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Abstract: Academic attention is being paid to the study of hierarchical time series. Especially in the 
electrical sector, there are several applications in which information can be organized into a 
hierarchical structure. The present study analyzed hourly power generation in Brazil (2018–2020), 
grouped according to each of the electrical subsystems and their respective sources of generating 
energy. The objective was to calculate the accuracy of the main measures of aggregating and 
disaggregating the forecasts of the Autoregressive Integrated Moving Average (ARIMA) and Error, 
Trend, Seasonal (ETS) models. Specifically, the following hierarchical approaches were analyzed: (i) 
bottom-up (BU), (ii) top-down (TD), and (iii) optimal reconciliation. The optimal reconciliation 
models showed the best mean performance, considering the primary predictive windows. It was 
also found that energy forecasts in the South subsystem presented greater inaccuracy compared to 
the others, which signals the need for individualized models for this subsystem. 

Keywords: power generation; electrical subsystems; time series 
 

1. Introduction 

The advent of Industry 4.0 revolutionized factories worldwide, since it allowed the connectivity 
between measuring machines and the automation of companies, distributing the capacity to collect 
massive volumes of data [1]. In high-level data analysis, forecasting models allow the extraction of 
behavior patterns, as well as the prediction of future values for the collected data set [2].  

In the above-mentioned scenario, the construction of predictive models is gaining prominence 
in the literature [3–5], since economic agents deal with uncertainty in multiple spheres and aim to 
achieve the best results using available resources [6]. Developing acceptably accurate models 
presents a meaningful challenge, as prediction is a technique that deals with risk and there will 
always be a fundamental error associated with it. The best model is the one that most adequately 
represents the phenomenon of interest. 

In relation to the object of our study, power generation, there are several forecasting 
applications: (i) classical time series models like the autoregressive moving average, autoregressive 
integrated moving average, and generalized autoregressive conditional heteroscedastic among 
others [7,8]; (ii) pre-processing techniques like spectrum analysis, wavelets, and Fourier analysis [9]; 
and, (iii) machine learning approaches such as neural networks, fuzzy systems, and support vector 
machine [10]. Alternatively, hybrid models aim to combine machine learning representations with 
different methods. These methods include focused time-delay neural networks [11], wavelet neuro-
fuzzy systems [12], finite-impulse response neural networks [13], local feedback dynamic fuzzy 
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neural networks [14], type recurrent fuzzy networks [15], and neuro-fuzzy inference systems [16] 
among others.  

Additionally, an alternative class known as hierarchical forecasting [17–19] deals with organized 
time series that can be aggregated at different levels into groups based on geography, sources of 
energy, or other, specific features. Despite this being a recent topic, there is already research that has 
addressed the use of hierarchical forecasting models in the energy sector. Examples of hierarchical 
forecasting include electrical grids [20], solar power generation [21], energy transport [22], short-term 
load forecasting [23], long-term load forecasting [24], energy consumption [25], and air pollution [26] 
among others. 

The papers identified above have calibrated the forecasts using only the bottom-up, top-down 
or Ordinary least squares (OLS) assumptions [19]. Thus, the following research question is 
formulated: how is it possible to make hierarchical predictions using advanced linear regression 
models with regularization? In this way, it is expected to obtain more reliable forecasts by rewriting 
the hierarchical problem in terms of finding a set of unbiased, minimum variance measures of 
projected values across the whole array of data. It is possible to minimize the sum of variances of the 
reconciled estimate errors under the property of unbiasedness, using the procedure called MinT 
(minimum trace) reconciliation [27]. 

The present paper presents a case study using a power generation data set from Brazil (2018–
2020) organized by electrical subsystems and different generating sources. Specifically, the main 
approaches used to aggregate and disaggregate predictions made for grouped time series are 
examined, namely: (i) bottom-up, (ii) top-down and (iii) optimal reconciliation models (OLS, WLS 
and MinT). The ARIMA and ETS predictive models were used to test the performance of these 
reconciliation methods, since these are the default models available in the R-package HTS. Further 
descriptions can be found in the materials and methods section. 

The remainder of the present paper is organized as follows. Section 2 defines the study 
methodology, describing the data set, hierarchical procedures, and forecasting models employed. 
Section 3 presents the results and discussions of the techniques, in addition to the limitations of this 
paper. Finally, Section 4 presents the conclusions and guidelines for future work. 

2. Materials and Methods 

The secondary data used in this study correspond to the amounts of power generated by each 
of the Brazilian electrical subsystems (North, Northeast, Southeast/Midwest, and South). We 
separated these data according to the source of energy (wind, hydroelectric, thermal, solar, and 
nuclear). Data were obtained from the National Electric System Operator [28], due to their reliability. 
The observations of hourly power generation (GWh) were made during the period from January 2018 
to January 2020, making a total of 17,521 hours. 

Based on Hyndman et al. [19], we present a schematic representation of the Brazilian energy 
generation system, comprising a three-level hierarchical structure (Figure 1). Level 0 represents the 
total energy generated in Brazil (completely aggregated series). Level 1 denotes each of Brazil's 
electrical subsystems (first level of disaggregation). The last level, Level 2, represents each of the 
energy generating sources (Level k). According to this framework, it is possible to identify the most 
disaggregated time series (in this case k = 2). 
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Figure 1. Hierarchical aggregation structure for the energy generation in Brazil. 

Table 1 shows the amounts of power generation in Brazil (GWh), according to generating 
sources and electrical subsystems. There is a predominance of hydroelectric generation (73%), 
making the Brazilian electrical matrix one of the cleanest in the world. At the same time, the 
Southeast/Midwest subsystem accounts for more than half (56%) of all energy generated in the 
country. 

Table 1. Amounts of power generation in Brazil (GWh). 

