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Abstract: This paper investigates the problem of power portfolio selection under uncertainty using two
different metrics, namely the stochastic Net Present Value (NPV) and the stochastic Levelized Cost of
Electricity (LCOE). In the first metric, stochastic revenues, as well as stochastic costs incurred during the
whole lifetime of power plants, are taken into account. The second metric is based on stochastic costs only.
This means that revenues deriving from selling electricity in power markets over long-term horizons
play an important role in determining optimal portfolios under the stochastic NPV metric, but they
have no impact on optimal portfolios under the stochastic LCOE metric. Uncertainty arising from
unpredictable movements of electricity market prices, fossil fuels, and nuclear fuel prices is considered.
Moreover, stochastic CO2 costs are included into the analysis. The aim of this study was to examine in
what circumstances efficient NPV-based portfolios differ in a significant way from efficient LCOE-based
portfolios. The portfolio selection is performed using two different risk measures, namely the standard
deviation and the Conditional Value at Risk Deviation (CVaR) deviation. The proposed methodology can
be used as a powerful tool of analysis for planning profitable investments in new generating technologies
paying attention to risk reducing strategies through power sources diversification.

Keywords: power portfolio selection; stochastic Net Present Value; stochastic Levelized Cost of
Electricity; risk measures; efficient frontiers

1. Introduction

Risk reducing strategies through diversification of power generating assets can be a very
important solution for electricity companies in their attempts to hedge financial risk arising from
unpredictable movements of electricity market prices, fossil fuels, and nuclear fuel prices [1].
Moreover, environmental policies based on the reduction of CO2 emissions through market pricing
mechanisms [2,3] require also taking into account the impact on generation costs of volatile CO2

prices [4,5]. All these factors are, in fact, the main sources of financial risk in the electricity sector [6].
This paper addresses the power portfolio selection problem under uncertainty for baseload

generation. Two cases are discussed, namely the case of a pure fossil fuel (gas and coal) generation
company and the case of a pure baseload company with fossil fuel and nuclear power generating
assets. Many companies now break up their previous diversified generation portfolios to create new
companies that are, e.g., pure fossil, on the one hand, and pure nuclear, on the other. From this point
of view, the problem of finding optimal generation mixes is a relevant task not only for the new
companies but also for the holding company that owns other companies’ outstanding stock.

The analysis is performed at two different levels, namely at a cost-benefit level, using as evaluation
metric the stochastic Net Present Value (NPV), and at a cost level, basing the analysis on the stochastic
Levelized Cost of Electricity (LCOE) metric [7]. In the first metric, stochastic revenues, as well as
stochastic costs incurred during the whole lifetime of power plants, are taken into account. The second
metric is based on stochastic costs only. Revenues deriving from selling electricity in power markets
over long term horizons play, therefore, an important role in determining optimal portfolios under the
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NPV stochastic metric. On the other side, revenues are not included in the stochastic LCOE metric and,
in such a case, the portfolio selection is based on stochastic costs only. The aim of this paper was to
investigate the composition of optimal portfolios under the two different metrics.

For each metric, the power portfolio selection is performed under two different risk measures,
namely the standard deviation and the Conditional Value at Risk Deviation (CVaRD) [8,9].
The standard deviation is used to describe the risk due to fluctuations around the mean of the
stochastic metric used; the CVaRD is used to capture the tail risk due to extreme adverse events.
Power source diversification, in fact, offers the possibility to investigate the trade-off between risk, as
measured by the standard deviation or by CVaRD of the stochastic metric used and its expected value.
The main purpose of this paper was to derive the composition of the so-called ‘efficient portfolios’
(in a sense that will be specified in the following section) under both stochastic metrics and both risk
measures. The aim was to compare the set of efficient portfolios obtained in the stochastic NPV-based
portfolio selection problem with the set of efficient portfolios derived in the stochastic LCOE-based
portfolio selection problem, as well as to investigate under what circumstances these sets may differ in
a significant way.

