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Abstract: Given reliable parameters, a newly developed semianalytic model could offer an efficient
option to predict the performance of the multi-fractured horizontal wells (MFHWs) in unconventional
gas reservoirs. However, two major challenges come from the accurate description and significant
parameters uncertainty of stimulated reservoir volume (SRV). The objective of this work is to develop
and calibrate a semianalytic model using the ensemble smoother with multiple data assimilation
(ES-MDA) method for the uncertainty reduction in the description and forecasting of MFHWs with
nonuniform distribution of induced fractures. The fractal dimensions of induced-fracture spacing (dfs)
and aperture (dfa) and tortuosity index of induced-fracture system (θ) are included based on fractal
theory to describe the properties of SRV region. Additionally, for shale gas reservoirs, gas transport
mechanisms, e.g., viscous flow with slippage, Knudsen diffusion, and surface diffusion, among
multi-media including porous kerogen, inorganic matter, and fracture system are taken into account
and the model is verified. Then, the effects of the fractal dimensions and tortuosity index of induced
fractures on MFHWs performances are analyzed. What follows is employing the ES-MDA method
with the presented model to reduce uncertainty in the forecasting of gas production rate for MFHWs
in unconventional gas reservoirs using a synthetic case for the tight gas reservoir and a real field case
for the shale gas reservoir. The results show that when the fractal dimensions of induced-fracture
spacing and aperture is smaller than 2.0 or the tortuosity index of induced-fracture system is larger
than 0, the permeability of induced-fracture system decreases with the increase of the distance from
hydraulic fractures (HFs) in SRV region. The large dfs or small θ causes the small average permeability
of the induced-fracture system, which results in large dimensionless pseudo-pressure and small
dimensionless production rate. The matching results indicate that the proposed method could enrich
the application of the semianalytic model in the practical field.

Keywords: history matching; semianalytic model; unconventional gas reservoirs; multistage fractured
horizontal wells; fractal theory

1. Introduction

Unconventional reservoirs, especially the tight sand and shale reservoirs, have become more and
more significant with the development of the horizontal wells and hydraulic fracturing technologies.
The complex fracture network surrounding the multistage fractured horizontal wells (MFHWs) called
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stimulated reservoir volume (SRV), has obvious influences on the production performance [1–3].
Currently, a lot of effort has been done to model the pressure transient and rate transient of MFHWs
aiming to forecast the production accurately. Through numerical methods, analytical methods,
and empirical methods [4–7], production data analysis in unconventional reservoirs, such as Barnett,
Bakken, and Eagle, shows that the linear flow in formation, especially in hydraulic fractures (HFs)
and SRV, dominates the production of MFHWs. Meanwhile, the advantage of analytic models is their
simplicity and less parameters compared with numerical and empirical models, although they cannot
characterize the over-complex heterogeneity properties and fracture system. Thus, considering the
main flow regimes in the life of MFHWs in unconventional gas reservoirs, various linear flow models
based on linear-flow assumptions have been developed. Ozkan et al. [8] and Brown et al. [9] reported
a trilinear model to study the performance of MFHWs in unconventional reservoirs, which divides the
formation into three main regions. In order to describe the SRV size between HFs more reasonably,
Stalgorova and Matter [10] improved the trilinear model to a five-linear model by simplifying SRV in a
region with limited width. On this basis, many scholars studied the production rate or pressure transient
performances of MFHWs in unconventional reservoirs [11,12]. Although the models mentioned above
can simulate the main linear-flow regimes in both SRV and unstimulated reservoir volume (USRV),
the heterogeneous distribution of complex induced fractures are not considered in SRV region, which
is the major distinct properties between SRV and USRV as shown in Figure 1.
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Figure 1. Simplified physical model and three typical presented linear-flow models for a multi-fractured
horizontal wells (MFHW) in unconventional reservoirs.

The distribution of induced fractures system in SRV affected by HFs and the pre-existing closed
natural fractures (NFs) with self-similar characterization can be described by fractal theory [13–15].
Chang and Yortsos [16] quantified the heterogeneous permeability and porosity of NFs using fractal
theory. Then, Cossio et al. [17] introduced the fractal permeability/porosity relation [18] into the
fractal diffusivity equation (FDE), which proved to be more fundamental than the classical diffusivity
equation. Wang et al. [19] combined FDE with dual-porosity media model in the trilinear model to
describe oil flow in SRV region of MFHWs in tight reservoirs, and their model provided a suitable way
to study the flow behaviors in heterogeneous induced fractures systems. Sheng et al. [20] extended the
fractal trilinear model to shale gas reservoirs coupling multi-porosity media (porous kerogen, inorganic
matter, and induced-fracture) with multiple gas transport mechanisms (viscous flow with slippage,
Knudsen diffusion, and surface diffusion). However, they did not consider the unstimulated reservoir
volume (USRV) between HFs, which cannot accurately describe the microseismic results. In addition,
the fracture porosity and permeability distribution affected by the distribution of induced-fracture
spacing and aperture, but there are limited reports about the calculation methods for the non-uniform
distribution of induced fractures spacing and aperture using fractal theory [21].
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History matching to estimate the critical parameters of formation and hydraulic fracturing and
rate prediction of MFHWs plays important roles in unconventional reservoirs based on the numerical
and analytic models. Samandarli et al. [22] presented a semianalytic method to estimate reservoir
parameters by history matching the production data of hydraulically fractured shale gas wells using a
least absolute value regression. Correction for gas properties changing with time and desorbed gas at
low pressure was considered in the model. According to the algebraic equations, bilinear flow regime
and linear flow regime were used to match both synthetic data and field data by doing regression
on matrix permeability, fracture permeability, and length. Hategan and Hawkes [23] used a simple
analytical model based on the solution of the pseudo-steady state equation to analyze the production
of MFHWs in shale gas reservoirs, and thought most shale gas reservoirs fit different type curves by
normalizing to reservoir pressure, permeability, and number of fracture stages. Considering the effect
of pressure-dependent natural-fracture permeability on production from shale gas wells, Cho et al. [24]
modified the trilinear flow model to match the production data of Haynesville and Barnett shale
gas wells. The reservoir properties and the correlation coefficients used for the pressure-dependent
permeability were matched ignoring the non-uniqueness issues caused by the large number of
parameters. Ogunyomi et al. [25] developed an approximate analytical solution to the double-porosity
model for MFHWs in unconventional oil reservoirs. Due to the solution obtained in real-time space,
the model was used to match the field data with the least-square method mainly by changing the
parameters related to time, and forecast the production rates. Clarkson et al. [26] combined analytical,
semi-analytical, and empirical methods for history matching and production forecasting for MFHWs
in tight and shale gas reservoirs. Linear-to-boundary (LTB) model [27], composite model [9,10],
and semi-analytical model (SAM) [26] were used to match the field data by fitting the parameters of
SRV and unstimulated region. Chen et al. [28] proposed a comprehensive semi-analytical model for
MFHWs considering the shale gas flow mechanisms. The unknowns including the well length, fracture
number, conductivity, and length were determined by history matching. Yao et al. [7] developed an
analytical multi-linear model based on linear flow and radial flow assumption. Permeability and
length of different regions, and fracture length were estimated by history matching with several field
data. Therefore, the semianalytic models coupling with history matching methods can be applied for
not only obtaining some critical parameters for MFHWs but also predicting the production rate.