Subsystem/Source Wind Hydro Thermal Solar Nuclear Total (GWh—Subsystem) % 
North                      (A) 2688 125,182 31,489 0 0 159,359 14.3% 
Northeast                 (B) 85,377 37,705 36,699 4626 0 164,407 14.7% 
Southeast/Midwest   C) 0 518,714 73,555 2437 31,805 626,511 56.1% 
South                       (D) 11,326 135,914 19,472 0 0 166,712 14.9% 
Total (GWh—Source) 99,391 817,516 161,215 7063 31,805 1,116,989 100% 

% 8.9% 73.2% 14.4% 0.6% 2.8% 100% - 

Routines were implemented using the R® programming language [29]. The R-package HTS was 
used to calculate the bottom-up, top-down, optimal combination reconciliation and trace 
minimization reconciliation. HTS is available at: https://cran.r-
project.org/web/packages/hts/index.html. Although HTS includes functions for creating, plotting 
and forecasting hierarchical time series, it has some limitations. Those limitations include the fact that 
it has only three built-in forecasting options: ARIMA, ETS, and random walks [19]. This paper will 
use the ARIMA and the ETS models since they have automatic adjustment and allow consideration 
of factors such as the trend and seasonality of the data set. The computer used to execute the 
algorithms had CPU Intel Core i5-7200 2.70 GHz, RAM of 16 GB, and operating system Windows 10 
x64. In the next subsection, we present the hierarchical reconciliation models used in the present 
paper, as well as the forecasting models. 

2.1. The Bottom-Up (BU) Approach 

The BU procedure requires first providing forecasts for every series at the bottom-level, and then 
summing these to generate forecasts for all the levels of the hierarchical structure [30]. In its 
simplicity, this approach neglects the relations between time series and works, mainly 
unsuccessfully, on highly disaggregated data. These data tend to have a low signal-to-noise ratio [27]. 
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According to the hierarchy (Figure 1), we first make h-step-ahead forecasts for all the bottom-level 
time series (n = 14): 𝑦ො஺஺,௧ , 𝑦ො஺஻,௧ , 𝑦ො஺஼,௧ , 𝑦ො஻஺,௧ , 𝑦ො஻஻,௧ , 𝑦ො஻஼,௧ , 𝑦ො஻஽,௧ , 𝑦ො஼஺,௧ , 𝑦ො஼஻,௧ , 𝑦ො஼஼,௧ , 𝑦ො஼஽,௧ , 𝑦ො஽஺,௧ , 𝑦ො஽஻,௧ , 𝑦ො஽஼,௧. (1) 

Summing these, we obtain h-step-ahead forecasts for the rest of the series: 𝑦෤௧  = 𝑦ො஺஺,௧ + 𝑦ො஺஻,௧ + 𝑦ො஺஼,௧ + 𝑦ො஻஺,௧ + 𝑦ො஻஻,௧ + 𝑦ො஻஼,௧ + 𝑦ො஻஽,௧ +  𝑦ො஼஺,௧ +  𝑦ො஼஻,௧ + 𝑦ො஼஼,௧ + 𝑦ො஼஽,௧ + 𝑦ො஽஺,௧ + 𝑦ො஽஻,௧ + 𝑦ො஽஼,௧. 𝑦෤஺,௧  = 𝑦ො஺஺,௧ + 𝑦ො஺஻,௧ + 𝑦ො஺஼,௧. 𝑦෤஻,௧  = 𝑦ො஻஺,௧ + 𝑦ො஻஻,௧ + 𝑦ො஻஼,௧ +  𝑦ො஻஽,௧. 𝑦෤஼,௧  = 𝑦ො஼஺,௧ + 𝑦ො஼஻,௧ + 𝑦ො஼஼,௧ + 𝑦ො஼஽,௧. 𝑦෤஽,௧  = 𝑦ො஽஺,௧ + 𝑦ො஽஻,௧ + 𝑦ො஽஼,௧. 
 

(2) 

According to [19], it is possible to arrange the equations expressed in (2) into an algebra notation. 
Below is a complete notation for this problem: 
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(3) 

Alternatively, the notation presented in (3) can be reformulated in a compact way by applying 
the summing matrix. Thus, the bottom-up approach can be represented as: 𝑦෤௧ = 𝑆𝑏෠௧, (4) 

where 𝑦෤𝒕 is an 𝑛-dimensional vector of ℎ-step-ahead forecasts for the total energy, S is the summing 
matrix, and 𝑏෠௧ is an 𝑚-dimensional vector of ℎ-step-ahead forecasts for each of the sources of energy 
at bottom-level. An advantage of this procedure is that we are forecasting at the bottom-level of a 
hierarchy. Consequently, no information is missed due to aggregation [17]. 

2.2. The Top-Down (TD) Approach 

Top-down methods operate with strictly hierarchical aggregation structures, not with grouped 
structures. They involve first making forecasts for the Total level 𝑦௧, and next disaggregating these 
down the hierarchy [17]. Let 𝑝ଵ, … , 𝑝௠ be a set of disaggregation proportions that deliver the forecasts 
of the Total series, which are to be distributed in order to obtain forecasts for all series at the bottom-
level of the structure. To illustrate, concerning our hierarchy by applying proportions to Figure 1, we 
get 𝑝ଵ, … , 𝑝ଵସ: 𝑦෤஺஺,௧ = 𝑝ଵ𝑦ො௧ , 𝑦෤஺஻,௧ = 𝑝ଶ𝑦ො௧ , 𝑦෤஺஼,௧ = 𝑝ଷ𝑦ො௧ . 𝑦෤஻஺,௧ = 𝑝ସ𝑦ො௧ , 𝑦෤஻஻,௧ = 𝑝ହ𝑦ො௧ , 𝑦෤஻஼,௧ = 𝑝଺𝑦ො௧ , 𝑦෤஻஽,௧ = 𝑝଻𝑦ො௧ . 𝑦෤஼஺,௧ = 𝑝଼𝑦ො௧ , 𝑦෤஼஻,௧ = 𝑝ଽ𝑦ො௧, 𝑦෤஼஼,௧ = 𝑝ଵ଴𝑦ො௧, 𝑦෤஼஽,௧ = 𝑝ଵଵ𝑦ො௧. 𝑦෤஽஺,௧ = 𝑝ଵଶ𝑦ො௧ , 𝑦෤஽஻,௧ = 𝑝ଵଷ𝑦ො௧ , 𝑦෤஽஼,௧ = 𝑝ଵସ𝑦ො௧. 