The main findings are briefly summarized. Since revenues for baseload generation do not depend
on the power portfolio composition, efficient portfolio frontiers are invariant with respect to the
stochastic metric adopted if the standard deviation is assumed as risk measure. The reason is that
annual revenues become stochastically independent from annual costs when they are computed
averaging over one year of observations [10]. Although fuel prices and power prices could show some
cointegration relationship [11], nevertheless, the correlation between annual revenues and costs may
be negligible, especially in diversified power portfolios. This fact is particularly true when electricity
prices experience a very erratic dynamics with jump and spikes with a strong mean-reverting behavior,
as in actual power markets [12]. The portfolio selection problem can be performed, therefore, using
the stochastic LCOE metrics, as well as the stochastic NPV metric, thus providing the same solution.
Minimum risk portfolios, as well as efficient portfolios, do not depend on the metric (stochastic NPV
or LCOE) adopted. A NPV efficient portfolio is also a LCOE efficient portfolio, and vice versa. Such a
result does not hold if the CVaRD risk measure is used. However, if the volatility of annual revenues
is not too high (as in this analysis), the efficient frontier invariance is a very good approximation.
The LCOE-based portfolio analysis thus provides almost the same results of the NPV-based analysis.
The inclusion of stochastic CO2 costs does not modify this picture under the hypothesis that CO2 costs
have no impact on electricity market prices. In such a case, standard deviation efficient frontiers are
invariant with respect to the used evaluation metric, and CVaRD efficient frontiers are almost invariant.
The efficient frontiers invariance is broken under a non-zero correlation between revenues and costs.
In such a case, efficient frontiers are no more invariant not only under the CVaRD risk measure but
also under the standard deviation risk measure. However, if such a correlation is low on the long-run,
frontier invariance is a good approximation. As a further result, not all efficient portfolios show
positive expected NPVs. From this point of view, the proposed approach can be used as a powerful
tool of analysis to select profitable efficient power portfolios, thus providing a quantitative support to
electricity companies in their efforts to plan investments in power portfolios paying attention to the
trade-off between profitability and risk. In this sense, the proposed methodology allows electricity
companies to design optimal power generating portfolios.

The paper is organized as follows. After this introduction, Section 2 discusses the methodological
aspects of the paper. In Section 3, the stochastic metrics used in the portfolio selection problem are
presented. Section 4 illustrates the dynamic model used to compute revenues and costs of power
generation. Section 5 describes the power portfolio selection problem. Section 6 concludes.

2. Methods

When the stochastic NPV is used to investigate the power portfolio selection problem, stochastic
revenues deriving from selling electricity in the power market, as well as costs incurred during the
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whole lifetime of power plants, must be taken into account in a single metric. In general, such costs
include construction costs, operations and maintenance costs (O&M), fuel costs, decommissioning
costs, and, possibly, CO2 emission costs, in the case of fossil fuel generation. Several sources of
uncertainty must be, therefore, considered. First of all, electricity market prices. Such a source of risk
influences revenues. The followed approach is based on modeling revenues on the long-run, starting
from analyzing the short-term behavior of electricity market prices. Due to a strong mean-reverting
behavior of electricity prices observed in power markets [13], short-term probability distributions of
power prices tend rapidly to well-defined stationary distributions [10]. Such stationary distributions
will be used to compute revenues over long-term horizons. From the cost side, fossil fuel market prices
and nuclear fuel market prices will be considered as the main source of uncertainty. Natural gas prices
too show a mean-reverting behavior with stochastic volatility [14]. Stationary distributions coming
from short-term mean-reverting jump-diffusion models of natural gas prices are used to compute gas
costs over long-term horizons. The dynamics of both coal and nuclear fuel prices does not show a
significant mean-reverting behavior [10], and it is described by a Geometric Brownian Motion (GBM).
Regarding the nuclear source, the financial risk due to the social acceptance of this technology is not
considered in this paper. The reason is that the power portfolio selection problem is performed under
the hypothesis that the nuclear power generation is a well accepted technology. Finally, CO2 stochastic
costs are included in the analysis as a further source of uncertainty. CO2 stochastic prices are assumed
to evolve in time, according to a GBM.

In modeling long-term behavior of electricity and fuel prices, macroeconomic views about
long-run evolution of these factors must be taken into account [15]. The proposed dynamic model is
able to integrate in a satisfactory way the short-term dynamics with macroeconomic long-run forecasts.
Although the portfolio selection problem is well treated in the literature [1,14,16] also in the presence
of variable renewable energy [17,18], the portfolio selection problem with such an accurate modeling
of electricity and fuel prices dynamics has not yet been developed (see DeLlano-Paz et al. [19] for a
detailed review).

