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Abstract: An energy management strategy (EMS) efficiently splits the power among different sources
in a hybrid fuel cell vehicle (HFCV). Most of the existing EMSs are based on static maps while a
proton exchange membrane fuel cell (PEMFC) has time-varying characteristics, which can cause
mismanagement in the operation of a HFCV. This paper proposes a framework for the online
parameters identification of a PMEFC model while the vehicle is under operation. This identification
process can be conveniently integrated into an EMS loop, regardless of the EMS type. To do so,
Kalman filter (KF) is utilized to extract the parameters of a PEMFC model online. Unlike the other
similar papers, special attention is given to the initialization of KF in this work. In this regard, an
optimization algorithm, shuffled frog-leaping algorithm (SFLA), is employed for the initialization of
the KF. The SFLA is first used offline to find the right initial values for the PEMFC model parameters
using the available polarization curve. Subsequently, it tunes the covariance matrices of the KF by
utilizing the initial values obtained from the first step. Finally, the tuned KF is employed online to
update the parameters. The ultimate results show good accuracy and convergence improvement in
the PEMFC characteristics estimation.

Keywords: control strategy; hybrid vehicle; Kalman filter; maximum power point tracker;
metaheuristic optimization; online parameters estimation; power management; semiempirical
modeling

1. Introduction

Oil depletion, perilous CO2 emissions increase, global warming, and other environmental issues
have directed the efforts of both individual and governmental groups towards sustainable energy.
Consequently, renewable energy resources employment has risen strikingly in recent years [1]. However,
the reliance of these resources (e.g., wind energy and solar energy) on weather conditions and other
shortcomings have put some obstacles in their improvement [2]. The stated drawbacks have made the
use of an energy storage necessary. Hydrogen, which can be found in numerous compounds on Earth,
such as water, is able to function as a form of energy storage to effectively store renewable energy.
It can be then re-electrified by an energy conversion device such as a fuel cell (FC) [3]. FC normally
generates electricity as a result of a chemical reaction (H2 +

1
2 O2 → H2O) and is recognized as one of

the most substantial conversion devices. There are various kind of commercially available FCs, such as
alkaline FC, solid oxide FC, and proton exchange membrane fuel cell (PEMFC). Among them, PEMFCs
have been extensively used in many areas, such as automotive industry [4], portable applications,
distributed generation [5], and the military [6], as shown in Figure 1.

Energies 2020, 13, 3713; doi:10.3390/en13143713 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4574-2377
https://orcid.org/0000-0002-0455-6992
https://orcid.org/0000-0002-0795-0901
http://dx.doi.org/10.3390/en13143713
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/14/3713?type=check_update&version=2


Energies 2020, 13, 3713 2 of 17
Energies 2020, 13, x FOR PEER REVIEW 2 of 17 
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In the transition to a low-carbon transport system, hydrogen fuel cell vehicles (HFCVs) have gained
momentum around the world mainly due to their zero-emission essence compared to hybrid electric
vehicles and their high driving range as well as quicker refueling compared to pure battery electric
vehicles [7]. A HFCV typically employs a PEMFC stack as the primary power source, and a battery pack
and/or a supercapacitor (SC) as the secondary source [8]. Thus, the performance, reliability, and cost of
this vehicle operation, which are among the important factors for its rapid market penetration, depend
on several interrelated factors owing to the different nature of the sources in terms of efficiency and
power delivery. Essentially, an energy management strategy (EMS) is responsible for controlling the
power flow among the power sources with the aim of enhancing the efficiency, reliability, and lifetime
of the system [9]. Numerous EMSs have been developed in the literature that can be classified as
rule-based, optimization-based, and intelligent-based [10,11]. In [12], three optimized fuzzy logic
controllers (FLCs) are utilized for three working conditions, namely urban, suburban, and highway,
and the conditions are recognized with the help of a least square support vector machine. In [13],
an equivalent consumption minimization strategy (ECMS) is combined with a switched strategy based
on the battery state of charge (SOC) level for a FC-battery vehicle. In [14], an EMS is proposed for a
FC-battery-SC vehicle based on a filtering approach. In this regard, two low-pass filters with various
corner frequencies are utilized to assign lower frequency harmonics to the PEMFC and the intermediate
ones to the battery. The remaining part of the requested power is supplied by the SC. The discussed
EMSs as well as most of the existing ones in the literature are based on a PEMFC model obtained
by static power and efficiency maps. Nevertheless, the PEMFC has time-varying characteristics
owing to the performance drifts caused by the alteration of ambient conditions, operating parameters,
and degradation. As discussed in [15], these classical EMSs are prone to malfunction as some of
the PEMFC’s characteristics, such as maximum power (MP) and maximum efficiency (ME), change
through time. To address the mentioned issue in the design of an EMS, three lines of work have been
put forward as discussed hereinafter.