The objective of this paper is development and calibration of a semianalytic model for shale wells
with nonuniform distribution of induced fractures based on ensemble smoother with multiple data
assimilation (ES-MDA). The fractal dimensions of induced-fracture spacing and aperture and tortuosity
index of induced-fracture system are included based on fractal theory to describe the properties of
SRV region. For shale gas reservoirs, gas transport mechanisms (viscous flow with slippage, Knudsen
diffusion, and surface diffusion) among multi-media (porous kerogen, inorganic matter, and fracture
system) are taken into account and the model is verified. The effects of the fractal dimensions and
tortuosity index of induced fractures on MFHWs performances are analyzed. Then, we employ the
ES-MDA method with the presented model to reduce uncertainty in the forecasting of gas production
rate for MFHWs in unconventional gas reservoirs using a synthetic case for the tight gas reservoir and
a real filed case for the shale gas reservoir. The matching results indicate that the proposed approach
could enrich the application of the semianalytic model in the practical field. Finally, some conclusions
are drawn and presented based on the results and analysis.

2. Fractal Semianalytic Model for Mfhws in Unconventional Gas Reservoirs

As shown in Figure 2, the basic workflow of a new semianalytic model construction in this
study consisted of two main parts: firstly, for SRV, which dominates the productivity of MFHWs in
unconventional gas reservoirs, the fractal fracture spacing distribution (FFSD) was taken into account
to describe its heterogeneous properties instead of classical idealized dual-media model; secondly,
based on the linear flow assumption, combining with the linear models for unstimulated reservoir
volume (USRV) (original formation), a coupled fractal multi-linear flow model (FMFM) for MFHWs
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was developed. The detailed derivations of the FMFM for MFHWs in unconventional gas reservoirs
are presented in following sections.
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Figure 2. Development of physical and mathematical models. (a) Map of micro-seismic monitoring
results; (b) simplified physical model presented in this study; (c) multi-linear mathematical model
presented in this study (modified from Sheng et al. [20]); (d) idealized homogeneous dual-media model
(IDMM) for stimulated reservoir volume (SRV) (modified from Warren and Root [29]); and (e) fractal
heterogeneous dual-media model (FDMM) for SRV.

2.1. Fractal Fracture Network Permeability and Porosity in SRV

Hydraulic fracturing creates the fracture network surround the horizontal well-bore and hydraulic
fracture. Due to differences in situ stress and fracture perforation position, the distribution of
induced-fracture properties including induced-fracture spacing and aperture are heterogeneous [21],
which affects the distribution of permeability and porosity of fracture network directly. Therefore,
the fractal dimensions for both induced-fracture spacing and aperture (dfs and dfa) are first discussed in
this section. Then the fracture network permeability and porosity are proposed (details are shown in
Appendix A). As shown in Figure 2c, using the fractal theory; thus, the fracture permeability can be
obtained by

k f (y) = ki− f (y)n(y)
Ap

Ar

dx
dL

= kw

(
y

yw

)3(d f a−2)+(d f s−2)−θ

, (1)

where kf is the fracture permeability, m2; µ is the fluid viscosity, Pa·s; Ar is the sectional-area of a REV,
m2; Ap is the sectional-area of induced-fracture, m2; dL is the flow length in the induced-fracture, m;
kw is the fracture permeability at the reference point, m2; yw is the position of reference point, m; n is
the number of fracture sites per unit thickness, m−1; dfs is the fractal dimension of induced-fracture
spacing; dfa is the fractal dimension of induced-fracture aperture; and θ is the tortuosity index of
induced fracture [30].

Moreover, the fracture porosity is given by [21]

φ f (y) = φi− f
b f (y)

b f (y) + s f (y)
= φw

(
y

yw

)d f s+d f a−4

, (2)

where φ f is the fracture porosity; φi− f is the single induced-fracture porosity; φw is the fracture porosity
at the reference point; sf is induced-fracture spacing, m; and bf is induced-fracture aperture, m.

Then, Equations (1) and (2) are the basic forms of fracture permeability and porosity considering
the fractal distribution in SRV of MFHWs in unconventional reservoirs. When yw = 0.1 m
and kw = 10 × 10−15 m2, the fracture permeability distribution with different fractal dimensions of
induced-fracture spacing and aperture (dfs and dfa) and tortuosity index of induced-fracture (θ) are
shown in Figure 3. The fracture permeability kf decreases if dfs < 2 and increases if dfs > 2 with the
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increase of the distance from the reference point yw as shown in Figure 3a. Meanwhile, the fracture
permeability kf decreases if dfa < 2 and increases if dfa > 2 with the increase of the distance from the
reference point yw as shown in Figure 3b. Figure 3c shows that the tortuosity index of induced-fracture θ
decreases when θ < 0 and increases when θ > 0 with the increase of the distance from the reference point
yw [31]. The reasons can be illustrated as follows: If dfs < 2 or dfa < 2, as the distance from the reference
point increases, the induced-fracture number or aperture decreases and the induced-fracture spacing
increases; if dfs = 2 or dfa = 2, as the distance from the reference point increases, the induced-fracture
number or aperture and the induced-fracture spacing are constants; if dfs > 2 or dfa > 2, as the
distance from the reference point increases, the induced-fracture number or aperture increases and
the induced-fracture spacing decreases; if θ > 0, the tortuosity of pores is more complex than that
when θ < 0. Therefore, for SRV, the fractal dimensions of nature fracture are usually reported from 1.3
to 1.7 [32].
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2.2. Transient Diffusivity Equations in SRV And USRV 