The main purpose of this paper was to derive the composition of the efficient portfolios under
both stochastic metrics and both risk measures. A power portfolio is said efficient if it belongs to the
so-called ‘efficient portfolio frontier’. In the case of the stochastic NPV metric, the efficient portfolio
frontier (or, simply, the efficient frontier) is defined as the locus of portfolios with maximum expected
NPV among all portfolios with same risk level. In the case of the stochastic LCOE metric, the efficient
portfolio frontier is defined as the locus of portfolios with minimum expected LCOE, among all
portfolios with same level of risk. The aim is to compare efficient portfolio frontiers obtained in
the stochastic NPV-based portfolio selection problem with efficient portfolio frontiers derived in the
stochastic LCOE-based portfolio selection problem, and to investigate under what circumstances they
may differ in a significant way.

The main data source was the ‘Annual Energy Outlook 2019’ [20]. In particular, cost data of
power generating technologies were taken from ‘Capital Cost Estimates for Utility Scale Electricity
Generating Plants’ [21] and ‘Cost and Performance Characteristics of New Generating Technologies,
Annual Energy Outlook 2019—January 2019’ [22], both provided by the U.S. Energy Information
Administration. The dynamic model used to describe the evolution of electricity market prices,
fossil fuels, and nuclear fuel prices is taken from Lucheroni and Mari [10].

3. The Stochastic NPV of Power Portolios and the Stochastic LCOE

The stochastic Net Present Value (NPV) and the stochastic Levelized Cost Of Electricity (LCOE)
are mathematical constructs that allows to introduce risk in the investment valuation process [1,14].
In this section, the stochastic NPV and the stochastic LCOE analysis of power portfolios is developed
in a general stochastic framework with k sources of risk. In such a framework, the stochastic path is
denoted by ξ.
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By definition, the stochastic NPV of a given generating technology z is a random variable
determined for each path, ξ, by the difference between the present value of revenues and the present
values of costs incurred during the lifetime of the plant including pre-operations construction costs.
It will be denoted by NPVz(ξ). The stochastic LCOE of the technology z is defined path by path
(i.e., for each ξ), as that nonnegative real price of the electricity produced by the specific generation
technology z, assumed constant over time, that makes NPVz(ξ) equal to zero. It will be denoted by
PLC,z(ξ). Between NPVz(ξ) and PLC,z(ξ), there exists a very useful relationship [10], namely

NPVz(ξ) = (1 − Tc)Qz
M

∑
n=1

[
Pz

n(ξ)− PLC,z(ξ)(1 + i)n−nb
]
F0,n, (1)

where Tc is the corporate tax rate, and Qz is the amount of electricity produced by the technology z
in one year. Qz, is assumed to be constant over time and can be obtained multiplying the nameplate
power capacity of the plant, Wz, by the capacity factor of that plant, CFz, and by the number of hours
in one year (8760), i.e.,

Qz = 8760 × CFz × Wz, (2)

and Pz
n(ξ) is the (yearly averaged) unitary selling price of the electricity produced in the year n by

the technology z. The expected yearly inflation rate is denoted by i, and nb is the base year used to
compute nominal prices from real prices. Finally, F0,n is the discount factor,

F0,n =
1

(1 + r)n , (3)

where r is the nominal WACC (Weighted Average Cost of Capital) rate [23]. In Equation (1), n = 0 is
the evaluation time which is assumed to be also the operations starting time of the plant; n = M ≥ 1 is
the end of operations time. Revenues and costs incurring in the time interval (n − 1, n) are computed
as lump sums and valued at time n.

The stochastic LCOE can be computed as follows [14],

PLC,z(ξ) =
∑M

n=1 Cz
n(ξ)F0,n

Qz ∑M
n=1(1 + i)n−nb F0,n

+
Iz
0 − Tc ∑M

n=1 Dz
nF0,n

(1 − Tc)Qz ∑M
n=1(1 + i)n−nb F0,n

, (4)

where Cz
n(ξ) accounts for stochastic costs incurred in the year n, namely fixed and variable

operation and maintenance (O&M) costs, fuel costs, waste management (for nuclear generation),
and decommissioning costs. With regard to power generation from fossil fuels, costs may include
externalities, i.e., environmental costs, for example, CO2 market costs. Iz

0 is the pre-operations nominal
investment, starting at n = −N and ending at n = 0, computed as a lump sum, namely

