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Abstract: To realize the distributed generation and to make the partnership between the dispatchable
units and variable renewable resources work efficiently, accurate and flexible monitoring needs
to be implemented. Due to digital transformation in the energy industry, a large amount of data
is and will be captured every day, but the inability to process them in real time challenges the
conventional monitoring and maintenance practices. Access to automated and reliable data-filtering
tools seems to be crucial for the monitoring of many distributed generation units, avoiding false
warnings and improving the reliability. This study aims to evaluate a machine-learning-based
methodology for autodetecting outliers from real data, exploring an interdisciplinary solution to
replace the conventional manual approach that was very time-consuming and error-prone. The raw
data used in this study was collected from experiments on a 100-kW micro gas turbine test rig in
Norway. The proposed method uses Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) to detect and filter out the outliers. The filtered datasets are used to develop artificial
neural networks (ANNs) as a baseline to predict the normal performance of the system for monitoring
applications. Results show that the filtering method presented is reliable and fast, minimizing time
and resources for data processing. It was also shown that the proposed method has the potential to
enhance the performance of the predictive models and ANN-based monitoring.

Keywords: distributed energy generation; automated data filtering; density-based clustering;
ANN-based predictive model

1. Introduction

Driven by numerous factors, such as the requirement of reduction in greenhouse gas emissions,
the successful emergence of renewable energy technologies and the inception of a smart paradigm,
today’s energy sector is undergoing a profound change. Part of this change is a transition from
large-scale centralized generation towards small-scale distributed generation (DG), with a deep
penetration of renewable resources. The increasing share of intermittent renewables, such as solar
and wind, has become a major challenge for grid flexibility and stability. Using dispatchable DG
systems like fuel cells and microturbines, with their low emissions, high efficiency and fuel flexibility,
has emerged as one of the promising contributors to address this issue [1]. However, the main concern
in these systems is to sustain a high availability and reliability while minimizing the maintenance
cost [2]. This concern has become even more critical than before, as these units will more often be
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operated in transient conditions to balance the variable renewables, which, consequently, will lead to
lifetime reduction of the equipment [3]. Accurate monitoring tools as enablers for condition-based
maintenance (CBM) can consequently lead to enhancements of the maintenance and shifting from
conventional practices to a predictive maintenance and, as a result, can decrease the unexpected
breakdowns and downtime. According to GE Power, the inability to identify an impending fault
early and the resulting downtime in supply leads to a shortfall of nearly $10B annually to the power
industry [4].

Condition monitoring is carried out based on the comparison between the actual condition of a
system and its condition in normal (healthy) operations. Therefore, having a reliable model, which can
predict the system behavior in healthy conditions, is very important. Primarily, there are two main
different approaches to develop a model for monitoring systems, namely the physics-based and
data-driven approaches. Physics-based approaches [2,5,6], which are derived from the first principle,
are usually complex, and their accuracy decreases as the system complexity and modeling uncertainties
increase. Moreover, the increase of the model complexities combined with the limitations of the
mathematical techniques decreases their reliability for real-time monitoring tasks. On the other hand,
the data-driven or intelligent approaches perform an analysis based only on the measured data from
the system. These approaches mainly use AI techniques such as artificial neural networks (ANNs),
neuro-fuzzy systems (NFs) and support vector machines [7–9]. Of these, ANNs have been the most
commonly used tool for monitoring and fault diagnostics applications [10,11]. Essentially, ANN is
the interconnected artificial neurons simulating the way that a biological neural network performs.
The ANNs learn from the data by modeling a function that relates inputs to outputs. Once learned,
such ANN-based models do not require an iterative solution to predict outputs; they are fast in
response and can be used for online monitoring in real-time applications. Previous experiences [12–17]
of the authors have also shown the reliability of ANNs as a flexible tool for the accurate prediction
of nonlinear and multidimensional systems based on the data obtained from large and small-scale
power plants.