The first group of papers have focused on the inclusion of a PEMFC degradation model to the
EMS design. In [16], the degradation of the PEMFC is calculated by a simple electrochemical model
in a hybrid FC bus application. Afterwards, it is included in the objective function of an optimal
EMS to enhance the lifetime of the FC system. In [17], the PEMFC degradation is determined by
means of a first-order polynomial function that tracks the internal resistance and maximum current
density changes. It is demonstrated that the limitations imposed on the battery SOC level are not
satisfied when the FC stack and battery pack degrade. With all the favorable attributes of including
a degradation model, it is worth noting that this phenomenon is a complex mechanism, and so far,
no realistic degradation model has been proposed over the lifetime of a vehicle. Another aspect to point
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out is that the ambient conditions related drifts, which are not considered in the discussed models,
also influence the MP and ME characteristics that are significant for developing an EMS.

Considering the mentioned issues, the employment of an extremum seeking algorithm (ESA) has
formed the second group of research. In [18], an ESA is proposed based on Oustaloup approximation
fractional-order calculus. This method searches for an extremum of a static nonlinear function—namely
PEMFC efficiency vs. power curve—by applying a periodic perturbation signal to the system input.
If the efficiency increases, more adjustments are made in that direction until it no longer increases.
In [19], a global ESA is suggested for accomplishing a bidimensional optimization process regarding
the PEMFC system net power and hydrogen consumption. One of the main reasons for frequent uses
of such methods (studied in [18,19]) is their convenient implementation. Nonetheless, their complexity
increases when the concurrent tracking of several operating points, such as MP and ME, is needed,
mainly because the system function needs to be changed, and each point should be searched for by an
optimization algorithm.