(5) 
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This can be rewritten using matrix notation. If we stack the set of proportions in an m-
dimensional vector 𝑝 = (𝑝ଵ, … , 𝑝௠)ᇱ, we have the bottom-level h-step-ahead predictions. Overall, for 
a given set of proportions, top-down approaches can be written as: 𝑏෨௧ = 𝑝௝𝑦ො௧. 𝑦෤௧ = 𝑆𝑝௝𝑦ො௧. (6) 

The main TD models stipulate disaggregation proportions according to the historical 
proportions of the data. Among the main models of this approach, we highlight the following three: 
(i) top-down Gross–Sohl method A (TDGSA), (ii) top-down Gross–Sohl method F (TDGSF), and (iii) 
Top-down forecast proportions (TDFP) (Table 2). Additional details and demonstrations of Table 2 
can be obtained from [31] and [18]. 

Table 2. TD disaggregation proportions according to the historical proportions of the data. 

TD Gross-Sohl Method A 
TDGSA 

TD Gross-Sohl Method F 
TDGSF 

TD Forecast Proportions 
TDFP 𝑝௝ = 1𝑇 ෍ 𝑦௝,௧𝑦௧

்
௧ୀଵ  𝑝௝ = ෍ 𝑦௝,௧𝑇்

௧ୀଵ / ෍ 𝑦௧𝑇்
௧ୀଵ  𝑝௝ = ෑ 𝑦ො௝,௧(௟)𝑆መ௝,௧(௟ାଵ)௄ିଵ

௟ୀ଴  

for 𝑗 = 1, … , 𝑚. Each proportion 𝑝௝ reflects the average of the 
historical proportions of the 

bottom-level series 𝑦௝,௧ , t over 
the period 𝑡 = 1, … , 𝑇 relative to 

the total aggregate 𝑦௧. 

for 𝑗 = 1, … , 𝑚. Each 
proportion 𝑝௝ takes the 

average historical value of 
the bottom-level series 𝑦௝,௧ 

related to the average value 
of the total aggregate 𝑦௧. 

where 𝑗 = 1, … , 𝑚, 𝑦ො௝,௛(௟) is the ℎ-step-ahead forecast and 𝑆መ௝,௧(௟) is the sum of the ℎ-step-
ahead forecasts below the 
node that is 𝑙 levels above 

node 𝑗. 

2.3. The Optimal Reconciliation Approaches 

The optimal reconciliation approach proposed by [19] consists of an ordinary least squares 
problem based on the calculation of independent projections for all hierarchical levels, then applying 
a regression model to optimize the combination of these forecasts. According to [32], we can write 
the base prediction as: 𝑦ො௧ା௛|௧ = 𝑆𝛽௧ା௛|௧ + 𝜀௛, (7) 

where 𝛽𝑡+ℎ|𝑡 represents the unknown conditional mean of the most disaggregated series, and 𝜀ℎ is the 
error with mean of zero and covariance matrix ∑𝒉. If ∑𝒉 were known, the estimator of 𝛽𝑡+ℎ|𝑡 would 
lead to the following weighted least squares, producing reconciled forecasts, as follows: 𝑦෤௧ା௛|௧ = 𝑆𝛽መ௧ା௛|௧ = 𝑆(𝑆ᇱ∑௛ିଵ𝑆)ିଵ𝑆ᇱ∑௛ିଵ𝑦ො௧ା௛|௧ = 𝑆𝑃𝑦ො௧ା௛|௧, (8) 

where 𝑃 = (𝑆ᇱ ∑ 𝑆ିଵ௛ )ିଵ𝑆′ ∑ 𝑆ିଵ௛ . If the base forecasts 𝑦ො𝑡+ℎ|𝑡 are unbiased, then the reconciled forecasts 𝑦෤𝑡+ℎ|𝑡  will be unbiased, provided that 𝑆𝑃𝑆 = 𝑆  [19]. This condition is valid for this reconciliation 
procedure for the bottom-up, although not for the top-down, methods. Consequently, the top-down 
approaches will never give unbiased reconciled forecasts, even if the base forecasts are unbiased. 
Additionally, [27] proved that, in general, ∑ ℎ is not known and not identifiable. The covariance 
matrix of the ℎ-step-ahead reconciled forecast errors is given by the following expression: 𝑉𝑎𝑟(௬೟శ೓ି௬෤೟శ೓|೟) = 𝑆𝑃𝑊௛𝑃′𝑆′, (9) 

for any 𝑃 such that 𝑆𝑃𝑆 = 𝑆, then 𝑊ℎ = 𝑉𝑎𝑟(𝑦𝑡+ℎ−𝑦ො𝑡+ℎ|𝑡) = 𝐸(𝑒ො𝑡+ℎ|𝑡𝑒ො′𝑡+ℎ|𝑡) is the covariance matrix of 

the corresponding h-step ahead base forecast errors. The purpose is to get the matrix P that minimizes 
the error variances of the reconciled forecasts which are on the diagonal of the covariance matrix 𝑉𝑎𝑟(𝑦𝑡+ℎ−𝑦෤𝑡+ℎ|𝑡). Finally, [27] demonstrated that the optimal reconciliation matrix P that minimizes the 

trace of 𝑆𝑃𝑊௛𝑃′𝑆′ =, such that 𝑆𝑃𝑆 = 𝑆, and the optimal reconciled forecasts, respectively, are given 
by: 



Energies 2020, 13, 3722 6 of 17 

 

𝑃 = (𝑆ᇱ𝑊௛ି ଵ𝑆)ିଵ𝑆′𝑊௛ି ଵ 𝑦෤௧ା௛|௧ = 𝑆(𝑆ᇱ𝑊௛ି ଵ𝑆)ିଵS′𝑊௛ି ଵ𝑦ො௧ା௛|௧, 
 

(10) 

which is introduced as the MinT (minimum trace) estimator. The next step consists of estimating 𝑊ℎ, 
a matrix of order 𝑛. Wickramasuriya, Athanasopoulos and Hyndman [27] proposed the following 
procedures (Table 3) to obtain the matrix: 

Table 3. Hierarchical forecasting for electricity generation based on the ARIMA procedure. 