Due to the rapid advancement of sensor and ICT technologies in today’s digital era, one of the
most challenging aspects in monitoring that directly affects its success is the availability of a massive
amount of data to be processed and filtered appropriately at increased frequencies in order to generate
high-quality datasets for modeling and the subsequent condition monitoring task [18]. Data filtering is
an important step in data-driven modelling, such as in the ANN, as erroneous and outlier data have
significant impacts on the model’s accuracy, resulting in a degraded performance in prediction [19].
In previously published studies of the authors [16,17], the filtration for detecting outliers was carried
out manually by screening all input and output data with respect to time. Any data point that was
inconsistent with the remainder of the data or had a significant deviation as compared to its neighbours
was treated as an outlier and was consequently removed from the dataset for further experimentation
with ANN. Despite limited data used for these studies, the manual plotting and screening of real-life
noisy data to detect the outliers was a demanding and time-consuming task, which was not thought
free from human error. With an ever-growing number of DG installations and the volume of the
data that are consequently stored every day in data repositories, such a conventional manual filtering
approach is not seemed to be practical anymore. This therefore necessitates an effective and fast
data-filtering method to clean contaminated measurements obtained from data lakes in an automated
manner, which has rarely been touched in research works. In view of this context, this work aims to
address the following questions:

• How can machine-learning techniques help the automated processing of a large amount of
operational data in a real-time fashion?

• Can the dataset obtained from an automated data-filtering method be error-free and used to
develop reliable predictive models with high prediction accuracy?
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• How can an interdisciplinary approach with a combination of domain knowledge from energy
systems and computer science pave the way for the successful implementation of this smart
solution in energy systems?

Various data-filtering (outlier detection) methods exist in the literature [20–24] using statistics,
spatial proximity, etc.—e.g., z-score, Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and isolation forest. To cope with the challenges mentioned earlier, the current study
investigates the application of a machine-learning technique using the principles of data clustering
to detect and remove outliers in an automated manner. The automated approach has several
advantages, as compared to its manual counterpart. The proposed auto-filtering method is not
laborious, less time-consuming, fast, error-free (as two similar data points will never give dissimilar
decisions in detecting an outlier) and, thereby, can produce better results under real-life uncertain
situations. The proposed method explores the capabilities of DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [24], a density-based data clustering model that works well
when the distribution of values in the feature space are not known and the dataset is of medium size
and multidimensional in nature [21,24–26]. The filtered clean datasets are then employed to develop
or retrain the data-driven models based on ANNs that can function as a baseline to predict the normal
operational conditions of the system. The DG system concerned and the data used in this study
were based on a micro gas turbine (MGT) test rig, which was installed at a test facility in Stavanger,
Norway [16]. MGTs, which are usually defined as small gas turbines up to a few hundred kilowatts,
are considered a lucrative DG technology [27–29], providing dispatchable power to match demand
and maintain the grid stability.

Neither data-driven energy system modeling nor machine-learning-based data filtration are new.
However, the utilization of the huge potential imbedded in interdisciplinary collaboration between
different disciplines needs practical examples to demonstrate the benefits of such collaborations.
Methods and algorithms developed by AI scientists and engineers need to be applied to specific case
studies to shed light on their potential and usefulness. In general, energy engineers’ lack of detailed
knowledge about various AI methods, and AI scientists’ lack of domain knowledge in the field of
energy technology, are among the hinders for the realization of such potential. This paper has utilized
the synergy of the cross-fertilization of domain knowledge from energy engineering and the selection of
a suitable data-filtering approach from data science for automation of the data handling and processing
for a MGT unit, which can result in considerable time savings and improvement of the accuracy of the
monitoring tool.

This study is the extension of the previous attempts of the authors, where they have been
investigating and developing ANN-based tools for modeling and monitoring of small and large-scale
energy systems [12,15,16,30]. As a part of an ongoing nationally funded project under the
Indo-Norwegian Cooperation Program, the main contributions and novelty of this paper lie in
the following features:

• In contrast to previous studies, where the manual and demanding data-filtering method was used,
this research has proposed an automated data processing that has the capability to filter large
amounts of data from outliers in a real-time fashion, providing error-free datasets for data-driven
predictive models.

• A machine-learning-based data clustering method, DBSCAN, has been employed to identify the
outliers in the raw dataset obtained from the MGT test rig. The filtered datasets were used to
train and further test the ANN models. It should be noted that, for a comparative performance
assessment between the manual and automated filtering methods, the optimum ANN setup, as it
was used in [16], was identically considered in the present study.

• The present investigation has brought together researchers from energy systems, AI and data
science to realize the potential of interdisciplinary research, contributing in a smart and reliable
automated data-filtering tool that can work in real-time applications. This approach bridges the



Energies 2020, 13, 3750 4 of 15

current knowledge gaps mainly caused by narrow focusing on a certain field of competence rather
than an interdisciplinary approach that combines the strengths of different disciplines to solve
real-world problems.