Iz
0 = Îz

−N(1 + r)N + · · ·+ Îz
−1(1 + r) + Îz

0 , (5)

where Îz
n is the nominal amount of the construction cost allocated to year n. Dz

n is the fiscal depreciation.
The classic, deterministic, NPV of an investment in a given generating technology z can be

obtained as the expected value of the stochastic NPV, i.e.,

NPVz = E
[
NPVz(ξ)

]
, (6)

and the classic, deterministic, LCOE of the generating technology z is given by the expected value of
the stochastic LCOE, i.e.,

PLC,z = E
[
PLC,z(ξ)

]
. (7)
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In evaluating an investment in a given generating technology z what is relevant is not the NPV
itself (doubling the size of a plant would double the NPV) but the unitary NPV, i.e., the NPV per unit
of generated electricity. A ‘reduced NPV’ can be, therefore, introduced in the following form,

NPVz
red(ξ) =

NPVz(ξ)

(1 − Tc)Qz ∑M
n=1(1 + i)n−nb F0,n

, (8)

thus getting from Equation (1),

NPVz
red(ξ) = P̂z(ξ)− PLC,z(ξ), (9)

where

P̂z(ξ) =
∑M

n=1 Pz
n(ξ)F0,n

∑M
n=1(1 + i)n−nb F0,n

. (10)

Equation (9) clearly shows that break-even point can be reached if and only if E
[
P̂z(ξ)

]
≥ PLC,z.

For dispatchable baseload technologies, such as nuclear, coal, or combined-cycle gas turbines
(CCGTs), which can have the same electricity output profile, Pz

n is a technology independent quantity, i.e.,

Pz
n(ξ) := Pb

n(ξ), (11)

where Pb
n (ξ) denotes the (yearly averaged) unitary selling price of the baseload generation in the

year n. In such a case, Equation (9) becomes

NPVz
red(ξ) = P̂b(ξ)− PLC,z(ξ), (12)

where

P̂b(ξ) =
∑M

n=1 Pb
n(ξ)F0,n

∑M
n=1(1 + i)n−nb F0,n

. (13)

Producers often own not just one among many dispatchable and non-dispatchable generation
technologies, but mixtures of them, i.e., power generating portfolios. Both the stochastic NPV and the
stochastic LCOE can be extended to power portfolios in the following way. For a multi-technology
project, i.e., a portfolio of technologies, the stochastic NPV of the whole power portfolio, NPVw(ξ),
can be obtained by summing up the NPVs of the single-technology projects entering in the generation
portfolio (it is assumed that the present value of potential synergies due to the aggregation of different
technologies in a power generating portfolio offsets the potential present value erosion), namely

NPVw(ξ) = ∑
z

NPVz(ξ), (14)

where the sum is on the technology index z. The reduced stochastic NPV of the portfolio, NPVw
red(ξ),

is then defined by the following relationship,

NPVw
red(ξ) =

NPVw(ξ)

(1 − Tc)Q ∑M
n=1(1 + i)n−nb F0,n

, (15)

where
Q = ∑

z
Qz, (16)

is the total amount of the electricity generated by the power portfolio. After some algebraic
manipulations, the following relationship holds:

NPVw
red(ξ) = ∑

z
wzNPVz

red(ξ) = ∑
z

wz[P̂z(ξ)− PLC,z(ξ)
]
. (17)



Energies 2020, 13, 3677 6 of 18

The reduced stochastic NPV of a power portfolio is, therefore, a linear combination of single
technology stochastic NPVs with nonnegative weights,

wz =
Qz

Q
, (18)

satisfying the constraint

∑
x

wx = 1. (19)

In analogy with the stochastic LCOE definition for the single technology case, the stochastic LCOE
of a power generating portfolio, PLC,w(ξ), is that nonnegative real price of the electricity produced by
the generation portfolio, assumed constant over time, that makes the stochastic NPV of the portfolio
equal to zero pathwise. By applying this definition to Equation (17) and using Equation (10) with
Pz

n(ξ) = PLC,w(ξ)(1 + i)n−nb for any technology z, the following expressive LCOE formula holds:

PLC,w(ξ) = ∑
z

wzPLC,z(ξ). (20)

The stochastic LCOE of a power portfolio is, therefore, a linear combination of individual
technologies stochastic LCOEs, weighted by the fraction of electricity generated by each technology in
the power portfolio.