Procedure Description 

OLS 
𝑊௛ = 𝑘௛𝐼, ∀ℎ where 𝑘௛ > 0. This is the most simplifying premise, and collapses the MinT estimator to the 

OLS estimator, proposed by Hyndman et al. [19]. This is optimal when the base forecast errors are 
uncorrelated and equivariant. 

WLSv 

𝑊௛ = 𝑘௛diag(𝑊෡ଵ), ∀ℎ where 𝑘௛ > 0 and: 𝑊෡ = ଵ் ∑ 𝑒̂௧(1)𝑒̂௧(1)′௧்ୀଵ  , 
is the unbiased sample covariance estimator of the in-sample one-step-ahead base forecast errors. In this 

case, we can describe MinT as a WLS estimator applying variance scaling [27]. 

WLSs 

𝑊௛ = 𝑘௛Λ, ∀ℎ where 𝑘௛ > 0 and Λ = diag(𝑆1)  with 1 being a unit column vector of dimension 𝑛. We 
assume that each of the bottom-level base forecast errors has a variance 𝑘௛ and is uncorrelated between 

nodes. Consequently, every element of the diagonal Λ matrix receives the number of forecast error 
variances contributing to that aggregation level [27]. This estimator depends only on the grouping 

structure of the hierarchy. 
MinT 

(Sample) 
𝑊௛ = 𝑘௪𝑊෡ଵ, ∀ℎ where 𝑘௛ > 0 , the unrestricted sample covariance estimator for ℎ = 1 [27]. In the results 

section, we denote this as MinT (Sample). 

MinT 
(Shrink) 

𝑊௛ = 𝑘௪𝑊ଵ,஽∗෢ ; ∀ℎ; 𝑘௛ > 0; 𝑊ଵ,஽∗ = 𝜆஽𝑊෡ଵ,஽ + (1 − 𝜆஽)𝑊෡ଵ , 
is a shrinkage estimator with diagonal target, 𝑊෡ଵ,஽, which is a diagonal matrix comprising the diagonal 
entries of 𝑊෡ଵ, and 𝜆஽ is the shrinkage intensity parameter. Thus, off-diagonal elements of 𝑊෡ଵ are shrunk 

toward zero and diagonal elements (variances) remain unchanged [27]. Wickramasuriya, Athanasopoulos 
and Hyndman [27] suggested a scale and location invariant shrinkage estimator by parameterizing the 

shrinkage in terms of variances and correlations: 𝜆መ஽ = ∑ ௩௔௥ෞ (ೝෝ೔ೕ)೔ಯೕ∑ ௥̂మ೔ೕ೔ಯೕ  , 

where 𝑟̂௜௝ is the 𝑖𝑗th element of 𝑅෠ଵ, the 1-step-ahead sample correlation matrix to shrink it toward an 
identity matrix. 

Source: adapted by authors from: [27]. 

2.4. ARIMA and ETS Formulation 

ARIMA is one of the most-widely-used time series approaches for forecasting power generation 
[33]. Although studies have shown that ETS outperforms ARIMA [34], it is recommended to keep 
ARIMA as a reference model during the forecasting process. Moreover, several statistical software 
packages, like R®, provide automatic model identification and parameter estimation skills for both 
ARIMA and ETS [17]. Professor Hyndman [19] developed the HTS package initially based on these 
predictive models. The present paper aims to test different approaches to optimal forecast 
reconciliation and, to do so, only the ARIMA and ETS models will be used. It is recommended that 
future studies extend these forecasting procedures using different predictive models, such as 
machine learning ones. 

ARIMA was proposed by [33]. It is a linear forecasting method for dealing with stationary time 
series [34]. In the initial step, a time series is built stationary by differencing 𝑑 times along with some 
nonlinear transformations, such as logging [34]. The consequential data are recognized as a linear 
function of past 𝑝 data values and 𝑞 errors (11), i.e., modeled as an autoregressive moving average 
(ARMA) model, 𝑦௧ = ∅ଵ𝑦௧ିଵ + ∅ଶ𝑦௧ିଶ+. . . +∅௣𝑦௧ି௣ + Θଵ𝜀௧ିଵ + Θଶ𝜀௧ିଶ+. . . +Θ௤𝜀௤ିଵ, (11) 

where 𝑦௧ denotes real value at time 𝑡, 𝜀௧ describes the error sequence: it is supposed to be white noise 
and Gaussian distributed (0, 𝜎ଶ). ∅௜ for (𝑖 = 1,2, . . . , 𝑝) are autoregressive (𝐴𝑅) coefficients and 𝛩௝ for (𝑗 =  1, 2, … , 𝑞)  are moving average (𝑀𝐴)  coefficients. 𝑝  and 𝑞  are integers referred to as model 
orders. The time series model is denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) [35,36]. 
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According to [34], the group of exponential smoothing methods utilizes the principle of 
weighted averages of past information for making forecasts. Since its formulation in 1950, a variety 
of exponential smoothing methods have been developed. All exponential smoothing methods were 
initially classified by [37], which has been continued by [38–40]. ETS stands for error, trend, and 
seasonality elements. As pointed by [34], the usual representation for these patterns involves a state 
vector 𝑥௧ = (𝑙௧, 𝑏௧, 𝑠௧, 𝑠௧ିଵ, . . . , 𝑠௧ି௠ାଵ)ᇱ, and the state space equations [39] have the resulting structure: 𝑦௧ = 𝑤(𝑥௧ିଵ) + 𝑟(𝑥௧ିଵ)𝜀௧ 𝑥௧ = 𝑓(𝑥௧ିଵ) + 𝑔(𝑥௧ିଵ)𝜀௧ , 