• The benefits of the proposed methodology have been demonstrated using available real-life data
that allowed the validation of the developed tool to a level that could be suitable for real-life
implementations not only in MGT applications but, also, in other types of DG systems.

Following this section, Section 2 briefly presents the MGT system. In Section 3, the ANN-based
methodology with the proposed automated filtering approach is described in detail. The results are
given in Section 4, which is then followed by the conclusion in Section 5.

2. Micro Gas Turbine System

MGT systems are operating on a recuperated Brayton cycle basis, which compromises a centrifugal
compressor, a radial flow turbine, a combustion chamber and a recuperator. Figure 1 shows the
schematic of a typical MGT. The intake air coming from the ambient is compressed by the compressor.
The compressed air passes through a recuperator, where it is preheated by exhaust gas before entering
the combustion chamber, in which the air is mixed with fuel and burned. The combustion gases
expand through the turbine, delivering power to the shaft to drive the compressor and generator for
electricity production. The turbine exhaust gas enters the recuperator and transfers heat to the colder
compressed air. Given the high temperature at the recuperator outlet, the MGT is also equipped with a
gas-water heat exchanger or economizer, which recovers the exhaust gas heat after the recuperator for
heating purposes.
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Figure 1. The schematic of a typical micro gas turbine (MGT). P, T, G and N represent respectively
pressure, temperature, generator and rotational speed.

The MGT test rig (Figure 2) used in this study was based on a Turbec T100 MGT with a nominal
electrical and thermal power output of 100 kW and 167 kW, respectively. Its electrical efficiency is
approximately 30%, but including the recovered heat for district heating, the overall thermal efficiency
of the combined heat and power (CHP) T100 reaches about 80% [31]. The test rig was installed at a test
facility in Stavanger, Norway to supply part of the local electricity and heat demand. To capture the
impacts of changing the operational conditions on the engine performance, the test rig was equipped
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with additional sensors and data acquisition systems, as described in [16,32]. The test rig was operated
at various operational conditions by changing the power demand, and a dataset consisting of 5976
samples was collected [16] to develop and validate the tools and methods.Energies 2020, 13, x FOR PEER REVIEW 5 of 15 
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3. Methodology

The aim of this study is to develop a machine-learning-based methodology to detect outliers in an
automated manner from the real data of dispatchable DG systems. The resulting filtered dataset is fed
into the ANN-based model as it was developed in [16]. Such a model will act as a fast and accurate
baseline for real-time monitoring applications. This is stimulated by the recent rise of DG driven by
the global energy transition, which demands an accurate and flexible monitoring tool to improve
the reliability of DG systems to help work their partnership with intermittent renewable resources
efficiently. However, the major challenge that directly affects the adoption of data-driven monitoring
and its success is the growing size of the data, which are not error-free in real life. To develop any
data-driven system, data should be free from outliers. In this regard, an auto-filtering method using
the DBSCAN algorithm was developed, and its performance was evaluated using the data collected
from the MGT test rig, as described in the preceding section.

The collected dataset was initially preprocessed before any further analysis to discard the
inconsistencies and anomalies, which was followed by normalization of the remaining data. It is
to be noted that the input and output data of various measurements may lie in different ranges.
Normalization was performed to avoid that a measurement with a higher range of values may become
more dominant than the others. The processed dataset was then analyzed to filter out outliers using
the DBSCAN algorithm. Different sets of filtered data representing the normal operational conditions
of the MGT were generated by varying the parameters of the algorithm. The filtered datasets were
then used to train and test different ANN models to examine the impact of automated filtering on the
prediction accuracy. These steps are discussed in detail in the following subsections.

3.1. Preprocessing on the Dataset to Detect Outliers

Initially, the given dataset consisted of 5976 measurements for a total of 38 parameters. Since the
present study concentrates on developing a robust ANN model for the prediction of the normal
operations of the MGT system at a steady-state condition, any data from the unstable operations with
high fluctuations were removed, as it was done in [16]. Moreover, data with missing attribute values
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due to a failure in the data acquisition system were also discarded from said dataset. This finally
resulted into 5663 numbers of samples for further experimentation to detect outliers. This set of
samples was first normalized in the following manner.