The classic, deterministic NPV of a power portfolio is the expected value of the stochastic NPV of
the portfolio, and the classic, deterministic, LCOE of a power portfolio is the expected value of the
stochastic LCOE of the portfolio. The classic LCOE is hence a break-even reference unitary cost of the
whole generation portfolio.

For dispatchable baseload technologies, Equation (17) can be written in the following,
expressive form,

NPVw
red(ξ) = P̂b(ξ)− PLC,w(ξ). (21)

The portfolio LCOE assumes, therefore, a very relevant meaning because it allows to compare
among them different dispatchable baseload technology combinations. In fact, from Equation (21),
it follows that the portfolio that maximizes the expected stochastic NPV is the portfolio that minimizes
the expected stochastic LCOE. From this point of view, limiting the choice criterion to the maximization
of the expected NPV, the minimum LCOE portfolio is the best choice within the set of dispatchable
baseload alternatives. Such an optimum portfolio is profitable, i.e., it has positive expected NPV if and
only if the expected LCOE is greater than the beakeven electricity price, E

[
P̂b(ξ)

]
.

The power portfolio selection problem is more complicate in a stochastic framework when risk is
taken into account. In such a case, a trade-off between the expected NPV and the risk of the portfolio,
as measured by the standard deviation or by CVaRD [8,9] of the stochastic NPV, must be taken into
account. At the same time, the trade-off between the expected LCOE and the cost-risk of the portfolio,
as measured by the standard deviation or by CVaRD of the stochastic LCOE, can be also examined.
The aim of this paper was to investigate the portfolio selection problem using both evaluation metrics
in order to understand in what cases optimal portfolios under the stochastic NPV metric may differ
from optimal portfolios under the stochastic LCOE metric.

4. The Model

The portfolio selection problem is performed under the dynamic model discussed by Lucheroni
and Mari [10], in which four sources of risk are considered, namely electricity market prices, gas,
coal, and nuclear fuel market prices. A fifth source of risk is then added to include CO2 stochastic
costs. A complete description of the model can be found there. In this section, the main features and
data which will be used in the empirical analysis are briefly recalled. Without loss of generality, it is
assumed that the evaluation time, n = 0, coincides with the base year, nb (the end of 2018, in our case).
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4.1. Computing Revenues

According to the NPV approach proposed in the previous section, revenues from selling electricity
during the annual time interval [n − 1, n] must be computed as a lump sum valued at time n. Limiting
the analysis to baseload generation, the revenues term of Equation (12) can be computed assuming
that Pb

n is the annual averages of daily market prices. It was shown [10] that such an annual average
can be expressed as

Pb
n = exp

(
β0 + β1n + hb

n
)
, (22)

where β0 and β1 account for a looking forward linear (affine) trend, and hb
n (n ≥ 1) are i.i.d.

normal random variables with mean h̄b and standard deviation Σb, which are constant over time
(the dependence on the stochastic path, ξ, has been omitted). The long-run dynamics, described
by Equation (22), have been obtained from the stationary solution of a well-defined short-time
mean-reverting regime-switching model of electricity prices. In this analysis, the standard deviation
value is set equal to Σb = 0.10, in agreement with the estimate obtained on market data from Palo
Verde and PJM power markets. Palo Verde and PJM markets have been chosen because they are
characterized by a well diversified baseload electricity generation from gas, coal, and nuclear power
plants [20]. The calibration of the dynamics is completed by determining β0 and β1 on macroeconomic
data. It can be done by using macroeconomic forecasts of the long-run behavior of power prices.
In such a case, the following equations must hold,

exp
(

β0 + h̄b +
1
2

Σ2
b
)
= Ab, (23)

β1 = π + πb, (24)

where Ab is the current annual average of the electricity generation price; π = ln(1 + i) and
πb = ln(1 + kb) account, respectively, for expected inflation and for the view on the real escalation
rate of power prices, being kb the expected real escalation rate. The Annual Energy Outlook 2019 [20]
provides the following values, Ab = 64 $2018 per MWh, kb = −0.5% per annum, and i = 2.3% per
annum. The break-even is reached when the expected LCOE is at most equal to E

[
P̂b], where

E
[
P̂b] = Ab ∑M

n=1(1 + i)n(1 + kb)nF0,n

∑M
n=1(1 + i)nF0,n

. (25)

For expected LCOE values lower than E
[
P̂b], the power generating portfolio shows a strictly

positive expected NPV and becomes profitable.