To sort out the above-discussed concerns and avoid the complex modeling of a PEMFC that
demands a lot of time and experimental burdens, a third line of papers has emerged for an EMS
design [20]. The idea behind this remedy is to work with data-driven (semiempirical) models—which
are simpler—and to update in real time their parameters during the system operation. The whole
process is performed as the PEMFC is under operation in the vehicle. This framework for upgrading
the EMSs is composed of three stages, namely online parameter estimation, information extraction,
and EMS. The purpose is to update the model while respecting the state variation of the PEMFC using
an online identification technique, and then extract the required characteristics in the following stage.
Finally, the determined operational characteristics can be utilized in the power distribution stage to
control the power flow between the sources. This framework is shown in Figure 2 and can be utilized
as a foundation to enhance the efficiency of the existing EMSs in an HFCV application. In [21–23],
a Kalman filter (KF) is utilized to update the characteristics of the PEMFC stack using a semiempirical
model proposed by Amphlett et al. [24,25]. This online model is then employed for different purposes
in these papers. In [21], it is used to tune the output membership function of a FLC to make it insensitive
against the PEMFC performance drifts. In [22], it is responsible for regularly determining the real MP
and ME points of four PEMFC stacks in a multistack system. In [23], it is employed to upgrade the
performance of two real-time EMSs, with the help of a simultaneous current and temperature control
scheme introduced in [26], leading to 6.6% of hydrogen economy enhancement. In [27,28], recursive
least square (RLS) is employed to estimate the parameters of a model obtained from the efficiency vs.
power curve of the PEMFC system and then integrated into an EMS to define its efficient operation
range. In [29], RLS is used in a similar way to track the changes in the hydrogen consumption rate of
the PEMFC system. In [30], an EMS that is based on adaptive supervisory control is developed for
a FC-battery bus, and RLS is employed for parameters estimation of a single-input PEMFC model.
In [31], the performance of a single-input model, put forward by Squadrito et al. [32], is compared
with the Amphlett et al. multi-input model, using RLS and KF. This benchmark study concludes
that the multi-input model is more accurate than the single-input one, and KF marginally performs
better than RLS in terms of precision. In [33], an adaptive system identification approach is proposed
for finding the parameters of a PEMFC model. This method leads to exponential convergence while
asymptotic stability is not assured. Furthermore, the robustness of the system can be included in the
optimization problem formulation, which eases the burden for the online estimator. For instance,
a robust formulation in [34] and an adaptive robust optimization in [35,36] are introduced by including
some uncertainty sets. Although these approaches are robust against the uncertainty of parameters,
they might prevent achieving the optimality. In [37], an H∞ criterion is utilized to reach a robust EMS
in the presence of uncertainties that resulted from high frequency and unconsidered dynamics. In [38],
chance-constrained optimization is utilized in the design of the EMS to embrace the uncertainties. It is
indeed one of the major methodologies for dealing with problems under high level of uncertainties.
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Other methods such as designing an observer [39] and adaptive protection techniques [40] have also
been utilized for increasing the robustness.Energies 2020, 13, x FOR PEER REVIEW 4 of 17 
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This paper utilizes a KF to estimate the parameters of a PEMFC model online. Unlike the
above-discussed papers, special attention is paid to the initialization of the model parameters and the
customization of KF variables in this work. An inappropriate initialization of the model parameters
can lead to the misinterpretation of the physical phenomena. It can also increase the necessary time to
obtain a high quality prediction of the targeted characteristics. Moreover, the improper customization
of the process and measurement noise covariance matrices in KF can decrease the accuracy of the
FC output voltage estimation. Once these matrices are disorganized, they keep being disorganized
and will never be updated throughout the KF process. This disorganization can prevent the KF
from having its best performance. To deal with this problem, this paper utilizes a metaheuristic
optimization algorithm, namely shuffled frog-leaping algorithm (SFLA), for the initial offline tuning
of the parameters. Subsequently, the parameters of the PEMFC model are updated online by the
KF. None of the reviewed papers have had a parameters initialization analysis, which is required to
justify the reliability of the estimation process. Therefore, this paper mainly concentrates on the online
parameter estimation part of Figure 2, and as an example of information extraction, the polarization
and power curves are extracted. These two parts have pivotal roles in this framework. The main
function of the SFLA is to perform an accurate initialization for the online parameter estimator, which
is responsible for updating the PEMFC model. The integration of an EMS to this framework is out of
the scope of this work and can be considered in future studies. Another worth noting aspect of this
work is that it has experimental validation using a 500-W PEMFC stack, as opposed to several existing
papers in this domain that are merely based on simulation.

The rest of this paper is structured as follows. Section 2 describes the PEMFC semiempirical
model. Section 3 details the use of the KF and SFLA for the online parameters estimation process.
The results are discussed in Section 4, and finally the conclusion is given in Section 5.

2. PEMFC Modeling

One of the most common approaches for characterizing the performance of a PEMFC stack
is the use of a polarization curve, which is the plot of the stack voltage versus current (or current
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density) under certain conditions [41,42]. An ideal polarization curve comprises the standard reversible
potential and three main losses: activation, ohmic, and concentration [41]. Activation loss appears in
the low current zone mainly because of the slow kinetics of the oxygen reduction reaction. Ohmic loss
takes place at the intermediate current zone primarily due to the resistance to the flow of ions in the
electrolyte and the flow of electrons throughout the electrode. The concentration loss (mass transport
effect) is at a high current zone owing to the limitation of the reactant gas transport through the gas
diffusion layers and electrocatalyst layers.

The PEMFC model put forward by Amphlett et al. is used for the purpose of this work.
This model is for several cells connected in series. It has been used for estimating the characteristics
of several PEMFC technologies because of its relevant semiempirical formulation [43]. However,
a new parameterization is evidently required to fit this model to the performance of different PEMFCs.
The voltage of the PEMFC stack (VFC) is determined by:

VFC = N(ENernst + Vact + Vohmic + Vcon), (1)

where Ncell is the number of cells, VFCN is the cell voltage (V), ENernst is the reversible cell potential (V),
Vact is the activation voltage loss (V), Vohmic is the ohmic voltage loss (V), and Vcon is the concentration
voltage loss (V). ENernst is obtained by:

ENernst = 1.229− 0.85× 10−3(TFC − 298.15) + 4.3085× 10−5TFC[ln(PH2) + 0.5 ln(PO2)] , (2)

where TFC is the temperature of the FC stack (K), PH2 is the partial pressure of hydrogen in the anode
side (N m−2), and PO2 is the partial pressure of oxygen in the cathode side (N m−2). Vact is calculated
by:

Vact = ξ1 + ξ2TFC + ξ3TFCln(CO2) + ξ4TFCln(IFC), (3)

CO2 =
PO2

5.08× 10−6 exp(−498/TFC)
, (4)

where ξn(n = 1 . . . 4) are the semiempirical parameters based on mechanistic studies, CO2 is the oxygen
concentration (mol cm−3), and IFC is the PEMFC operating current (A). Vohmic is given by:

Vohmic = −IFC Rinternal = −IFC(ζ1 + ζ2TFC + ζ3IFC), (5)

where Rinternal is the internal resistor (Ω. ) and ζn(n = 1 . . . 3) are the parametric coefficients. Finally,
Vcon is obtained by:

Vcon = Bln
(
1−

IFC
Imax

)
, (6)

where B is a parametric coefficient (V), and Imax is the maximum current (A). Since Imax is always larger
than IFC, the natural logarithm argument is always positive. In this work, a saturation function is
utilized to ensure that the natural logarithm argument remains positive in case outliers appear in the
measured data.

3. Parameter Estimation

This section deals with describing the process for estimating the parametric coefficients of the
previously explained PEMFC model. As mentioned earlier in Section 1, a noticeable tendency towards
the online parameter estimation of PEMFC models exists in the literature. This is mainly due to the
fact that a PEMFC stack undergoes some uncertainties, resulted from the degradation and variation of
operating conditions, through time. When these drifts occur in the PEMFC performance, the extracted
characteristics from the model are not valid until they get updated. As these characteristics, such as
maximum power, are directly utilized by the EMSs, they influence the performance of a HFCV. In this
respect, the online parameter estimation of a PEMFC model has attracted a lot of attention in this
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domain. KF is one the most well-known estimators that has been already utilized for this problem.
However, the role of initialization in achieving the best performance of this process has escaped the
attention of previous studies.

The details of the proposed online identification process in this paper is illustrated in Figure 3.
As is seen in this figure, KF is used as the estimator to counteract the uncertainties affecting the
performance of the PEMFC by tracking the model parameters online. However, before performing
the online estimation, an offline initialization stage is required to determine a set of initial values
for the parameters of the PEMFC model and the covariance matrices of the KF. This initialization
stage is performed by means of a metaheuristic optimization algorithm, which is the most common
approach for finding the parameters of a PEMFC semiempirical model offline [43]. After performing
the initialization, KF is utilized for the online parameter identification purpose. It should be noted
that optimal performance of KF is assumed based on having a noncorrelated distribution of each
observation. Since this assumption is difficult to achieve, a careful initialization of the covariance
matrices should be performed to avoid the local minimum trap or even divergence at some points.
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3.1. Kalman Filter

KF is a well-known estimator for extracting the parameters of a PEMFC semiempirical model.
It concludes the parameters of interest in two steps of state estimation and update as follows [44]:{

x(t + 1) = F(t + 1|t)x(t) + w(t)
y(t) = H(t)x(t) + v(t)

, (7)

x̂ (t) = F(t|t− 1)x̂ (t− 1), (8)

P (t) = F(t|t− 1)P(t− 1)FT(t|t− 1) + Q(t− 1), (9)

G(t) = P (t)HT(t)
[
H(t)P (t)HT(t) + R(t)

]−1
, (10)

x̂(t) = x̂ (t) + G(t)( y(t) −H(t)x̂ (t)), (11)

P(t) = (I −G(t)H(t))P (t), (12)

where t is the discrete time, x(t) is the unknown parameters vector (ξ1, ξ2, ξ3, ξ4, ζ1, ζ2, ζ3, B) obtained
from (1) to (6), x̂(t) and x̂ (t) denote the estimate and a priori estimate of the parameters vector, F(t + 1|t)
is the transition matrix taking the parameters vector from time t to time t + 1, w(t) is the process noise,
y(t) is the estimated output which will be the PEMFC voltage herein, H(t) is the measurement matrix
(1, T, Tln(CO2), Tln(i), −i, −iT, −i2), v(t) is the measurement noise, P(t) is the error covariance matrix,
Q(t) is the process noise covariance matrix, G(t) is the Kalman gain, R(t) is the measurement noise
covariance matrix, and I is the identity matrix. F(t + 1|t) is assumed to be an identity matrix because
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the best case scenario is that the future state will be the same as the current state, and this is exactly
what an identity matrix does.