3.2. Data Normalization

We noticed that, in the given dataset, the values of different parameters (measurements) lie
in different ranges. Thus, before executing the DBSCAN algorithm, data normalization (scaling)
is performed, which maps all the parameter values (measurements) in the same range (0 to 1).
This facilitates us to detect the outliers keeping the parametric values (of minpts and ε, which are
explained in the Section 3.4) the same for all the measurements and giving equal priority to all of them.
We have used max-min normalization, a commonly used technique, and it is done in the following way:

The normalized value of the ith row (observation) of the jth parameter, denoted as, normalized_dataij,
is computed as normalized_dataij = (dataij − min_dataj)/range_dataj), where max_dataj and min_dataj,
respectively, represent the maximum and the minimum values of the jth parameter, and range_dataj =

max_dataj − min_dataj.

3.3. Data Clustering Approach for Outlier Detection

Clustering is a task of finding the natural groupings of data in an unsupervised manner, i.e.,
without knowing the class label of the data. It is a process of grouping patterns in a way so that data
with similar properties will belong to the same cluster, whereas dissimilar data items will be assigned
into different clusters. The scatter plot of a set of data items are shown in Figure 3a, and the generated
clusters (two in number) and an outlier (x, red coloured) are shown in Figure 3b.
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Since an outlier deviates substantially from other data points, it will not belong to any of the clusters
and will be left out as an isolated point and can thus be detected (point x in Figure 3b). Clustering
approaches can be broadly classified into partitioned, hierarchical, density-based, grid-based and
model-based ones [21]. The present work exploits the capabilities of DBSCAN, a density-based
clustering approach, to automatically detect the outliers from the given dataset. As mentioned in
Section 1, the said algorithm is effective and widely used in different applications when the distribution
of the feature values is not known a priori, and it is simple too. The algorithm uses two parameters:
ε and minpts. The significance of these parameters is mentioned in the following section. At the
termination of the algorithm, the data points, which do not belong to any of the clusters, will be treated
as outliers. The working principle of the algorithm is given below in more detail.

3.4. DBSCAN Algorithm

DBSCAN is proposed by Ester et al. [24], which could be used to discover clusters of arbitrary
shapes. The main concept of the DBSCAN algorithm is to locate regions of high density that are
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separated from one another by regions of low density. Here, the term “density” refers to the number of
data points within an area. Density is measured using two user-specified parameters: ε and minpts.
A value of (> 0) is used to specify the radius of the neighbour for each data point. The ε-neighbourhood
of a point p, denoted as ε (p), is all the points whose distance from the point p are less than or equal
to ε. To determine whether a neighbourhood is dense or not, DBSCAN uses the parameter minpts.
If ε (p) contains at least minpts points, then the region covered by ε (p) is defined as a dense region.
Following the definition of the dense region, a point can be classified into three categories. A point
is a “core” point if the ε-neighbourhood of the point contains at least minpts points and these points
are directly reachable from the core point. A “border” point, or a “boundary” point, is a point that
has lesser than minpts points in its ε-neighbourhood but the point is in the neighbourhood of the core
point. An “outlier” is defined as the one that is neither a core nor a border point.

The DBSCAN algorithm starts with an arbitrary point, and its neighborhood information is
retrieved from the ε parameter. If this point contains minpts points within the ε-neighborhood, a cluster
formation starts. Otherwise, the point is labeled as an outlier. This point can be later found within the
ε-neighborhood of a different point and, thus, can be made a part of the cluster. If a point is found to
be a core point, then the points within the ε-neighborhood are also part of the cluster. Therefore, all the
points found within the ε-neighborhood are added, along with their own ε-neighborhood, if they are
also core points. The above process continues until the density-connected cluster is completely found.
Then, the algorithm restarts with a new random point, and the same process continues. The algorithm
ends when all of the points have been visited and have been included in a cluster or identified as an
outlier. The pseudocode of DBSCAN is given in Algorithm 1.