4.2. Computing Fossil Fuel Costs

In computing the stochastic NPV of gas generation, gas costs incurred in the annual time interval
[n − 1, n] must be computed as a lump sum and valued at time n. It was shown [10] that the annual gas
price (per mmBtu) in the year n, Pga

n (the suffix ‘ga’ stands for ‘gas’), can be cast in the following form,

Pga
n = exp

(
β

ga
0 + β

ga
1 n + hga

n
)
, (26)

where β
ga
0 and β

ga
1 account for a looking forward linear (affine) trend, and hga

n (n ≥ 1) are correlated
i.d. normal random variables with mean h̄ga and standard deviation Σga, which are constant over time.
The long-run dynamics described by Equation (26) have been obtained from the stationary solution
of a well-defined short-term mean-reverting jump-diffusion model of natural gas prices. The price
process parameters have been estimated on U.S. cost data of natural gas receipts at electric generating
plants, which are available at a monthly frequency at the U.S. Energy Information Administration
site: www.eia.doe.gov/totalenergy/data. The estimation results provide a standard deviation value
Σga = 0.35. Moreover, the annual autocorrelation coefficient is constant over time, and it is equal to 0.7.

www.eia.doe.gov/totalenergy/data
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The empirical analysis reveals that hb
n and hga

n are stochastically independent processes.
As outlined in the Introduction, the reason is that annual revenues become stochastically independent
from natural gas annual costs when they are computed averaging over a one year of observations.
Although natural gas and power prices could show some cointegration relationship [11], nevertheless,
the correlation between annual revenues and costs is negligible. This is due to the very erratic dynamics
of electricity prices observed in actual power markets, which is characterized by mean-reversion, jump,
and spikes of very high magnitude [12]. On the basis of these considerations, annual revenues and
costs are also assumed to be stochastically independent for coal and nuclear power generation.

The parameters β
ga
0 and β

ga
1 allow us to calibrate the model on macroeconomic forecasts about

the future trend of gas market prices, namely

exp
(

β
ga
0 + h̄ga +

1
2

Σ2
ga
)
= Aga, (27)

β
ga
1 = π + πga, (28)

where Aga is the current annual average of the gas price, and πga accounts for the view on the real
escalation rate of gas prices, i.e., πga = ln(1 + kga), being kga the expected real escalation rate of gas
prices. The Annual Energy Outlook 2019 [20] provides the following values, Aga = 3.54 $2018 per
mmBtu, and kga = 1.4% per annum.

Coal prices, Pco
n (the suffix ‘co’ stands for ‘coal’), expressed in nominal dollars per mmBtu, are

described by a GBM of the type,

Pco
n = exp

(
βco

0 + βco
1 n − 1

2
Σ2

con + Σcowco
n
)
, (29)

where wco
n is a Wiener process that is assumed to be independent from electricity and gas price

processes (the empirical analysis reveals that the time series of gas and coal log-returns are almost
uncorrelated with a correlation coefficient equal about to −0.0052 in the period under investigation).
The volatility parameter is set at the value Σco = 0.05 on an annual basis. It has been estimated on
U.S. cost data of natural coal receipts at electric generating plants, which are available at a monthly
frequency at the U.S. Energy Information Administration site: www.eia.doe.gov/totalenergy/data.
The parameters βco

0 and βco
1 allow us to calibrate the model on macroeconomic views about the future

trend of coal market prices, namely
exp

(
βco

0
)
= Aco, (30)

βco
1 = π + πco, (31)

where Aco is the current annual average of the coal price, and πco accounts for the forecast of the real
escalation rate of coal prices, i.e., πco = ln(1 + kco), being kco the expected real escalation rate of coal
prices. The Annual Energy Outlook 2019 [20] provides the following values, Aco = 2.11 $2018 per
mmBtu, and kco = 0.2% per annum. The coal cost evaluation in computing the stochastic NPV of coal
plants is performed pointwise at the end of each year using Equation (29).