 

(12) 

where (𝜀𝑡) denotes a Gaussian white noise (0, 𝜎ଶ) and 𝜇௧ = 𝑤 ( 𝑥௧ − 1). The model with additive error 
has 𝑟௧ ( 𝑥௧ − 1) = 1, so 𝑦௧  =  𝜇௧  + 𝜀௧ . The model with multiplicative errors has 𝑟௧ ( 𝑥௧ − 1) = 𝜇௧ = 𝜇𝑡, 
so 𝑦௧  =  𝜇௧(1 + 𝜀௧ ) . Consequently, 𝜀௧ = (𝑦௧ − 𝜇௧) ∕ 𝜇௧ is a relative error for the multiplicative model 
and any value of 𝑟௧ ( 𝑥௧ − 1) will lead to the identical point forecast for 𝑦௧ [34,39]. 

2.5. Evaluating Forecast Accuracy 

According to [20], there are several accuracy metrics, such as mean absolute percentage error 
(MAPE), mean absolute error (MAE), mean absolute scaled error (MASE), or root-mean-square error 
(RMSE), to evaluate the performance of point prediction methods, defined as follows: 𝑀𝐴𝑃𝐸 = ଵ் ∑ ቚ௬೟ି௬ො೟௬೟ ቚ௧்ୀଵ . (13) 𝑀𝐴𝐸 = ଵ் ∑ |𝑦௧ − 𝑦ො௧|௧்ୀଵ . (14) 𝑀𝐴𝑆𝐸 = 𝑀𝐴𝐸𝑀𝐴𝐸௜௡ି௦௔௠௣௟௘,௡௔௜௩௘ (15) 𝑅𝑀𝑆𝐸 = ටଵ் ∑ (𝑦௧ − 𝑦ො௧)ଶ௧்ୀଵ , (16) 

where 𝑦௧ is the amount of power generation at time t, 𝑦ො௧ is the fitted value for power generation, and 𝑀𝐴𝐸௜௡ି௦௔௠௣௟௘,௡௔௜௩௘ is the MAE generated by a naive forecast. 
Specifically, in studies of hierarchical time series, the MAPE indicator appears the most 

frequently in the literature [41–43]. MAPE was also the selected metric for the present paper (Figures 
2 and 3). Complementarily, MAE, MASE, and RMSE were estimated, and the results can be found in 
the appendix (Figures A3 and A4). The values of the MAPE, MAE, MASE and RMSE statistics were 
obtained using a weighted average, with proportions from Table 1. 

3. Results and Discussion 

Figure 2, below, shows the predictive result obtained, using the ARIMA model, considering a 
predictive window of nine hours (ℎ = 1, … , 9). Note that the model was estimated, taking the main 
hierarchical adjustment approaches into account, for the following levels: (i) total power generation 
in Brazil (Level 0), (ii) total energy generation by electrical subsystem (Level 1), and (iii) total energy 
generation by the energy generating source (Level 2) . For Level 1, four forecasts (one for each 
electrical subsystem) were estimated. For Level 2, 14 forecasts (one for each energy source) were 
estimated. 

Therefore, we estimated 1539 predictive models satisfying the following proportions: (i) 81 
models for Level 0, (ii) 324 models for Level 1, and (iii) 1134 models for Level 2. The MAPE calculation 
for Levels 1 and 2 was based on a weighted average of the predictive errors. The weighting factors 
used are shown in Table 1. 

The performance of each predictive model, divided by the forecast horizon, is illustrated by a 
color scale. The green colors indicate the most accurate forecasts, while the red colors symbolize less 
accurate forecasts. The best forecasts, for each of the predictive horizons, are highlighted in bold. The 
last column of Table 1 presents the average performance for each forecast horizon (h) for each 
hierarchical approach. 

As pointed by [27], the MinT procedure has a useful feature: it systematizes results into a unique 
analytical solution that incorporates information about the correlation structure of the entire dataset. 
Additionally, the minimum trace reconciliation, with or without regularization, presented the best 
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results of all linear reconciliation methods, such as OLS and WLS, with variations. Moreover, the 
MinT (Sample) approach returns the most accurate, coherent forecasts for all levels considering just 
the first forecast horizons. However, as the predictive window grows, the BU method becomes more 
accurate. Furthermore, the performance of the BU model increases as the time series disaggregate. 

As expected, the results obtained using the top-down technique did not present good predictive 
results, since it is intended to generate forecasts for level 0, with worse accuracy for the other levels. 
Both BU and TD present disadvantages: they do not take the correlation among the series at each 
level into account. 

The other accuracy metrics presented in the appendix (MAE, MAE, and RMSE) reinforce the 
results found. In general, the performance of the optimal reconciliation models, by trace 
minimization, provides more uniform estimates and better predictive potential for the first hours of 
the predictive horizon (Figures A3 and A4). 

 
Figure 2. Hierarchical forecasting for electricity generation based on the ARIMA procedure (MAPE). 
(Note: The performance was indicated into a color scale, where green means better values for 
calculated accuracy, and red means worse accuracy. The intermediate values are colored yellow.). 