As an illustration, in Figure 4, with minpts as 5 and ε as 1, point q is found to be in a dense region.
Figure 5 gives a visualization on core, border and outlier points. Here, for the ε = 1 unit and minpts = 7,
the data point p has been found as a core point, whereas the data point q is a border point, and it is
included into the same cluster as of p. The outlier point (denoted as r in Figure 5) is far away from the
core and the border point, which does not have sufficient neighbours (minpts number of neighbours)
within its ε -neighbourhood.
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  unvisited_set = Dataset //add all objects of Dataset to unvisited_set 
  For each point p in unvisited_set //Start of 2nd For loop 
   unvisited_set = unvisited_set – {p} //remove p from unvisited_set 
   let N = NEIGHBOUR(p, ε, f);  //calculate neighbourhood of p 
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    outliers_set = outliers_set U { p} // include p to outlier_set 
   Else 
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    For each point point q  in N //Start of 3rd For loop 
     N = N – {q}  //remove q from N 
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      remove q from unvisited set 
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           EndIf 
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     If q is not a member of any Cluster 
              add q to cluster C 
     EndIf 

Figure 5. Core, border and outlier.
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Algorithm 1. DBSCAN (a density-based clustering algorithm)

Inputs:
Dataset having X number of objects with F number of features
ε: reachability distance or radius
minpts: minimum number of points to form a cluster

Outputs: A set of density-based clusters and an outlier set

Method of feature-wise outlier detection using DBSCAN:
Begin // Start of method
let outliers_set = { } // initially null
For each feature f in F //Start of 1st For loop
let unvisited_set = { }

unvisited_set = Dataset //add all objects of Dataset to unvisited_set
For each point p in unvisited_set //Start of 2nd For loop

unvisited_set = unvisited_set – {p} //remove p from unvisited_set
let N = NEIGHBOUR(p, ε, f); //calculate neighbourhood of p
If |N| < minpts

outliers_set = outliers_set U { p} // include p to outlier_set
Else

create a new cluster C and add p to cluster C
For each point point q in N //Start of 3rd For loop

N = N – {q} //remove q from N
If q is in unvisited_set

remove q from unvisited set
let Q = NEIGHBOUR(q, ε, f);

If |Q| >= minpts
N = N U Q //add all elements of Q to N

EndIf
EndIf
If q is not a member of any Cluster

add q to cluster C
EndIf
If q is in outliers_set

outliers_set = outliers_set – {q} //remove q from outliers_set
EndIf

EndFor //End of of 3rd For loop
EndIf

EndFor //End of of 2nd For loop
EndFor //End of of 1st For loop

Return outliers_set
End // End of method

Method of calculating neighbourhood of a point p:
Begin// Start of method
let neighbour_set = { } //initially null
For each point d in Dataset:
If |d[f] – p[f]| is less than or equal to ε

neighbour_set = neighbour_set U {d} //include d in neighbour_set
EndIf

EndFor
return neighbor_set
End// End of method
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3.5. ANN Model Development

The ANN model structure with input and output parameters is shown in Figure 6. A previous
work of the authors [16] showed the power set, compressor inlet temperature and pressure as the
optimum inputs to predict the performance of the engine with high accuracy. The outputs are the power
output and the performance parameters at different parts of the engine. The multilayer perceptron
(MLP) (an ANN) with one hidden layer was used and trained with the back-propagation algorithm.
The commercial software NeuralSolutions (ver. 07, NeuroDimension, FL, USA) was employed for
network training.

The filtered datasets were divided into two data disjoint sets—namely, training and validation
datasets. The former was used to train the network, and the latter tested the predictability of the
network, which consisted of unseen data, i.e., never used during the training. The step-by-step
development of the ANN model, including the selection of training and validation datasets, training
settings have been presented in [16]. The training dataset was randomized and divided itself into
two subsets—namely, the training and cross-validation subsets, which contained 85% and 15% of the
data, respectively. The training subset was used to adjust the network parameters, so-called weights,
through conducting the back-propagation algorithm. The cross-validation subset was used to prevent
overfitting, as well as for early stopping, the training process before it reached the maximum number
of iterations if no further improvement in the network performance was achieved. During the training
process, the number of hidden neurons varied from 8 to 18, with a step size of two, and for each
number of hidden neurons, the training was repeated three times with the new initial values of the
network parameters. This indeed means that each ANN model was trained 54 times, and the network
with the minimum cross-validation error was selected as the best one. Finally, the prediction accuracy
of the best network was tested using the validation dataset.Energies 2020, 13, x FOR PEER REVIEW 10 of 15 
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4. Results and Analysis