An improper initialization of the model’s unknown parameters can result in the incorrect prediction
of characteristics and can increase the convergence time. This is a well-known weakness of the recursive
identification techniques, which can be avoided by a proper initial tuning. Therefore, the relative
certainty of the measurements and the current state estimate is an important consideration, and the
main parameter that determines the weight of the predicted and measured values is the Kalman
gain. It is, in fact, the gain applied to the measurements and estimation of the state and can be
adjusted to attain a specific performance. When the value of the Kalman gain is high, the filter mainly
trusts the new measured data and attempts to follow them rapidly. On the other hand, a low gain
results in following the model predictions more closely by the filter. The Kalman gain is composed of
three elements: the error covariance matrix, process noise covariance matrix, and measurement noise
covariance matrix. As the initial parameters of the PEMFC model are going to be determined by special
attention, the initial value of the error covariance matrix can be tuned intuitively. In fact, if one is
confident about the state’s initialization, the initial error covariance matrix should be small, otherwise
it should be a large value. Regarding the process noise, it indeed corresponds to the uncertainties
that are expected in the state equations. The upshot of choosing a large value for the process noise
is that the model is not trustworthy, and therefore the filter computes the states, but it then mostly
ignores them. Concerning the measurement noise, it attempts to model the noise in the utilized sensors,
which is a difficult task in practice. The common assumption is that there is no correlation in the noise
among the sensors. Therefore, the variances lie on the diagonal terms, and the covariances are zero.
In this paper, the explained variables are tuned by a metaheuristic optimization algorithm to avoid
several heuristic trial-and-error attempts.

3.2. Shuffled Frog-Leaping Algorithm

The SFLA is a memetic metaheuristic optimization method introduced in [45]. It has been
used for calibrating different PEMFC models in a comparative study in [46]. A comparison of the
SFLA with other competitors shows that it benefits from a satisfactory precision and reliability in a
PEMFC application. This good performance primarily stems from the fact that the SFLA combines
the advantages of genetic-based memetic and social behavior-based algorithms. It simultaneously
performs an individual local search within each memeplex, and all the frogs are then rearranged into
new memeplexes after a specific number of local iterations to assure global exploration. The flowchart
of this optimization algorithm is presented in Figure 4. As is seen in this Figure, firstly, a random
population (P) is generated in the feasible region, which is defined by the problem constraints. In a
multidimensional optimization, each frog i is specified by S. variables as Xi = (xi1, xi2, . . . , xiS).
Considering their fitness values, they are then arranged in a descending order and divided into m
memeplexes, each containing n frogs (P = m × n). The frogs are placed into the memeplexes in a
particular manner. The first one is sent to the first memeplex, the second one to the second memeplex,
and the mth one to the mth memeplex. The member m + 1 is placed in the first memeplex, and this
arrangement carries on up to placing all the members in all the memeplexes.

The member with the worst fitness value in each memeplex (Xw) is modified as follows:

Di = rnd.(Xb −Xw), (13)

Xw, new = Xw, present + Di(−Dmax ≤ Di ≤ Dmax), (14)

where Di denotes the shift in the position, rnd is a random number between 0 and 1, Xb is the frog with
the best answer, Xg is the global best answer, Xw, new is the new position of the worst answer, Xw, present

is the current position of the worst answer, and Dmax is the maximum possible variation. It is worth
noting that if the worst solution does not improve with the explained formulations, (13) and (14) are
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recalculated by replacing Xb with Xg. If this modification does not enhance the solution either, it is
replaced with a random solution.
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So far, the optimization algorithm for the purpose of this paper has been introduced. To form an
optimization problem, in addition to the algorithm, three other elements, namely an objective function,
the targeted parameters for estimation, and a feasible region defined by the minimum and maximum
value of each parameter, are required. In fact, the algorithm employs the objective function to guide
the population in the direction of better answers within the feasible region. An evaluation criterion
has an essential role in the practical application of parameter estimation methods. A proper selection
of the evaluation criteria can precisely and quantitatively prove whether the techniques can obtain
satisfactory outcomes. In [47], over 160 papers regarding the proton exchange membrane fuel cell
parameter estimation using metaheuristic algorithms are investigated. It is then stated that the sum
of squared errors (SSE) and mean squared error (MSE) are the most commonly used criteria for this
problem, which have led to desirable performance. In this respect, these two metrics have been utilized
in this paper.