Figure 3. Fracture permeability distribution with different fractal dimensions of induced-fracture
spacing and aperture (dfs and dfa) and tortuosity index of induced-fracture (θ). (a) Fracture permeability
distribution in SRV with different values of dfs when dfa = 2 and θ = 0; (b) fracture permeability
distribution in SRV with different values of dfa when dfs = 2 and θ = 0; and (c) fracture permeability
distribution in SRV with different values of θ when dfs = 2 and dfa = 2.

2.2. Transient Diffusivity Equations in SRV And USRV

Based on the trilinear model, a newly coupled FMFM was developed for MFHWs in unconventional
gas reservoirs as shown in Figure 2c, which followed the basic linear flow assumptions and some
simplifying assumptions: (1) the reservoir formation consisted of five regions including the hydraulic
fracture, the effective SRV and three USRV regions; (2) the fractal triple-media model (FTMM) was
applied to describe the heterogeneous characteristics of induced fractures in SRV, which consisted
of three media (fracture network, kerogen, and inorganic matter); (3) idealized dual-media model
(IDMM) was used to characterize the homogeneous properties of formation in USRV, which included
porous kerogen and inorganic matter; (4) porous kerogen and inorganic matter are uniform and
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continuous media in both SRV and USRV regions; (5) for shale gas reservoirs, viscous flow, Knudsen
diffusion, surface diffusion, and slip factor were taken into account; (6) single-phase fluid flowed
into the horizontal wellbore from reservoir only by the hydraulic fractures, and frictional loss within
the horizontal well and effects of gravity and capillary forces were ignored in the reservoir; (7) the
hydraulic fractures had identical properties, and were evenly distributed along the horizontal well;
and (8) there were the no-flow boundaries parallel to the hydraulic fractures at the middle of two
fractures in closed reservoir.

2.2.1. Diffusivity Equations of FTMM in SRV (Region II)

Since the induced-fracture system, porous kerogen and inorganic matter coexist in SRV, there are
two types of cross-flow flux happening: one is from porous kerogen to inorganic matter, and another one
is from inorganic matter to induced-fracture system, both of which can be described by Warren–Root
pseudo-steady model. Thus, combining Equations (1) and (2), the diffusivity equation of fluid flow in
the induced-fracture system can be expressed as

∂
[
φw(y/yw)

d f s+d f a−4
(p f M/ZRT)

]
∂t = ∂

∂y

[
p f M

ZRTµg
kw

( y
yw

)3(d f a−2)+(d f s−2)−θ ∂p f
∂y

]
+ 1

x f

p f M
ZRTµg

km
∂p3m
∂x

∣∣∣∣
x=x f

+ q′m− f

, (3)

where pf is the induced-fracture pressure in SRV, Pa; Z is the gas compressibility factor; R is the
universal gas constant, 8.314 J/(K·mol); µg is the gas viscosity, Pa·s; km is the apparent permeability
of the inorganic matter, m2; pm is the inorganic matter pressure, Pa; x f is the hydraulic fracture
half-length, m; subscript, 3 represents region III; and q′m− f is the mass transfer from inorganic matter to

the induced-fracture system, kg/m3
·s.

For porous kerogen, if the Knudsen diffusion, surface diffusion, viscous flow and slippage effect
are included, the apparent permeability can be given by (Sheng et al., 2019b)

kk =
φk

τk

2rk
3

√
8ZRT
πM

Cgµg + εks(1−φk)Ds
cµsZRT

(pL + pk)
2µg +

φk

τk

r2
k
8

1 +
√

8ZRT
M

µg

pkrk

(
2
f
− 1

), (4)

where kk is the apparent permeability of the porous kerogen, m2; φk is the porous kerogen porosity; τk
is the porous kerogen tortuosity; rk is the pore size in porous kerogen, m; Cg is the gas compressibility,
Pa−1; εks is proportion of solid kerogen volume in total interconnected matrix; Ds is the surface diffusion
coefficient, m2/s; cµs is the Langmuir volume on the porous kerogen, mol/m3; pL is the Langmuir
pressure, Pa; pk is the porous kerogen pressure, Pa; and f is fraction of molecules striking pore wall
which are diffusely reflected.

Here, the Warren–Root pseudo-steady-state model is used to describe the cross-flow between
porous kerogen and inorganic matter. Therefore, the diffusivity equation for the porous kerogen can be
obtained by

∂[φk(p2kM/ZRT) + εks(1−φk)cs]

∂t
= σk

p2kMkk

ZRTµg
(p2m − p2k), (5)

where cµs is the adsorbed gas volume on the porous kerogen, mol/m3, which follows Langmuir isotherm
equation; σk is the pseudo-steady-state shape factor for the porous kerogen, 1/m2; and subscript,
2 represents region II.

Similarly, if the Warren–Root pseudo-steady-state model is also used to describe the cross-flow
between inorganic matter and induced-fracture system, the diffusivity equation for the porous kerogen
can be expressed as

∂(φmp2mM/ZRT)
∂t

= σk
p2kMkk

ZRTµg
(p2k − p2m) − σm

p2mMkm

ZRTµg

(
p f − p2m

)
, (6)
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where φm is the inorganic matter porosity; σm is the pseudo-steady-state shape factor for the inorganic
matter, 1/m2; km is the apparent permeability of the inorganic matter, m2, which includes the Knudsen
diffusion, viscous flow, and the slippage effect are included, and can be given by

km =
φm

τm

2rm

3

√
8ZRT
πM

Cgµg +
φm

τm

r2
m
8

1 +
√

8ZRT
M

µg

pmrm

(
2
f
− 1

), (7)

where τm is the inorganic matter tortuosity; rm is the pore size in the inorganic matter, m.
Outer boundary conditions: flux continuity between SRV (region II) and USRV (region IV)

kw

µg

(
y

yw

)3(d f a−2)+(d f s−2)−θ p f M

ZRT

∂p f

∂y

∣∣∣∣∣∣
y=y f

=
km

µg

p4mM
ZRT

∂p4m

∂y

∣∣∣∣∣
y=y f

. (8a)

Inner boundary conditions: pressure continuity between SRV (region II) and HF (region I)

p f
∣∣∣
y=yw

= pHF
∣∣∣
y=yw

. (8b)

In Equation (8a,b), yw is assumed as hydraulic fracture half-width, m; y f is the half-width of SRV
in y-direction, m; and subscript, 4 represents region IV and HF represents hydraulic fracture.