4.1. DBSCAN for Outlier Detection

As mentioned earlier, the data filtering method is controlled by two parameters: ε and minpts.
It should be noted that, the higher the value of ε, the lesser is the detected outliers, while higher minpts
values resulted in more outliers. The outliers that are detected with lower minpts or higher ε will also
be treated as outliers when the value of the minpts is increased or the value of the ε is reduced. We have
used the Euclidean distance measure for the present investigation and experimented with different
values of ε (ranging from 0.011 to 0.020) and minpts (ranging from 5 to 100) to obtain different sets
of outliers. Table 1 shows a combination of ε and minpts values and the number of detected outliers
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that were taken into consideration for further evaluation using ANN. These values were considered to
work with a varying number of outliers. DATA1, DATA2, DATA3, DATA4 and DATA5 represent the
filtered datasets that were generated by five combinations of ε and minpts values.

The values of the parameters were chosen in a way so that a wide variation of outliers could be
detected, ranging from a few to a large number of outliers, and their impacts on the predictions could
be analyzed. However, extensive experimentation is needed to find out a correlation between these
parameter values and their corresponding predictive accuracy obtained through ANN.

Table 1. ε, minpts and the number of detected outliers.

ε minpts Number of Outliers

DATA1 0.014 5 39
DATA2 0.012 5 53
DATA3 0.016 35 99
DATA4 0.012 35 468
DATA5 0.020 100 599

4.2. ANN Modeling Results

Five datasets, which were formed by removing different numbers of outliers, as shown in Table 1,
were used to develop five ANN models to assess the impact of automated data filtering based on
DBSCAN on the prediction accuracy of the ANNs. Table 2 shows the prediction errors of the output
parameters for five filtered datasets in comparison with the baseline model, for which a manually
filtered dataset had been used to develop the ANN model. Considering both the mean and maximum
errors, it can be seen that the ANN models developed using DATA2, DATA4 and DATA5 showed
accurate predictions, which were comparable with the baseline model.

The comparison between the prediction accuracy of the three best ANN models developed
by automatically filtered datasets—namely, DATA2, DATA4 and DATA5—and the baseline ANN
developed by a manually filtered dataset for all output parameters is demonstrated in Figure 7. Figure 7
shows the mean relative error (MRE) together with the maximum error (i.e., worst case) for each output
parameter of the ANN models. For each ANN model, the solid-filled columns represent the MRE value,
and columns filled with downward diagonal patterns indicate the maximum errors. Comparing to the
baseline ANN, we can see from the figure that three ANNs not only predict the performance parameters
of the engine with almost the same accuracy but, also, have the potential for further improvement of
the errors. Of these three ANNs, the ANN developed based on DATA4, which corresponds to the
filtered dataset with 468 detected outliers, has provided the highest accuracy with a minimum average
error for all outputs (i.e., 0.22 compared to 0.36 for the baseline model). Except for the turbine outlet
temperature and combustion chamber inlet temperature, for which the maximum errors are slightly
higher than those of other ANNs are but, still, markedly below 1%, the maximum errors of the other
four parameters are the lowest, compared to other ANNs and the baseline model.
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Table 2. The prediction errors of the artificial neural networks (ANNs) developed using five datasets
obtained from the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) filtering
approach in comparison with the baseline ANN developed by the dataset filtered manually. MRE:
mean relative error. TOT, COT, COP, CCIT and CCIP represent turbine outlet temperature, compressor
outlet temperature, compressor outlet pressure, combustion chamber inlet temperature and combustion
chamber inlet pressure, respectively.

Power TOT COT COP CCIT CCIP

DATA1 MRE (%) 0.71 0.11 0.42 0.39 0.09 0.25
Maximum error (%) 3.00 0.52 1.36 1.63 0.39 1.37

DATA2 MRE (%) 0.48 0.16 0.59 0.32 0.16 0.27
Maximum error (%) 2.34 0.52 1.81 1.12 0.60 1.10

DATA3 MRE (%) 0.63 0.13 0.39 0.36 0.08 0.31
Maximum error (%) 3.50 0.50 1.39 2.03 0.37 2.11

DATA4 MRE (%) 0.48 0.14 0.29 0.18 0.12 0.20
Maximum error (%) 1.96 0.84 0.88 0.81 0.99 0.97

DATA5 MRE (%) 0.55 0.13 0.51 0.33 0.12 0.23
Maximum error (%) 2.43 0.57 1.38 1.17 0.47 1.30

Baseline MRE (%) 0.51 0.16 0.54 0.37 0.15 0.44
Maximum error (%) 2.24 0.67 1.56 1.38 0.58 1.38Energies 2020, 13, x FOR PEER REVIEW 12 of 15 
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automatically fileted datasets and the baseline ANN developed by a manually filtered dataset. MRE:
mean relative error. TOT, COT, COP, CCIT and CCIP represent turbine outlet temperature, compressor
outlet temperature, compressor outlet pressure, combustion chamber inlet temperature and combustion
chamber inlet pressure, respectively.