The offline initialization has two steps. Through the first one, the initial parameters of the PEMFC
model are tuned by using the polarization data of the PEMFC. The SSE of the PEMFC voltage, which
shows deviations from the actual measured data, is used as the objective function to find the initial
PEMFC model parameters. The SSE is defined as:

min SSE =
N∑

i=1
(VFC,meas(i) −VFC,est(i))

2

ξi, min ≤ ξi ≤ ξi, max (i = 1 . . . 4)

ζ j, min ≤ ζ j ≤ ζ j, max ( j = 1 . . . 3)

β min ≤ β ≤ β max

, (15)

where VFC,meas is the measured output voltage, VFC,est is the estimated voltage by the model, and N is
the number of sample data.

After setting the initial parameters of the model, the optimization is performed one more time for
a random load profile to tune the Q and R parameters. In this second optimization, the optimization
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variables are just Q and R, and the model parameters are set to their optimal values obtained in the first
step. In this respect, at each iteration, the optimization algorithm (SFLA) selects two best candidates
for Q and R, and then KF is run for estimating the voltage of the random profile. Then, the MSE of
the voltage estimation by KF is calculated, which is the objective function of the SFLA in this step.
The SFLA attempts to minimize this MSE value until the last iteration. MSE is defined as:

min MSE = 1
N

N∑
i=1

(VFC,meas(i) −VFC,est(i))
2

Q min ≤ Q ≤ Q max

R min ≤ R ≤ R max

(16)

It should be noted that the defined objective functions are only used to indicate the degree of
similarities between the model and the experimental data and there is no limitation on changing or
replacing them with other metrics.

4. Experimental Setup

The experimental data used in this paper have been collected from a H-500 PEMFC in the hydrogen
research institute of the University of Quebec in Trois-Rivieres. Figure 5 represents the employed setup
for obtaining the required data. In this test bench, a 500-W Horizon PEMFC is connected to a National
Instrument CompactRIO through its controller, which adjusts the stack temperature by acting on two
axial fans and activates the hydrogen and the purging valves. The fans have a dual role of cooling the
stack and providing the required oxygen. The other components for supplying the hydrogen include
a tank, a two-stage regulator of pressure, a flowmeter, a hydrogen purging valve, and a hydrogen
supply valve. According to the manufacturer, the difference between the pressure levels of the cathode
and anode sides needs to be kept around 0.5 atm, which implies that the anode pressure should be
set to 0.55 atm. A B&K Precision DC electronic load is utilized to demand current from the FC stack.
The specifications of the utilized PEMFC, gathered from the manufacturer’s manual, are presented in
Table 1. The proposed estimation process of this work is composed of two steps: offline initialization
(SFLA) and online parameters estimation (KF). Regarding the offline initialization of the parameters of
the PEMFC model and covariance matrices of KF, first, the required tests (applying a step-up load
current profile for extracting the polarization curve and a random profile for tuning KF) are conducted
on the PEMFC stack, and the corresponding measured data (current, voltage, and temperature) are
recorded. It should be reminded that the partial hydrogen pressure is constant, as advised by the
manufacturer. Subsequently, the measured data are used for performing the offline optimization using
MATLAB software which is available in the computer. Concerning the online parameters estimation
with KF, it is first developed in the MATLAB software and then implemented in the LabVIEW software,
which is installed in the computer. To do so, the MathScript RT module of LabVIEW is utilized to
deploy the textual math codes of MATLAB Script within LabVIEW. Therefore, in case of KF, as the
measured data are received in each time step (100 ms), the estimation is performed.

To show the present health state of the installed PEMFC on the test bench, a polarization test
was conducted by pulling a constant current from the stack and measuring its corresponding voltage.
The requested current is slowly increased, and the stable voltage response is recorded afterwards.
After each increase in the current level, 15 to 25 min have been given to the stack to reach equilibrium.
Figure 6 presents the polarization and power curves obtained from this test. Moreover, it shows the
characteristics of a brand new 500-W PEMFC, extracted from the manual of the device, to clarify the
occurred drifts in the employed PEMFC. As is presented in Figure 6, the maximum power of the used
FC stack is 430 W, and its maximum current is 31 A. In fact, this FC has gone under degradation
throughout time, and its maximum power has been reduced. The presented curves in Figure 6 are
used for extracting two initialization sets to test the online identification process.
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Table 1. The specifications of an H-500 open cathode FC.