2.2.2. Diffusivity Equations of FTMM in USRV (Region III, Region IV and Region V)

The fluid flow in both region III and region V can be described as linear flow in x-direction. Thus,
according to Equations (5) and (6), the diffusivity equations of porous kerogen and inorganic matter in
these two regions can be expressed as, respectively,

∂[φk(p3kM/ZRT)+Mεks(1−φk)cs]
∂t = σk

p3kMkk
ZRTµg

(p3m − p3k)

∂(φmp3mM/ZRT)
∂t = ∂

∂x

(
p3mMkm
ZRTµg

∂p3m
∂x

)
+ σk

p3kMkk
ZRTµg

(p3k − p3m)
, for region III, (9)


∂[φk(p5kM/ZRT)+Mεks(1−φk)cs]

∂t = σk
p5kMkk
ZRTµg

(p5m − p5k)

∂(φmp5mM/ZRT)
∂t = ∂

∂x

(
p5mMkm
ZRTµg

∂p5m
∂x

)
+ σk

p5kMkk
ZRTµg

(p5k − p5m)
, for region V, (10)

where subscript 5 represents region V.
Outer boundary conditions: no-flow conditions for region III and region V

∂p3m

∂x

∣∣∣∣∣
x=xe

= 0, (11a)

∂p5m

∂x

∣∣∣∣∣
x=xe

= 0. (11b)

Inner boundary conditions: pressure continuity for region III—SRV (region II), and region
V—region IV

p3m
∣∣∣
x=x f

= p f
∣∣∣
x=x f

, (11c)

p5m
∣∣∣
x=x f

= p4m
∣∣∣
x=x f

. (11d)

In Equation (11a–d), xe is the reservoirs half-size in x-direction, m; subscript 4 represents region IV.
Whereas, the fluid flow in y-direction in region IV, and the diffusivity equation can be given by

∂[φk(p4kM/ZRT)+Mεks(1−φk)cs]
∂t = σk

p4kMkk
ZRTµg

(p4m − p4k)

∂(φmp4mM/ZRT)
∂t = ∂

∂y

(
p4mMkm
ZRTµg

∂p4m
∂y

)
+ σk

p4kMkk
ZRTµg

(p4k − p4m) +
1

x f

p4mM
ZRTµg

km
∂p5m
∂x

∣∣∣∣
x=x f

(12)
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Outer boundary conditions: no-flow conditions for region IV

∂p4m

∂y

∣∣∣∣∣
y=ye

= 0. (13a)

Inner boundary conditions: pressure continuity for region IV—SRV (region II)

p4m
∣∣∣
y=y f

= p f
∣∣∣
y=y f

. (13b)

In Equation (13a,b), ye is the half-size of HF spacing in y-direction, m.

2.2.3. Diffusivity Equations of FTMM in HF (Region I)

Linear flow occurs in the hydraulic fractures with closed tip and constant production in x-direction,
and the diffusivity equation can be expressed as

∂(φFpFM/ZRT)
∂t

=
∂
∂x

(
pFM/ZRT

µg
kF
∂pF

∂x

)
+

1
yw

pFM
ZRTµg

kw

(
y

yw

)3(d f a−2)+(d f s−2)−θ ∂p f

∂y

∣∣∣∣∣∣
y=yw

, (14)

where φF is the HF porosity; pF is the HF pressure, Pa; and kF is the HF permeability, m2.
Outer boundary conditions: no-flow conditions for region I

∂pF

∂x

∣∣∣∣∣
x=x f

= 0. (15a)

Inner boundary conditions: constant production without wellbore storage and skin effect

∂pF

∂x

∣∣∣∣∣
x=0

= −
q f ZRTµg

2MkFhyw pF
∣∣∣
x=0

, (15b)

where q f is constant well production from HF, kg/s.
For solving the FMFM as shown in Appendix B, we can obtain the pseudo-pressure in well

bottom-hole in Laplace domain as

ϕ f D = ϕFD
∣∣∣
xD=0 =

πkwx f

ZkFyws· tan

√ k f
kF

(
ωFs−

x f
yw

a1
)√ k f

kF

(
ωFs−

x f
yw

a1
) , (16)

where, a1 =
√

a2y
1+m1−2n1

2
wD


I −1−m1

2+m1−n1

 2√a2
2+m1−n1

y
2+m1−2n1

2
wD

− h1
h2

K −1−m1
2+m1−n1

 2√a2
2+m1−n1

y
2+m1−2n1

2
wD


y

1−n1
2

wD

I 1−n1
2+m1−n1

 2√a2
2+m1−n1

y
2+m1−2n1

2
wD

+ h1
h2

K 1−n1
2+m1−n1

 2√a2
2+m1−n1

y
2+m1−2n1

2
wD




 and other

variables are shown in Appendix B.
Based on Equation (16), if the wellbore storage and skin factor are not considered, the dimensionless

flow rate can be derived as [33,34]

qD =

ZkFyw· tan

√ k f
kF

(
ωFs−

x f
yw

a1
)√ k f

kF

(
ωFs−

x f
yw

a1
)

πskwx f
(17)
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If we hope to obtain the solution in the real-time domain, here, the Stehfest algorithm is applied,
and Equation (17) becomes

qD =
ln 2
tD

N∑
i=1

(−1)
N
2 +1
×



min(i, N
2 )∑

k= i+1
2

k
N
2 (2k)!

(N
2 −k)! k! (k−1)! (i−k)! (2k−i)!