Forecast horizon (h)

1 2 3 4 5 6 7 8 9 Mean

BU 2.00 3.53 5.62 8.04 10.17 11.45 11.17 10.76 10.48 8.14

TDGSA 2.07 3.76 6.10 8.79 11.25 12.87 12.95 12.72 12.63 9.24

TDGSF 2.07 3.76 6.10 8.79 11.25 12.87 12.95 12.72 12.63 9.24

TDFP 2.07 3.76 6.10 8.79 11.25 12.87 12.95 12.72 12.63 9.24

OLS 1.98 3.65 5.94 8.59 10.99 12.54 12.55 12.23 12.06 8.95

WLSv 1.91 3.51 5.70 8.24 10.51 11.93 11.79 11.32 10.99 8.43

WLSs 1.88 3.46 5.63 8.15 10.39 11.77 11.59 11.09 10.76 8.30

MintT (Sample) 1.68 3.29 5.50 8.02 10.24 11.57 11.31 10.85 10.60 8.12

MinT (Shrink) 1.74 3.36 5.59 8.12 10.35 11.69 11.44 10.94 10.69 8.21

BU 1.97 3.64 6.12 8.75 10.78 11.93 11.90 11.70 11.88 8.74

TDGSA 31.97 31.74 30.37 28.93 28.12 27.49 26.71 26.04 25.36 28.53

TDGSF 32.38 32.14 30.71 29.21 28.21 27.46 26.71 26.06 25.41 28.70

TDFP 1.86 3.88 6.68 9.89 9.89 12.52 14.19 14.45 14.34 9.75

OLS 1.90 3.55 6.30 9.20 11.70 13.36 13.64 13.56 13.66 9.65

WLSv 1.77 3.35 5.84 8.62 10.84 12.38 12.56 12.40 12.41 8.91

WLSs 1.81 3.41 5.92 8.74 11.00 12.57 12.79 12.68 12.75 9.07

MintT (Sample) 1.64 3.20 5.66 8.50 10.76 12.23 12.40 12.21 12.20 8.76

MinT (Shrink) 1.66 3.28 5.75 8.57 10.84 12.33 12.50 12.31 12.28 8.83

BU 2.66 5.05 6.53 7.71 8.88 9.46 9.40 9.22 9.11 7.56

TDGSA 46.33 44.34 41.72 40.35 39.87 39.29 38.44 37.52 36.58 40.49

TDGSF 47.66 45.70 42.87 41.24 40.42 39.64 38.80 37.90 36.96 41.24

TDFP 2.83 5.51 7.53 9.45 9.45 11.46 12.79 13.20 13.33 9.50

OLS 2.51 5.07 6.78 8.29 9.78 10.62 10.73 10.63 10.56 8.33

WLSv 2.60 5.11 6.74 8.09 9.42 10.18 10.21 10.07 9.97 8.04

WLSs 2.56 4.98 6.64 8.00 9.31 10.00 9.95 9.70 9.63 7.86

MintT (Sample) 2.48 4.96 6.58 7.91 9.27 10.10 10.22 10.10 10.00 7.96

MinT (Shrink) 2.52 5.04 6.68 8.02 9.38 10.20 10.30 10.19 10.10 8.05

Hierarchical level 0 : Total - Brazil

Predictive model: Autoregressive integrated moving average (ARIMA)
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In addition to the ARIMA predictive model, Figure 3 presents the same forecasting procedures. 
However, they are based on the ETS automatic adjustment model. The objective is to show the 
influence of different forecasting methods for each hierarchical reconciliation model. In general, the 
error percentage produced by the ETS model was slightly higher than that produced by the ARIMA 
model. Figure 3 also shows the influence of trace minimization procedures (MinT) on the 
improvement of predictive performance. In particular, the MinT models have good predictive 
performance, even with the increase of the forecast horizon hours. 

The average performance of the trace minimization (MinT) models shows stability, considering 
all hierarchical levels. As shown in Figure 2, the ETS-based predictive model shares some similarities 
with the ARIMA model. The BU technique is better for the most disaggregated levels, whereas the 
TD technique stands out only at the more aggregated levels. Note that the trace minimization 
procedures show significant gains over the classic linear models, namely OLS and WLS. 

 
Figure 3. Hierarchical forecasting for electricity generation based on the ETS procedure. (Note: The 
performance was indicated into a color scale, where green means better values for calculated 
accuracy, and red means worse accuracy. The intermediate values are colored yellow.). 

Forecast horizon (h)