Technical Specifications

FC type PEM
Rated power 500 W

Rated performance 22 V @ 23.5 A
Max current 35 A

Rated H2 consumption 7 SLPM
Ambient temperature 5 to 30 ◦C

Max stack temperature 65 ◦C
Cooling Air (integrated cooling fan)

Reactants Hydrogen and air
Number of cells 36
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5. Discussion of the Results

To show the effectiveness of the proposed tuning process for an online parameters estimation of a
PEMFC stack, some simulations based on the experimental data are performed and explained in this
section. In this respect, first, the results regarding the offline initialization by the SFLA are presented
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and discussed. Subsequently, the effect of the initialization on the online estimator performance,
which is KF, is investigated.

5.1. Offline Initialization

The offline optimization process with the SFLA was performed three times. First, it was done
to calibrate the parameters of the PEMFC model (ξ1, ξ2, ξ3, ξ4, ζ1, ζ2, ζ3, B) for the experimental
polarization curve of the installed PEMFC on the test bench using (15). Figure 7 presents the
minimization trend of the SSE objective function for finding the right values of the model parameters.
As is seen in this figure, the objective function value levels off almost after 50 iterations. Figure 8
shows the obtained polarization curve that resulted from the minimization of the SSE. The estimated
polarization curve achieved a good precision, as quantified in the caption of Figure 8 (SSE: 0.8546). It is
important to note that the value of this error is obtained by the sum of squared differences between the
observed voltage and the estimated one.
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After finding the initial values for the PEMFC model parameters, the optimization was performed
for the second time to determine the suitable values for the covariance matrices of the KF. Figure 9
represents the minimization trend of the MSE objective function for finding the right values for Q and R
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matrices. As is observed, the MSE value has decreased from almost 5.79 × 10−5 to 4.32 × 10−5. Although
this value is small, it approximately represents 25% of decrease in the obtained MSE, comparing
the case where R and Q are assumed as 1 with the optimized ones (Q: 0.00536 and R: 84.38112).
In this paper, R and Q are tuned by a metaheuristic optimization algorithm to avoid several heuristic
trial-and-error attempts. In this regard, a wide range from 1e−15 to 100 was considered for these values
so that the optimization algorithm can explore and find the most suitable range. According to the
obtained values after the second optimization for R (84.38112) and Q (0.00536), it is realized that a
small value is selected for Q and a large value is selected for R. This combination would lead to a
small Kalman gain, which implies that the filter trusts the model prediction. The third optimization
process was conducted to find a set of parameters for the polarization curve of the FC-500 (new FC with
polarization curve from the datasheet) presented in Figure 6. This set of parameters will be utilized
as an inaccurate initialization to study its influence over the online estimation in the next section.
The minimization trend of this last optimization is not shown to avoid the repetition of the results.
The parameters obtained through the three described optimization processes are listed in Table 2 along
with the imposed inequality constraints.Energies 2020, 13, x FOR PEER REVIEW 12 of 17 
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Table 2. The obtained parameters after the optimization processes.

Optimization Process Obtained Value Minimum Value Maximum Value

First

ξ1 = −1.167 −1.2 −0.80
ξ2 = 1.00 × 10−3 1 × 10−3 5 × 10−3

ξ3 = 9.83 × 10−5 3.6 × 10−3 9.8 × 10−3

ξ4 = −1.102 × 10−4
−2.6 × 10−4

−0.954 × 10−4

Rinternal = f (IFC, TFC) 0.16 0.22
B = 0.174 0.0135 0.5

Second
Q = 0.00536 1 × 10−15 100
R = 84.38112 1 × 10−15 100

Third

ξ1 = −0.973 −1.2 −0.80
ξ2 = 1.533 × 10−3 1 × 10−3 5 × 10−3

ξ3 = 3.6451 × 10−5 3.6 × 10−3 9.8 × 10−3

ξ4 = −9.540 × 10−5
−2.6 × 10−4

−0.954 × 10−4

Rinternal = f (IFC, TFC) 0.16 0.22
B = 0.0136 0.0135 0.5
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5.2. Online Estimation

To inspect the effect of parameters calibration on the performance of the online estimator, two case
studies are taken into consideration in this section. In the first case study, the online characteristics
estimation was performed using the obtained initial parameters from the installed PEMFC on the test
bench (first optimization process explained in the previous section). This set of parameters is called the
optimal initialization herein. In the second case study, the online characteristics estimation is done
by using the initial parameters obtained from the polarization curve of a brand new 500-W PEMFC
available in the datasheet (third optimization process explained in the previous section). This set of
parameters is referred to as the datasheet initialization. It is worth noting that in both described case
studies, the covariance matrices of the KF are the same and are set based on the second optimization
process of the preceding section.