×

ZkF yw· tan

√ k f
kF

(
ωFs−

x f
yw a1

)√ k f
kF

(
ωFs−

x f
yw a1

)
πskwx f

×

(
ln 2
tD

i
)


. (18)

3. Model Verification and Discussion

3.1. Model Verification

The SRV size was assumed to be the same as with the half-length of HF spacing (yf = ye),
the presented FMFM model can be simplified as the model proposed by Sheng et al. [20]. The basic
parameters used for FMFM and the Sheng’s model are listed in Table 1. The comparison of two
models are shown as Figure 4. The results indicate that the production rate and cumulative production
calculated by the FMFM presented in this study can fit well with those of Sheng’s model. The classical
trilinear flow model can be simplified by FMFM when the SRV size between HFs and the fractal
distribution of induced-fracture are not considered. In addition, if the shale gas transport mechanisms
are ignored in FMFM, the model can be used to predict the production of MFHWs in tight gas and
even in tight oil reservoirs fast.

Table 1. Parameters used in multi-linear flow model (FMFM) and Sheng’s model [20].

Parameters Value Parameters Value

Fractal dimension of induced-fracture
spacing, dfs

1.95 Pore size in porous kerogen, rk (m) 10 × 10−9

Fractal dimension of induced-fracture
aperture, dfa

2.0 Portion of kerogen volume, εks 0.5

Tortuosity index of induced-fracture, θ −0.05 Porous kerogen porosity, φk 0.1
Porosity of induced-fracture, φ f 10−4 Porous kerogen tortuosity, τk 5

HF half-spacing, ye (m) 100 Langmuir pressure, pL (MPa) 13.78
HF half-length, xf (m) 50 Gas viscosity, µg (mPa·s) 0.0184

HF permeability, kF (m2) 103
× 10−15 Gas compressibility, Cg (MPa−1) 5 × 10−2

HF half-width, yw (m) 0.01 Surface diffusion coefficient, Ds (m2/s) 1 × 10−5

HF porosity, φF 10−3 Molecular mass of shale gas, M (kg/mol) 0.016
Total compressibility of the inorganic

matter, Ctm (MPa−1) 7.5 × 10−3 Langmuir volume on kerogen surface,
cµs (mol/m3) 700

Total compressibility of
induced-fracture, Ctf (MPa−1) 4 × 10−3 Fraction of molecules striking pore wall

which are diffusely reflected, f 0.8

Inorganic matter porosity, φm 0.1 Total compressibility of the porous
kerogen, Ctk (MPa−1) 7.5 × 10−3

Inorganic matter tortuosity, τm 5 Reservoir thickness, h (m) 19
Induced-fracture permeability at yw, kw

(m2) 2 × 10−15 Initial pressure, pi (MPa) 17

Pore size in inorganic matter, rm (m) 20 × 10−9 Well bottom pressure, pwf (MPa) 12
Formation temperature, T (K) 338 Reservoir half-width, xe (m) 200
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3.2. Sensitivity Analysis of Properties of SRV

Figures 5 and 6 show that the dimensionless pseudo-pressure and dimensionless production
rate with different tortuosity index and fractal dimensions of induced-fracture spacing by FMFM,
which reflects the various properties of SRV for MFHWs in unconventional gas reservoirs. Figure 5
shows that the dimensionless pseudo-pressure is larger and the dimensionless production rate is
smaller when the tortuosity index of induced-fracture θ increases. The larger tortuosity index of
induced-fracture θ means the longer flow path of gas transport in SRV. When the tortuosity index
of induced-fracture θ is larger than 0, the properties of induced-fracture will decrease far from HF.
When the tortuosity index of induced-fracture θ is equal to 0, the properties of induced-fracture is
homogeneous in SRV.
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Figure 5. Comparison of production rate and pseudo-pressure with different tortuosity index of
induced-fracture θ by FMFM (dfs = 2 and dfa = 2).

Figure 6 indicates that the dimensionless pseudo-pressure is smaller and the dimensionless
production rate is larger when the fractal dimension of induced-fracture dfs increases. The larger
fractal dimension of induced-fracture dfs leads to a larger equivalent permeability in SRV. In addition,
the linear low in SRV can make the WHFWs produce more gas from the formation, which suggests
that the induced-fracture system can improve the development effect for unconventional reservoirs.
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4. Application of FMFM with ES-MDA Method

4.1. ES-MDA Method

In order to avoid the model update and parameter-state inconsistency, which makes the ensemble
Kalman filter (EnKF) complicated, and achieve a better data matching with the ensemble smoother
(ES), Emerick and Reynolds [35] reported ES-MDA by assimilating the same observed data multiple
times with the covariance matrix of the measurement errors simultaneously. Numerical experiments
and examples have shown that the ES-MDA method can provide a better data matching and reduce
the uncertainty of model description than the ES method and the EnKF method. Based on the synthetic
case and field case data, the application of ES-MDA history matching technology and FMFM for
MFHWs is discussed in this section.

The reservoir simulation models are typically stable functions of the rock property fields,
which is different with the oceanic and atmospheric models. Based on the common assumption
in history-matching problems that the model uncertainty is ignored, we just need to take the
parameter-estimation problem into account for ES. Thus, the analyzed vector of model parameters can
be given by

ma
j = m j + CMD(CDD + CD)

−1
(
duc, j − d j

)
, f or j = 1, · · · , Ne, (19)

where CMD is the cross-covariance matrix between the prior vector of model parameters m j and the
vector of predicted data d; CDD is the Nd—dimension auto-covariance matrix of predicted data; Nd is
the total number of measurements assimilated; duc ∼ N(dobs, CD); dobs is the Nd—dimensional vector
of observed data; CD is the Nd—dimension covariance matrix of observed data measurement errors;
and Ne is the number of ensemble member.

Emerick and Reynolds [35] have mentioned that ES-MDA can be used in the nonlinear case
because ES is equivalent to a single Gauss–Newton iteration with a full step and an average sensitivity
estimated from the prior ensemble, in which case the MDA can be interpreted as an “iterative” ensemble
smoother. The ES-MDA algorithm is presented as follows:

(1) Estimate the number of data assimilations Na, and the coefficients αi (
Na∑
i=1

1
αi

= 1), for i = 1, · · · , Na.