1 2 3 4 5 6 7 8 9 Mean

BU 2.60 4.89 7.73 10.90 13.79 15.78 16.20 16.28 16.48 11.63

TDGSA 2.11 4.21 6.90 9.95 12.73 14.64 14.98 14.99 15.12 10.62

TDGSF 2.11 4.21 6.90 9.95 12.73 14.64 14.98 14.99 15.12 10.62

TDFP 2.11 4.21 6.90 9.95 12.73 14.64 14.98 14.99 15.12 10.62

OLS 2.13 4.24 6.93 9.98 12.77 14.68 15.03 15.03 15.17 10.66

WLSv 2.26 4.42 7.16 10.25 13.06 15.00 15.37 15.39 15.55 10.94

WLSs 2.29 4.46 7.20 10.29 13.11 15.05 15.42 15.45 15.61 10.99

MintT (Sample) 2.06 4.14 6.80 9.84 12.61 14.51 14.84 14.84 14.96 10.51

MinT (Shrink) 2.07 4.15 6.82 9.86 12.63 14.53 14.87 14.87 14.99 10.53

BU 2.59 4.94 8.09 11.43 14.21 16.13 16.71 16.93 17.36 12.04

TDGSA 31.98 31.78 30.44 29.05 28.29 27.76 27.08 26.51 25.91 28.76

TDGSF 32.38 32.17 30.78 29.32 28.37 27.72 27.08 26.53 25.96 28.92

TDFP 2.17 4.37 7.37 10.58 10.58 13.24 15.05 15.54 15.68 10.51

OLS 2.15 4.34 7.35 10.55 13.22 15.04 15.53 15.68 16.04 11.10

WLSv 2.30 4.55 7.60 10.85 13.56 15.42 15.94 16.11 16.49 11.42

WLSs 2.27 4.50 7.54 10.79 13.49 15.34 15.85 16.03 16.40 11.36

MintT (Sample) 1.89 3.98 6.92 10.09 12.74 14.55 15.03 15.20 15.56 10.66

MinT (Shrink) 1.94 4.04 7.00 10.17 12.83 14.64 15.13 15.29 15.64 10.74

BU 3.13 6.56 9.01 11.16 13.24 14.40 14.74 15.21 15.63 11.45

TDGSA 46.34 44.42 41.84 40.48 40.00 39.45 38.69 37.87 37.00 40.68

TDGSF 47.66 45.77 42.98 41.35 40.54 39.77 38.99 38.17 37.32 41.40

TDFP 2.90 6.31 8.74 10.97 10.97 13.05 14.29 14.58 14.94 10.75

OLS 3.14 6.60 9.07 11.30 13.38 14.62 14.92 15.31 15.74 11.56

WLSv 2.76 6.08 8.42 10.56 12.53 13.72 13.97 14.18 14.56 10.75

WLSs 3.13 6.57 9.02 11.21 13.29 14.49 14.79 15.21 15.63 11.48

MintT (Sample) 2.67 5.88 8.10 10.10 11.99 13.05 13.20 13.47 13.81 10.25

MinT (Shrink) 2.63 5.89 8.17 10.21 12.14 13.25 13.43 13.72 14.09 10.39

Hierarchical level 0 : Total - Brazil

Predictive model: Error, trend, seasonality (ETS)
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M
et

ho
d

M
et

ho
d

Hierarchical level 1 : Electrical subsystems

M
et

ho
d



Energies 2020, 13, 3722 10 of 17 

 

Figures 2 and 3 present some limitations. In general, it is not possible to test the predictive 
influence of each of the subsystems within the established forecast horizon. To show this problem, 
Figure 4 presents a predictive comparison (MAPE) for each of the Brazilian electrical subsystems, 
considering the nine-hour predictive horizon. On the left is the technique with the best 
aggregation/disaggregation performance (BU) for the ARIMA model. On the right is the technique 
with the best average performance (MinT) for the ETS automatic selection model.  

Figure 4 thus shows a negative influence of the "south" electrical subsystem in the global 
measures of accuracy, especially from a predictive horizon of three hours onward. This system 
should be analyzed more thoroughly to identify energy sources located in the “south” subsystem 
that contributed most to the predictive instability of this system. Simultaneously, the use of 
individualized predictive models for this “south” system can be a good strategy, since unique 
climatic conditions exist in southern Brazil. 

 
Figure 4. Hierarchical forecasting for power generation: electrical subsystem versus forecast 
horizon. 

Figures A1 and A2 (Appendix A) present the accuracy measure of the ARIMA and ETS models 
in detail, considering energy sources versus electrical subsystems. These results reinforce those in 
Figure 4, indicating instability in the southern subsystem, especially wind energy data.  

Finally, some limitations of the present paper are recognized here. First, predictive models are 
based on past information evaluable, so the presented results cannot be extrapolated for different 
contexts and other time periods. Additionally, it is necessary to incorporate other predictive models 
to make the results more robust. In future research, it is recommended that models which integrate 
high-frequency data, e.g., the Wavelet approach, be adopted. 

4. Conclusions 

Analysis of the energy market is complicated. It involves the relationship between forecasting 
models and uncertainty, distinctly regarding the stochastic behavior of variables. The present paper 
is aimed at policymakers, offering a forecasting tool that deals with grouped time series. It also 
proposes a new forecasting approach, based on hierarchical modeling of the energy generation in 
Brazil. 

The present paper introduces the use of trace minimization procedures (MinT) to aggregate and 
disaggregate forecasts based on the ARIMA and ETS models. MinT models performed better than 
the classic linear approaches, such as OLS and WLS. The MinT models also have high reliability for 
short predictive horizons. It is noteworthy that both hierarchical procedures and forecasting methods 
influence the predictive values of power generation in Brazil. Despite its advantages, the optimal 
reconciliation approach also has some limitations. This method could be unduly influenced by the 
sample period, and thus its ranking might change for other periods. 
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Therefore, the use of other predictive models, such as those based on analogs, machine learning, 
and other hybrid techniques, for example, is recommended. For future research, fine-tuning forecasts 
of the “south” electrical subsystem, as well as testing the accuracy of the hierarchal methods by using 
new forecasting approaches, is also recommended. 

Finally, the present study contributes to the energy planning processes of different agents, given 
that understanding energy generation patterns is singularly important for minimizing risks and 
supporting reliable production planning. Good forecasts for future energy generation can support 
operational arrangements since energy supply and demand impact spot market sales prices. 

Author Contributions: Both authors made substantial contributions to the analysis presented in the paper. 
T.S.G. took lead responsibility for proposing the methodology and for drafting the manuscript and M.A.C. for 
revising it critically. M.A.C. supervised the project. Both authors have read and agree to the published version 
of the manuscript. 

Funding:  This research was funded by [National Council for Scientific and Technological Development—CNPq] 
grant number [141740/2019-1]. 

Acknowledgments: The authors would like to thank the National Council for Scientific and Technological 
Development (CNPq) and Companhia Energética Integrada (CEI) for supporting this research. 