4.3. Computing Nuclear Fuel Costs

Nuclear fuel prices, Pnu
n (the suffix ‘nu’ stands for ‘nuclear’), expressed in nominal dollars per

mmBtu, are described by a GBM of the type,

Pnu
n = exp

(
βnu

0 + βnu
1 n − 1

2
Σ2

nun + Σnuwnu
n
)
, (32)

where wnu
n is a Wiener process that is assumed to be independent from electricity and fossil fuels

price processes. The volatility parameter is set at the value Σnu = 0.07 on an annual basis. It has
been estimated on U.S. market data which are available at an annual frequency at the U.S. Energy

www.eia.doe.gov/totalenergy/data
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Information Administration site: www.eia.doe.gov/opendata. The parameters βnu
0 and βnu

1 allow us
to calibrate the model on macroeconomic views about the future trend of nuclear fuel prices, namely

exp
(

βnu
0
)
= Anu, (33)

βnu
1 = π + πnu, (34)

where Anu is the view about the long-run mean of Pnu
n , and πnu accounts for the forecast of the real

escalation rate of nuclear fuel prices, i.e., πnu = ln(1 + knu), being knu the expected real escalation rate
of nuclear fuel prices. The Annual Energy Outlook 2019 [20] provides the following values, Anu = 0.75
$2018 per mmBtu, and knu = 0.2% per annum. As in the coal case, the nuclear fuel cost evaluation for
computing the stochastic NPV of nuclear power plants is performed pointwise at the end of each year
using Equation (32).

5. Power Portfolio Selection

This section addresses the power portfolio selection problem. The analysis is developed for
both the stochastic NPV metric and the stochastic LCOE metric under two risk measures, namely the
standard deviation and the CVaR deviation.

Table 1 summarizes the main economic assumptions adopted in the power portfolio selection
problem. Table 2 details technical data and costs. The main data source was the ‘Annual Energy
Outlook 2019’ [20]. In particular, the cost of new generating technologies were taken from ‘Capital Cost
Estimates for Utility Scale Electricity Generating Plants’ [21] and ‘Cost and Performance Characteristics
of New Generating Technologies, Annual Energy Outlook 2019—January 2019’ [22], both provided
by the U.S. Energy Information Administration. Data refer to a Conventional Natural Gas Combined
Cycle (NGCC) facility for the gas technology, to an Ultra Supercritical Coal (USC) facility for the coal
technology, and to an advanced PWR (Pressurized Water Reactor) nuclear power facility. All costs
are denominated in year 2018 U.S. dollars ($2018). With the exception of the nuclear technology,
decommissioning costs have been set at about 5% of the overnight cost [24,25]. For nuclear power
plants, a larger percentage of the overnight cost to account for decommissioning and radioactive waste
disposal is assumed [26,27]. Overnight costs are uniformly distributed on the construction period.
In accordance to the Annual Energy Outlook 2019 (AEO 2019), an expected inflation rate i = 2.3%
per annum, and a corporate tax rate Tc = 21% as specified in the Tax Cuts and Jobs Act of 2017 are
assumed. As in AEO 2019, all LCOE calculations are performed using a nominal after-tax WACC rate
of 7.0% per annum [20,28].

Table 3 reports expected NPV values for power generation from natural gas, coal, and nuclear
sources, computed over different plant lifetimes. When evaluated on a thirty-year plant lifetime,
both coal and nuclear power generation show a negative expected NPV. By contrast, gas power plant
investment show an interesting positive expected NPV. Lengthening the plant lifetime does not modify
this picture. Table 4 reports expected LCOE values for power generation from natural gas, coal,
and nuclear sources, computed over different plant lifetimes.

Table 1. Main economic assumptions. Source: Annual Energy Outlook 2019 [20].

Parameter x = b x = ga x = co x = nu

Ax 64 3.54 2.11 0.75
kx −0.5% 1.4% 0.2% 0.2%
Σx 0.10 0.35 0.05 0.07

www.eia.doe.gov/opendata
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Table 2. Technical and cost assumptions. ‘mill’ stands for 1/1000. Depreciation is developed according
to the MACRS (Modified Accelerated Cost Recovery System) scheme. Source: Annual Energy Outlook
2019 [20].

Parameter Units Gas Coal Nuclear

Nominal capacity factor 87% 85% 90%
Heat rate Btu/kWh 6600 8800 10,461
Overnight cost $/kW 999 3747 6034
Fixed O&M costs $/kW/year 11.33 43.37 103.31
Variable O&M costs mill $/kWh 3.61 4.74 2.37
Decommissioning $/kW 50 200 1000
CO2 intensity Kg-C/mmBtu 14.5 25.5 0
Construction period # of years 3 4 6
Plant life # of years 30–40 30–40 30–40–60
Depreciation scheme – MACRS,20 MACRS,20 MACRS,20

Table 3. Expected Net Present Value (NPV) values.