(2) For i = 1 to Na

a. Run the ensemble from time zero for obtaining the vector of predicted data

d j = g
(
m j

)
, f or j = 1, · · · , Ne, (20)
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where g(·) is the nonlinear forward model, d j is assignment the model parameters to vector
m j at time zero.

b. For each ensemble member, perturb the observation vector by

duc, j = dobs +
√
αiC

1/2
D zd, j, f or j = 1, · · · , Ne, (21)

where zd, j ∼ N
(
0, INd

)
.

c. Update the ensemble

ma
j = m j + CMD(CDD + αiCD)

−1
(
duc, j − d j

)
, f or j = 1, · · · , Ne, (22)

where C = CDD + αiCD ≡


CDD + α1CD CDD

CDD CDD + α2CD

· · · CDD

· · · CDD
...

CDD · · ·

. . .
...

CDD + αNa CD

;
CMD = 1

Ne−1

Ne∑
j=1

(
m j −m

)(
d j − d

)T
; CDD = 1

Ne−1

Ne∑
j=1

(
d j − d

)(
d j − d

)T
; m and d represent

the average values of model parameters and prediction parameter ensembles respectively.

In the procedure of MDA algorithm mentioned above, the data are assimilated Na times
continuously, and the ensemble needs to be rerun before each data assimilation. At the same time,
in the ES-MDA algorithm, every time the data is assimilated repeatedly, the disturbance observation
vector is resampled. The procedure will reduce the sampling problems due to the matching outliers
that may occur when the observation data is perturbed.

4.2. Synthetic Case

Based on the simulator Eclipse, the numerical model of a MFHW in the unconventional gas
reservoir is established. The numbers of grids are X × Y × Z = 80 × 260 × 3 and the grid steps are
X × Y × Z = 5 m × 5 m × 5 m, respectively. A dual-porosity media model is used to describe the SRV
(DUALPORO keyword), and a single-porosity medium model is used to describe the USRV. Hydraulic
fractures are described by LGR keyword as shown in Figure 7. If only the gas viscous flow with
slippage effect is considered, then the FMFM can be simplified as a semianalytic model for a MFHW
with the homogeneous SRV in the tight gas reservoir. We set the same modeling parameters of FMFM
with those of numerical model and then discuss the applicability of FMFM with ES-MDA.
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Firstly, according to the dimensionless parameters listed in Table A1, the production rate of the
numerical model can be non-dimensionalized as qD = pq f /

(
2πkwhci

(
ϕ−ϕw f

))
.

Then, the Nd—dimensional vector of observed data can be chosen as:

dobs =
[
dT

s , qT
o

]T

Nd×1
, (23)
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where ds donates the Nd-dimensional vector of static parameters of the reservoir and MFHW; qo

donates the dimensionless production rate of numerical model.
The Nd × Nd covariance matrix of observed data measurement errors is given by

CD =


σ2

d1
. . .

σ2
dNd


Nd×Nd

, (24)

where σd is equal to 0.3 for real production rate.
The matching results of dimensionless production rate by ES-MDA after 4 iterations and error

analysis are shown in Figure 8. The values of some variables are listed as Np = 23, Nd = 115, Ne = 100,
and

√
αi = 2. Meanwhile, the root-mean-square error and the average objective function in Figure 7

can be expressed as, respectively,

RMSE =

√√√∑Ne
j=1

(
dsobs − dsj

)2

Np
, (25)

O(m) =
1

Nd
[g(m) − dobs]

TC−1
D [g(m) − dobs]. (26)
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data assimilation (ES-MDA) after 4 iterations and error analysis.

Figure 8 shows that the error between the ensemble mean model and that of true model is
large with one iteration, and the distribution range of ensemble members is large. All models of
the ensemble (light blue curves) represent the results calculated by FMFM, the ensemble mean (blue
curve) represents the calculated results matching with unperturbed observation data (average value
of ensemble members), the true value (red curve) is the true dimensionless production rate obtained
by FMFM, and the numerical results (red point) is the observed data in Figure 8. We can see that
with two iterations, the distribution range of ensemble members becomes small, and ensemble mean
model basically coincides with the true model. With three and four iteration, the distribution range
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of ensemble members is further reduced around the true model, and the ensemble mean model and
the observed data are well-matching, which is almost the same with the true model. In addition,
the RMSE and objective function values of the prior model are large, indicating that the model errors
and data errors are large. After one iteration, the error decreases. The RMSE and objective function
values becomes small and basically the same after three and four iterations, which indicates that the
matching results are good as shown in Table 2. Therefore, the discussion mentioned above suggests
that parameters of FMFM can be obtained by automatically matching production data of the numerical
model by ES-MDA method. The technique can also obtain reservoir physical properties and fracturing
parameters by matching the actual production data of the oilfield.

Table 2. Comparison of matching results of FMFM and numerical model parameters by ES-MDA.

Parameters Eclipse FMFM Parameters Eclipse FMFM

Total compressibility
coefficient, MPa−1 5.5 × 10−3 5.2714 × 10−3 USRV matrix

permeability, m2 1 × 10−19 0.887 × 10−18

HF permeability, m2 15 × 10−13 7.82 × 10−13 Induced-fracture
permeability, m2 1 × 10−16 1.33 × 10−16

SRV matrix
permeability, m2 1 × 10−18 0.77 × 10−18 Other parameters Equal values

4.3. Field Case

The presented FMFM model with ES-MDA history matching method was applied based the shale
gas production data of a MFHW in western China [36]. Compared with the presented models based
on different simulating conditions, the matching results are shown in Figure 9. Noting that the actual
shale gas production rate of a MFHW in western China is represented by red points; when dfs = dfa = 2,
θ = 0, yfD = yeD, the FMFM can be assumed as a typical trilinear model with homogenous SRV (black
line); the results of Sheng’s FMPM model [20] with fractal SRV are drawn by the light green line,
and they calculated the dfs= 1.90 by the box-counting method and the fractal random-fracture-network
algorithm and θ = −0.05 by the random walk method; based on the presented FMFM with ES-MDA,
the fractal dimensions, tortuosity index, and SRV size can be obtained as shown by the blue line.
Figure 9 shows that the fractal dimension and tortuosity index of induced-fracture system matched by
FMFM model based on ES-MDA approximate the results of Sheng’s FMPM model. The unmatched
early-time data was caused by the early-time flow back process. In addition, the results dimensionless
production rate calculated by FMFM were smaller but matched better with actual data than Sheng’s
FMPM model when the SRV size was taken into account. This section mainly provides an application
case of our presented approach.
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5. Conclusions