For a better illustration of the positive impact of the automated data-filtering method on the
prediction accuracy of the ANN, the distribution of the prediction errors of all outputs for the best
ANN (i.e., the ANN developed based on DATA4) and the baseline ANN are compared in Table 3. It can
be observed that, apart from the turbine outlet temperature and combustion chamber inlet temperature,
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for which the accuracy of the two ANNs are almost in the same level, the prediction errors for power
output, compressor outlet temperature, compressor outlet pressure and combustion chamber inlet
pressure have significantly improved with the use of the auto-filtered dataset for the development of
the ANN. For most samples, the prediction error is less than 0.5%.

Table 3. Distribution of the prediction error for all outputs of the best ANN model and the baseline model.

< 0.5% 0.5–1.0% 1.0–1.5% 1.5–2% 2–2.5%

Best
ANN Baseline Best

ANN Baseline Best
ANN Baseline Best

ANN Baseline Best
ANN Baseline

Power 59.9% 57.4% 30.1% 29.7% 9% 11.0% 1.1% 1.6% - 0.3%
TOT 98.2% 99.7% 1.8% 0.3% - - - - - -
COT 76.3% 50% 23.7% 39.4% - 10.6% - - - -
CCIT 99.2% 99.7% 0.8% 0.3% - - - - - -
COP 97.6% 69.0% 2.4% 29.8% - 1.2% - - - -
CCIP 93.6% 61.5% 6.4% 36.6% - 1.9% - - - -

For visualization of the prediction accuracy, Figures 8 and 9 show the comparison between the
measured and predicted values for two engine parameters—namely, power output and combustion
chamber inlet temperature, respectively. The error values are represented by dotted lines on the
secondary y-axis. These figures demonstrate that the ANN model constructed by the proposed
automated filtering method can predict the engine parameters with a very high accuracy, perfectly
following variations resulted by changes in the operational conditions. The prediction error for the
power output for most samples is below 1%, and the maximum error (i.e., worst case) does not exceed
2%, which is higher for a few samples in the baseline model (refer to Table 3).Energies 2020, 13, x FOR PEER REVIEW 13 of 15 
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5. Conclusions

Handling the ever-growing volume of operational data from distributed generation units and other
appliances requires a reliable and fast data-filtering method combined with fast data processing and
analysis. Therefore, the objective of this work was to develop and evaluate a machine-learning-based
method for the automated filtering of data to detect outliers and provide high-quality datasets for
further analysis and data-driven modeling. This was achieved through an interdisciplinary attempt
integrating the knowledge from the fields of energy and data science. A density-based clustering
algorithm, DBSCAN, was used to identify the outliers in the real-life dataset obtained from an MGT
test rig in Norway. To verify the suitability of the proposed method, the filtered datasets were then
used to train and test the ANN models. The prediction errors of these ANN models were compared
with prediction errors of the baseline ANN model, which had previously been developed by the
research group based on the dataset that had been filtered through a manual demanding process.
The results showed that the proposed automated method not only can effectively filter the data from
outliers but, also, has the potential to enhance the quality of data for data-driven modeling, providing
better predictions.

To sum up, the data-filtering method presented in this paper shows that the previously successfully
demonstrated ANN models for plant monitoring can be integrated with an automatic and reliable
data-filtering method, which enables leapfrogging in the field of condition monitoring for real-time
applications. The results show the effectiveness of the automated filtering-based data-driven model
and confirm that ANN with an auto-filtering approach can model real-life scenarios in a better
way, yielding an improved performance. The proposed algorithm could be extended to other DG
conversion technologies as well. Real-life implementations of condition-based maintenance utilizing
the machine-learning and AI-based methods presented in this paper will enable speeding up the
ongoing energy transition towards clean energy.
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