Figure 10a illustrates the current profile imposed on the installed FC in the setup and its
corresponding variation of temperature. This profile is used to verify the performance of the KF in
online parameters extraction of the described semiempirical model. Figure 10b compares the estimated
voltage online by the KF with the measured voltage of the PEMFC. It should be noted that voltage
estimation is accurate with both of initialization sets since KF attempts to minimize one single measured
point at each step no matter how it changes the parameters of the model. However, it is necessary to
check whether this estimation is valid during the whole operating current range of the stack. To do so,
comparing the estimated polarization and power curves is very useful.
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Figure 10. Estimation of the voltage of the real PEMFC. (a) Current profile and stack temperature
variation; (b) voltage estimation by the Kalman filter (KF).

Figure 11 presents the estimated polarization (Figure 11a) and power (Figure 11b) curves of the
PEMFC for two cases of optimal and datasheet initializations. From this figure, at 93 s, the estimated
characteristics by using optimal initialization are more accurate than the ones obtained from the
datasheet initialization set specifically in ohmic and concentration zones. On the other hand, estimating
the characteristics at 280 s shows that the quality of estimation by using the datasheet initialization set
can be improved by giving more time to the estimator. These results imply that a precise characteristics
estimation can be achieved in less time and more conveniently when starting the estimation process
with the appropriate initialization. This can also be very interesting in applications where the fast
prediction of the maximum power is needed, such as the PEMFC cold start-up. Figure 12 shows the
variation of the root MSE (RMSE) for each of the considered case studies using the datasheet and
optimal initial conditions. Figure 12a shows the RMSE trend for the polarization curve, and Figure 12b
illustrates the RMSE convergence trend for the power curve. Comparing the obtained RMSE values in
both the polarization and power curves in this figure shows that the optimal initialization can lead to
achieving more accuracy in a shorter time.
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6. Conclusions

This paper proposes a framework that can be used as a basis to enhance the efficiency and
reliability of the existing EMSs for HFCVs. The core of the proposed framework is an online parameter
estimation method based on the KF, with special attention to the initialization and customization stages
of this filter, to update the parameters of a PEMFC model while the vehicle is running. The updated
model can be used to feed the EMS with realistic operational characteristics. Herein, the initialization of
KF is performed in two steps by using SFLA metaheuristic optimization algorithm. The first step deals
with finding the right primary values for the targeted PEMFC model parameters, and the second step
copes with tuning the values of R and Q covariance matrices of the KF. After finding the appropriate
initialization values for different variables, the KF is used online to extract the right parameters for
the PEMFC stack. The final results of this work confirm that a good initialization can improve the
estimation quality in terms of speed and precision. In fact, finding the appropriate initial values for the
PEMFC model parameters of interest leads to estimating better characteristics curves in a shorter time,
and the tuning of the covariance matrices enhances the estimation accuracy to a certain level.

The results of this work have created some opportunities for extending the scope of this paper as
follows:

• The focus of this work is mainly on the parameter extraction in ambient temperature. However,
the outcomes seem to be very interesting in applications where a fast performant identification
is required. In this regard, future works should focus on the utilization of such strategy for
performing the adaptive cold start-up of the PEMFC stack.
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• This paper has discussed the use of the KF with a specific view to proper initialization for
estimating the parameters of a PEMFC model online. Afterwards, as an example, the updated
model was utilized for determining the maximum power of the PEMFC stack at each moment
(first and second steps of the proposed framework). The future works can use the provided basis
in this article to design different online EMSs for a HFCV.
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ECMS Equivalent consumption minimization strategy
EMS Energy management strategy
ESA Extremum seeking algorithm
FC Fuel cell
FLCs Fuzzy logic controllers
HFCV Hybrid fuel cell vehicle
KF Kalman filter
ME Maximum efficiency
MP Maximum power
MSE Mean squared error
PEMFC Proton exchange membrane fuel cell
RLS Recursive least square
RMSE Root mean squared error
SC Supercapacitor
SFLA Shuffled frog-leaping algorithm
SOC State of charge
SSE Sum of squared errors
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