In this paper, a semianalytic fractal multi-linear flow model (FMFM) for MFHWs in unconventional
gas reservoirs with consideration of the heterogeneous distribution of the properties of induced-fracture
system is proposed. Fractal dimensions of induced-fracture spacing and aperture and tortuosity index
of induced-fracture system are included based on fractal theory to describe the properties of SRV
region. For shale gas reservoirs, gas transport mechanisms (viscous flow with slippage, Knudsen
diffusion, and surface diffusion) among various medium including porous kerogen, inorganic matter,
and fracture system are take into account in FMFM. Then, combining with ES-MDA, the FMFM can be
applied not only for prediction of gas production rate for MFHWs in unconventional gas reservoirs
but also for main uncertainty parameters matching. Some findings can be drawn as follows:

(1) The permeability and porosity of the induced-fracture system are affected by the heterogeneous
distribution of induced-fractures spacing and aperture. When the fractal dimensions of
induced-fracture spacing (dfs) and aperture (dfa) are smaller than 2.0, the permeability of the
induced-fracture system decreases with the increase of the distance from HFs in SRV region,
which will become increase if dfs > 2.0 or dfa > 2.0. When the tortuosity index of the induced-fracture
system θ is larger than 0, the permeability of induced-fracture system also decreases with the
increase of the distance from HFs in SRV region.

(2) The FMFM divides the formation into three types of porous media in shale reservoirs (porous
kerogen, inorganic matter, and fracture system). Triple-porosity media and dual-porosity media
are used to describe the fractal SRV region and USRV region, respectively. Multiple gas transport
mechanisms such as viscous flow with slippage, Knudsen diffusion, and surface diffusion are
considered, and gas flow behaviors in different regions are coupled by pseudo-steady cross-flow
among various media. The FMFM is verified by other presented model and the results show that
the large dfs or small θ causes the small average permeability of the induced-fracture system,
which results in large dimensionless pseudo-pressure and small dimensionless production rate.

(3) Combining the FMFM with ES-MDA history-matching method, the synthetic case for the tight
gas reservoir and field case for the shale gas reservoir are discussed. Various main parameters
inversions of HFs and NFs are conducted in SRV region. Thus, the presented method can be
applied for gas production predicting and history-matching in unconventional gas reservoirs.
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Appendix A. Derivation of Fractal Permeability and Porosity of Induced-Fracture

As shown in Figure 2c, using the fractal theory, the total number of induced-fracture, which is
relevant to the fractal dimension of induced-fracture spacing dfs, can be expressed as [37]∫ Lx,y

0
n
(
Lx,y

)
dLx,y ∝ L

d f s
x,y, (A1)

where Lx,y is the position of system, m.
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Then, Chang and Yortsos [16] presented the expression of the distribution of fracture site as

n
(
Lx,y

)
= αL

d f s−D
x,y , (A2)

where D is the Euclidean dimension, which is equal to 2 in Cartesian coordinate system; α is a constant
related to fracture porosity.

For the fracture site, we can obtain

s f
(
Lx,y

)
n
(
Lx,y

)
+ b f

(
Lx,y

)
n
(
Lx,y

)
= ASRV, (A3)

where ASRV is the hydraulic fracture half-length, m.
Substituting Equation (A2) into Equation (A3), Equation (A3) can be rewritten as

1 +
b f

(
Lx,y

)
s f

(
Lx,y

) =
x f

αs f
(
Lx,y

)L
2−d f s
x,y . (A4)

In the actual unconventional reservoirs, the value of induced-fracture aperture is commonly far
less than that of induced-fracture spacing (bf << sf), and thus Equation (A4) becomes

s f
(
Lx,y

)∣∣∣∣ b f (Lx,y)

s f (Lx,y)
→0

=
x f

α
L

2−d f s
x,y . (A5)

If the induced-fracture spacing at the plane of HF is known, which can be chosen as a reference
point, the FFSD in Cartesian coordinate system can be obtained by Equation (A5)

s f (y) = s f w

(
y

yw

)2−d f s

, (A6)

where sfw is the induced-fracture spacing at reference point, m.
For the distribution of induced-fracture aperture (FFAD), the basic form can also be obtained

according to Equation (A6) [21]

b f (y) = b f w

(
y

yw

)d f a−2

, (A7)

where bfw is the induced-fracture aperture at reference point, m.
Bai and Elsworth [38] reported the expression of a fracture with a slab shape as

ki− f =
b f (y)2

12
. (A8)

In a representative elementary volume (REV) of fracture network, the fluid flux in the fracture
system is given by

v = Ar
k f (y)

µ

dp
dx

= n(y)Ap
ki− f (y)

µ

dp
dL

, (A9)

where v is flux of induced-fracture system in a REV, m3/s; µ is the fluid viscosity, Pa·s; and dp is the
pressure-difference of a REV in y direction, Pa.

Thus, the fracture permeability and porosity can be obtained as Equations (1) and (2).

Appendix B. Solution for the FMFM Model

For solving the FMFM, the basic dimensionless parameters are defined in Table A1.
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Table A1. Basic parameters used in FMFM.

Parameters Expression

Pseudo-pressure for gas phase ϕ(p) = 2
∫ p

pi

(
p/µgZ

)
dp

Dimensionless pseudo-pressure ϕD = 2πkwhci(ϕi −ϕ)/
(
piq f

)
Dimensionless time tD = kwt/

(
(φCt) f−m−kµgx2

f

)
Dimensionless length

xD = x/x f , yD = y/yw, xeD = xe/x f ,
yeD = ye/x f , y f D = y f /x f , ywD = yw/x f

Total compressibility coefficient of porous kerogen Ctk = Cg +
(
εkscµsZRT

)
/
(
φk(pL + pk)

2
)

Transfer coefficient from porous kerogen to inorganic matter λk = σkkkx2
f /kw

Transfer coefficient from inorganic matter to induced-fracture λm = σmkmx2
f /kw

Storage coefficient of porous kerogen ωk = (φkCtk)/(φCt) f−m−k

Storage coefficient of inorganic matter ωm =
(
φmCg

)
/(φCt) f−m−k

Storage coefficient of HFs ωF =
(
φFCg

)
/(φCt) f−m−k

Subscript i represents the initial conditions; f, m, k represents fracture, inorganic matter, and porous
kerogen respectively.