Conflicts of Interest: This statement is to certify that all authors have seen and approved the manuscript being 
submitted. The authors declare that there is no conflict of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 
ARIMA Autoregressive integrated moving average model 
BU  Bottom-up 
ETS Error, trend, and seasonality model 
GWh Gigawatt hours 
MAPE Mean absolute percentage error 
MinT Minimum trace reconciliation 
OLS Ordinary least squares 
ONS Operator of the National System 
TD  Top-down 
TDFP Top-down forecast proportions 
TDGSA Top-down Gross-Sohl method A 
TDGSF Top-down Gross-Sohl method F 
WLS Weighted least squares 

Nomenclature 

The following nomenclature is used in this manuscript: 𝑘  Level of disaggregation ℎ  Forecast horizon 𝑏෠௧  𝑚-dimensional vector of ℎ-step-ahead forecasts 𝛽௧ା௛|௧ Unknown conditional mean of the most disaggregated series 𝜀௛  Error for each forecast horizon ∑௛  Covariance matrix  𝑝  Set of proportions in an m-dimensional vector 𝑝௝  The average of the historical proportions 𝑆  Summing matrix 𝑆መ௝,௧(௟) The sum of the ℎ-step-ahead forecasts for TD 𝑊௛  Covariance matrix of the corresponding h-step ahead base forecast errors 𝑦௧   Total level of power generation 𝑦෤௧  an 𝑛-dimensional vector of ℎ-step-ahead forecasts 
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𝑦ො௝,௛(௟) The ℎ-step-ahead forecast for TD  𝑦෤௧ା௛|௧ Reconciled forecasts  𝜆መ஽  Shrinkage estimator 

Appendix A 

 
Figure A1. Hierarchical forecasting for power generation: electrical subsystem versus generating 
source. 
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Figure A2. Hierarchical forecasting for power generation: electrical subsystem versus generating 
source. 
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Figure A3. Hierarchical forecasting for electricity generation based on the ARIMA procedure (RMSE, 
MAE, MASE). (Note: The performance was indicated into a color scale, where green means better 
values for calculated accuracy, and red means worse accuracy. The intermediate values are colored 
yellow.). 

[1-3] [4-6] [7-9] Mean [1-3] [4-6] [7-9] Mean [1-3] [4-6] [7-9] Mean

BU 2.36 7.77 8.50 6.21 2.20 6.46 7.14 5.27 1.11 3.27 3.62 2.67

TDGSA 2.47 8.07 9.33 6.62 2.35 7.11 8.35 5.93 1.19 3.60 4.23 3.01

TDGSF 2.47 8.07 9.33 6.62 2.35 7.11 8.35 5.93 1.19 3.60 4.23 3.01

TDFP 2.47 8.07 9.33 6.62 2.35 7.11 8.35 5.93 1.19 3.60 4.23 3.01

OLS 2.41 7.97 9.12 6.50 2.28 6.95 8.05 5.76 1.15 3.52 4.08 2.92

WLSv 2.34 7.82 8.75 6.31 2.19 6.66 7.49 5.45 1.11 3.37 3.80 2.76

WLSs 2.32 7.79 8.67 6.26 2.16 6.59 7.36 5.37 1.09 3.34 3.73 2.72

MintT (Sample) 2.22 7.71 8.56 6.16 2.06 6.49 7.22 5.26 1.05 3.29 3.65 2.66

MinT (Shrink) 2.25 7.75 8.63 6.21 2.10 6.56 7.28 5.31 1.07 3.32 3.69 2.69

BU 1.04 2.99 3.18 2.40 0.97 2.52 2.66 2.05 1.04 2.74 2.97 2.25

TDGSA 5.48 6.88 7.06 6.47 5.46 6.72 6.88 6.35 6.30 7.44 7.45 7.06

TDGSF 5.51 6.91 7.08 6.50 5.50 6.75 6.90 6.38 6.28 7.40 7.41 7.03

TDFP 1.16 2.95 3.99 2.70 1.13 2.75 3.71 2.53 1.20 2.93 3.95 2.70

OLS 1.08 3.20 3.65 2.64 1.04 2.89 3.27 2.40 1.12 3.14 3.64 2.64

WLSv 1.05 3.10 3.44 2.53 1.00 2.73 3.01 2.24 1.06 2.91 3.26 2.41

WLSs 1.05 3.10 3.44 2.53 1.00 2.73 3.00 2.24 1.07 2.95 3.33 2.45

MintT (Sample) 1.01 3.07 3.41 2.50 0.96 2.70 2.95 2.20 1.00 2.87 3.18 2.35

MinT (Shrink) 1.02 3.08 3.43 2.51 0.97 2.72 2.97 2.22 1.02 2.90 3.22 2.38

BU 0.89 2.32 2.38 1.87 0.83 1.98 2.04 1.62 1.22 2.70 2.95 2.29

TDGSA 3.39 4.70 4.93 4.34 3.37 4.57 4.79 4.24 14.02 14.92 15.04 14.66

TDGSF 3.36 4.68 4.90 4.32 3.35 4.55 4.76 4.22 14.79 15.66 15.77 15.41

TDFP 0.98 2.30 2.97 2.08 0.95 2.15 2.77 1.95 1.62 3.57 4.91 3.37

OLS 0.90 2.37 2.49 1.92 0.85 2.07 2.15 1.69 1.85 5.25 7.12 4.74

WLSv 0.91 2.42 2.63 1.98 0.86 2.18 2.33 1.79 1.25 2.88 3.22 2.45

WLSs 0.90 2.35 2.44 1.89 0.84 2.04 2.09 1.66 1.60 4.22 5.37 3.73

MintT (Sample) 0.88 2.40 2.62 1.97 0.84 2.17 2.31 1.77 1.23 2.87 3.24 2.45

MinT (Shrink) 0.89 2.41 2.64 1.98 0.85 2.18 2.33 1.79 1.24 2.89 3.26 2.46
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Figure A4. Hierarchical forecasting for electricity generation based on the ETS procedure (RMSE, 
MAE, MASE). (Note: The performance was indicated into a color scale, where green means better 
values for calculated accuracy, and red means worse accuracy. The intermediate values are colored 
yellow.). 
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