C.-R.D., V.-T.B., and Y.-C.H.; methodology, V.-T.B.; system
implementation, V.-T.B. and Y.-C.H.; performing the simulations and experiments, V.-T.B. and Y.-C.H.; analyzing
the simulation and experimental results, V.-T.B., C.-R.D., and P.L.; writing—original draft preparation, V.-T.B.;
writing—review and editing, C.-R.D., P.L., and V.-T.B.; visualization, V.-T.B. and V.D.T.; supervision, C.-R.D. All of
the authors contributed significantly to the completion of this manuscript, conceiving and designing the research,
and writing and improving the paper. All authors have read and approved the manuscript.

Funding: The work was supported by the Ministry of Science and Technology of Taiwan under contract
No. E10500006007-007.

Acknowledgments: The authors would like to thank the Ministry of Science and Technology of Taiwan for
financially supporting this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Birol, F. CO2 Emissions from Fuel Combustion Highlights 2019; International Energy Agency: Paris, France,
November 2019; Available online: https://iea.blob.core.windows.net/assets/eb3b2e8d-28e0-47fd-a8ba-
160f7ed42bc3/CO2_Emissions_from_Fuel_Combustion_2019_Highlights.pdf (accessed on 19 May 2020).

2. Benoît, B.; Chloé, M.; Julian, F. Quantifying CO2 Savings of Cycling; The European Cyclists’ Federation:
Brussels, Belgium, November 2011; Available online: https://ecf.com/sites/ecf.com/files/ECF_CO2_WEB.pdf
(accessed on 19 May 2020).

3. Tal, I.; Ciubotaru, B.; Muntean, G. Vehicular-Communications-Based Speed Advisory System for Electric
Bicycles. IEEE Trans. Veh. Technol. 2016, 65, 4129–4143. [CrossRef]

4. Ferreira, J.C.; Monteiro, V.; Afonso, J.A.; Afonso, J.L. Mobile Cockpit System for Enhanced Electric Bicycle
Use. IEEE Trans. Ind. Inform. 2015, 11, 1017–1027. [CrossRef]

5. Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health Estimation and Remaining
Useful Life Prediction for the Lithium-ion Battery based on a Variant Long Short Term Memory Neural
Network. J. Power Sources 2020, 459, 1–12. [CrossRef]

6. Torsten, G. EnergyBus: An Open Specification for LEVs. CAN Newletter. 2013, pp. 28–30. Available online:
https://can-newsletter.org (accessed on 19 May 2020).

7. Torsten, G. EnergyBus—The CANopen-based Communication Standard for LEVs and More. Available
online: http://www.energybus.org (accessed on 19 May 2020).

8. Holger, Z. CANopen in Light Electric Vehicles. In Proceedings of the 12th International CAN Conference,
Barcelona, Spain, 11–13 March 2008; pp. 1–3.

9. CANopen Application Layer and Communication Profile, CiA301; Version 4.2.0; 2011; Available online: https:
//www.can-cia.org/groups/specifications (accessed on 19 May 2020).

10. Application Profile for Energy Management Systems, CiA454; Version 2.0.0; 2014; Available online: https:
//www.can-cia.org/groups/specifications (accessed on 19 May 2020).

11. Interfacing CANopen with TCP/IP, CiA309; Version 1.1; 2006; Available online: https://www.can-cia.org/groups/
specifications (accessed on 19 May 2020).

12. Gorenflo, C.; Rios, I.; Golab, L.; Keshav, S. Usage Patterns of Electric Bicycles: An Analysis of the WeBike
Project. J. Adv. Transp. 2017, 2017, 1–14. [CrossRef]

13. Phidgets Inc. Unique and Easy to Use USB Interfaces. 2017. Available online: http://www.phidgets.com
(accessed on 19 May 2020).

https://iea.blob.core.windows.net/assets/eb3b2e8d-28e0-47fd-a8ba-160f7ed42bc3/CO2_Emissions_from_Fuel_Combustion_2019_Highlights.pdf
https://iea.blob.core.windows.net/assets/eb3b2e8d-28e0-47fd-a8ba-160f7ed42bc3/CO2_Emissions_from_Fuel_Combustion_2019_Highlights.pdf
https://ecf.com/sites/ecf.com/files/ECF_CO2_WEB.pdf
http://dx.doi.org/10.1109/TVT.2015.2442338
http://dx.doi.org/10.1109/TII.2015.2463754
http://dx.doi.org/10.1016/j.jpowsour.2020.228069
https://can-newsletter.org
http://www.energybus.org
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
http://dx.doi.org/10.1155/2017/3739505
http://www.phidgets.com

Energies 2020, 13, 3766 19 of 19

14. Song, C.; Shao, Y.; Song, S.; Peng, S.; Xiao, F. A Novel Electric Bicycle Battery Monitoring System Based on
Android Client. J. Eng. 2017, 2017, 1–11. [CrossRef]

15. Kiefer, C.; Behrendt, F. Smart E-bike Monitoring System: Real-Time Open Source and Open Hardware
GPS Assistance and Sensor Data for Electrically-Assisted Bicycles. IET Intell. Transp. Syst. 2016, 10, 79–88.
[CrossRef]

16. Catargiu, G.; Dulf, E.-H.; Miclea, C.L. Connected Bike-smart IoT-based Cycling Training Solution. Sensors
2020, 20, 1473. [CrossRef] [PubMed]

17. Revuelta, J.; Villarrubia, G.; Barriuso, A.L.; Hernández, D.; Lozano, Á.; de la Serna González, M.A.
New Architecture for Electric Bikes Control Based on Smartphones and Wireless Sensors. In Proceedings of
the Trends in Practical Applications of Scalable Multi-Agent Systems, the PAAMS Collection, Sevilla, Spain,
1–3 June 2016; pp. 125–134.