Therefore, transforming the FMFM into Laplace space, the dimensionless forms and solutions for
HF, SRV, and USRV can be obtained as follows:

(1) Dimensionless forms and solutions for USRV.

According to Equations (9) and (10), the dimensionless diffusivity equations in Laplace domain
for region III and V can be given by

ϕ3kD =
σkkkx2

f

σkkkx2
f +kwsωk

ϕ3mD

ωmsϕ3mD = km
kw

∂2ϕ3m
∂x2

D
+ σk

kk
kw

x2
f (ϕ3kD −ϕ3mD)

, for region III, (A10a)


ϕ5kD =

σkkkx2
f

σkkkx2
f +kwsωk

ϕ5mD

ωmsϕ5mD = km
kw

∂2ϕ5m
∂x2

D
+ σk

kk
kw

x2
f (ϕ5kD −ϕ5mD)

, for region V. (A10b)

Solving Equation (A10a,b) with boundary conditions, we can obtain

∂ϕ3mD

∂xD

∣∣∣∣∣∣
xD=1

=
√

a3


{
K−(1/2)

(√
a3xeD

)
I−(1/2)

(√
a3

)
− I−(1/2)

(√
a3xeD

)
K−(1/2)

(√
a3

)}{
I(1/2)

(√
a3

)
K−(1/2)

(√
a3xeD

)
+ I−(1/2)

(√
a3xeD

)
K(1/2)

(√
a3

)} ϕ f D
∣∣∣
xD=1, (A11a)

∂ϕ5mD

∂xD

∣∣∣∣∣∣
xD=1

=
√

a5


{
K−(1/2)

(√
a5xeD

)
I−(1/2)

(√
a5

)
− I−(1/2)

(√
a5xeD

)
K−(1/2)

(√
a5

)}{
I(1/2)

(√
a5

)
K−(1/2)

(√
a5xeD

)
+ I−(1/2)

(√
a5xeD

)
K(1/2)

(√
a5

)} ϕ4mD
∣∣∣
xD=1, (A11b)

where a3 = a5 = kw
km

(
ωms + λk −

λ2
k

ωks+λk

)
. According to Equation (3), the dimensionless diffusivity

equations in Laplace domain for region IV can be given by
ϕ4kD =

σkkkx2
f

σkkkx2
f +kwsωk

ϕ4mD

ωmsϕ4mD=
km
kw

1
y2

wD

∂2ϕ4mD
∂y2

D
+ σk

kk
kw

x2
f (ϕ4kD −ϕ4mD) +

kk
kw

ϕ5mD
∂xD

∣∣∣∣
xD=1

. (A12)
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Solving Equation (A12) with boundary conditions, we can obtain

∂ϕ4mD
∂yD

∣∣∣∣
yD=ylD

=
√

a4

( {
K−(1/2)(

√
a4 yeD)I−(1/2)(

√
a4 ylD)−I−(1/2)(

√
a4 yeD)K−(1/2)(

√
a4 ylD)

}{
I(1/2)(

√
a4 ylD)K−(1/2)(

√
a4 yeD)+I−(1/2)(
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, (A13)

where a4 = a5 −
kw
km

y2
wD
√

a5tan h
(
(ylD − yeD)

√
a5

)
.

(2) Dimensionless forms and solutions for SRV.

According to Equations (3), (5), and (6), the dimensionless diffusivity equations in Laplace domain
for region SRV can be given by

ω f sy
θ−2(d f a−2)
D ϕ f D = 1

y2
wD

∂2ϕ f D
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+ 1
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D
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∂xD
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xD=1

+y
θ−2(d f a−2)
D λm

(
ϕ2mD −ϕ f D

)
ϕ2kD = λk

λk+sωk
ϕ2mD

ωmsϕ2mD = λk(ϕ2kD −ϕ2mD) − λm
(
ϕ2mD −ϕ f D

) . (A14)

Solving Equation (A14) with boundary conditions, we can obtain
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, (A15)

where a2 = y2
wD

ω f s− km
kw

√
a3


{

K
−( 1

2 )
(
√

a3xeD)I
−( 1

2 )
(
√

a3)−I
−( 1

2 )
(
√

a3xeD)K
−( 1

2 )
(
√

a3)
}

{
I
( 1

2 )
(
√

a3)K
−( 1

2 )
(
√

a3xeD)+I
−( 1

2 )
(
√

a3xeD)K
( 1

2 )
(
√

a3)
}

+λm
ωms+

λkωks
λk+ωks

ωms+
λkωks
λk+ωks+λm

,

m1 = d f a + d f s − 4, n1 = 3
(
d f a − 2

)
+

(
d f s − 2

)
− θ, h1 =

√
a2

b2
y

m1−n1
2

f D I −1−m1
2+m1−n1

(
2
√

a2
2+m1−n1

y
2+m1−2n1

2
f D

)
− I 1−n1

2+m1−n1

(
2
√

a2
2+m1−n1

y
2+m1−2n1

2
f D

)
, h2 =

K 1−n1
2+m1−n1

(
2
√

a2
2+m1−n1

y
2+m1−2n1

2
f D

)
+

√
a2

b2
y

m1−n1
2

f D K −1−m1
2+m1−n1

(
2
√

a2
2+m1−n1

y
2+m1−2n1

2
f D

)
, b2 =

√
a5

( {
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.

(3) Dimensionless forms and solutions for HFs.

According to Equation (14), the dimensionless diffusivity equations in Laplace domain for HFs
can be given by

ωFsϕFD =
kF

kw

∂2ϕFD

∂x2
D

+
x2

f

y2
w

∂ϕFD

∂yD

∣∣∣∣∣∣
y=ywD

, (A16)

Solving Equation (A16) with boundary conditions, we can obtain the pseudo-pressure in well
bottom-hole in Laplace domain as Equation (16).
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