18. Additional Application Layer Functions, CiA302; Version 4.1.0; 2009; Available online: https://www.can-cia.org/

groups/specifications (accessed on 19 May 2020).
19. CANopen Layer Setting Services (LSS) and Protocols, CiA305; Version 3.0.0; 2013; Available online: https:

//www.can-cia.org/groups/specifications (accessed on 19 May 2020).
20. CANopen Services and Protocols for Sleep and Wake-up Handling, CiA320; Version 1.0.0; 2018; Available online:

https://www.can-cia.org/groups/specifications (accessed on 19 May 2020).
21. CANopen Generic Frame for Wireless Tunneling of CAN Messages and for Transfer of Diagnostic Data, CiA315; Version

1.0.0; 2011; Available online: https://www.can-cia.org/groups/specifications (accessed on 19 May 2020).
22. CANopen Device Profile for Wireless Transmission Media Based CANopen Devices, CiA457; Version 1.0.0; 2011;

Available online: https://www.can-cia.org/groups/specifications (accessed on 19 May 2020).
23. Zitzmann, H.; Neupert, H.; Wachtel, H.; Boebel, H. CiA 454 Infotag; CAN in Automation: Nuremberg,

Germany, 2012; Available online: http://www.energybus.org/content/download/20507/105621/file/20.06.2012-
Cia_presentation.pdf (accessed on 19 May 2020).

24. Bosch, R. CAN Specification Version 2.0; Robert Bosch GmbH: Stuttgart, Germany, 1991; Available online:
http://esd.cs.ucr.edu/webres/can20.pdf (accessed on 19 May 2020).

25. Shortle, J.F.; Thompson, J.M.; Gross, D.; Harris, C.M. Simple Markovian Queueing Models. In Fundamentals
of Queueing Theory, 5th ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 73–145.

26. Davis, R.I.; Burns, A.; Bril, R.J.; Lukkien, J.J. Controller Area Network (CAN) Schedulability Analysis:
Refuted, Revisited and Revised. Real-Time Syst. 2007, 35, 239–272. [CrossRef]

27. Pfeiffer, O.; Ayre, A.; Keydel, C. Embedded Networking with CAN and CANopen, Rivised 1st ed.; Copperhill
Media Corporation: Greenfield, MA, USA, 2008.

28. MPLAB X IDE v3.4. Available online: https://www.microchip.com/development-tools/pic-and-dspic-
downloads-archive (accessed on 19 May 2020).

29. MPLAB C for PIC18 v3.47 Standard-Eval Version. Available online: https://www.microchip.com/

Developmenttools/ProductDetails/SW006011#additional-summary (accessed on 19 May 2020).
30. CANopenNode-1.10. Available online: https://sourceforge.net/projects/canopennode/files/canopennode/

CANopenNode-1.10/ (accessed on 19 May 2020).
31. HM 10 Bluetooth Module. Available online: https://components101.com/wireless/hm-10-bluetooth-module

(accessed on 19 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2017/2579084
http://dx.doi.org/10.1049/iet-its.2014.0251
http://dx.doi.org/10.3390/s20051473
http://www.ncbi.nlm.nih.gov/pubmed/32156032
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
https://www.can-cia.org/groups/specifications
http://www.energybus.org/content/download/20507/105621/file/20.06.2012-Cia_presentation.pdf
http://www.energybus.org/content/download/20507/105621/file/20.06.2012-Cia_presentation.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
http://dx.doi.org/10.1007/s11241-007-9012-7
https://www.microchip.com/development-tools/pic-and-dspic-downloads-archive
https://www.microchip.com/development-tools/pic-and-dspic-downloads-archive
https://www.microchip.com/Developmenttools/ProductDetails/SW006011#additional-summary
https://www.microchip.com/Developmenttools/ProductDetails/SW006011#additional-summary
https://sourceforge.net/projects/canopennode/files/canopennode/CANopenNode-1.10/
https://sourceforge.net/projects/canopennode/files/canopennode/CANopenNode-1.10/
https://components101.com/wireless/hm-10-bluetooth-module
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Energy Monitoring System
	System Overview
	EMS Architecture
	Data Link Layer
	CAN Message Forwarding Service Model
	CANopen Layer
	System Operation Flow

	System Implementation and Prototype
	Experimental Results
	Real-Time Monitoring Performance of the Gateway
	Effect of the Gateway’s SDO Services on the CAN Bus Side
	Visualization of Monitored Data

	Conclusions
	References