Plant Lifetime Gas Coal Nuclear

30-year 17.4 −8.0 −26.5
40-year 16.6 −4.4 −19.6
60-year – – −14.1

Table 4. Expected Levelized Cost of Electricity (LCOE) values.

Plant Lifetime Gas Coal Nuclear

30-year 42.6 68.0 86.5
40-year 42.6 63.6 78.8
60-year – – 72.4

Combining more power generating technologies into power portfolios, it is possible to obtain
different expected NPV-risk profiles, as well as different expected LCOE-risk profiles. In this analysis,
the risk is measured by the standard deviation or by the CVaR deviation. The standard deviation
is used to quantify risk due to fluctuations around the expected value. CVaR deviation is used to
quantify tail risk due to extreme adverse events (for the CVaRD risk measure, the confidence level has
been chosen equal to 95%). Figure 1 depicts opportunity sets for the portfolio selection problem based
on the stochastic NPV metric. Frontiers are determined for both risk measures, the standard deviation
and the CVaR deviation of the stochastic NPV. Opportunity sets are drawn for both the three-asset
(gas, coal, and nuclear power) and the two-asset (gas and coal) portfolio selection problem. Two-asset
portfolio opportunity sets are depicted as continuous red lines. When the stochastic NPV metric is
used under the CVaRD risk measure, the expected NPV is plotted versus minus CVaRD (i.e. −CVaRD),
since adverse events are those with lower NPV values.

The single asset gas portfolio shows the highest values of both risk measures. Such a portfolio
is the most profitable and the most risky portfolio. On the other side, nuclear power generation is
the less profitable and the less risky option. The efficient frontier, i.e., the locus of power portfolios
with the same risk but maximum expected NPV, is represented by the upward sloping curve starting
from the minimum risk portfolio and ending to the single asset gas portfolio. It is composed by power
generating portfolios that efficiently combine gas, coal, and nuclear generation assets.
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Figure 1. Power portfolio opportunity sets under the stochastic NPV metric. The 30-year plant lifetime
scenario: (a) the standard deviation case; (b) the Conditional Value at Risk Deviation (CVaRD) case.
In the y-axis, NPV stands for expected NPV. Continuous red lines depict two-asset, gas and coal,
portfolio opportunity sets.

Figure 2 depicts opportunity sets for the portfolio selection problem based on the stochastic
LCOE metric. Opportunity sets are determined for both risk measures, namely the standard deviation
and the CVaR deviation of the stochastic LCOE. Opportunity sets are drawn for both the three-asset
(gas, coal, and nuclear power) and the two-asset (gas and coal) portfolio selection problem. Two-asset
opportunity sets are depicted as continuous red lines.
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Figure 2. Power portfolio opportunity sets under the stochastic LCOE metric. The 30-year plant
lifetime scenario: (a) the standard deviation case; (b) the CVaRD case. In the y-axis, LCOE stands for
expected LCOE. Continuous red lines depict two-asset, gas and coal, portfolio opportunity sets.

In this case, too, the single asset gas portfolio shows the highest values of both risk measures.
Such a portfolio is the less costly and the most risky portfolio [29]. On the other side, nuclear power
generation is the most costly and the less risky option. The efficient frontier, i.e., the locus of power
portfolios with the same risk but minimum expected LCOE, is represented by the upward sloping
curve starting from the minimum risk portfolio and ending to the single asset gas portfolio. It is
composed by power generating portfolios which efficiently combine from the cost side gas, coal,
and nuclear generation assets.

Tables 5 and 6 report the composition of minimum risk portfolios, as measured by standard
deviation and CVaR deviation, respectively, in the two-asset and in the three-asset portfolio
selection problem.

Table 5. The composition of minimum risk portfolios in the 30-year portfolio selection problem.
The two-asset case.

Risk Measure Metric wga wco

std NPV 29% 71%
LCOE 29% 71%

CVaRD NPV 31% 69%
LCOE 31% 69%
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Table 6. The composition of minimum risk portfolios in the 30-year portfolio selection problem.
The three-asset case.

Risk Measure Metric wga wco wnu

std NPV 9% 24% 67%
LCOE 9% 24% 67%

CVaRD NPV 11% 26% 63%
LCOE 11% 27% 62%

The forty-year portfolio selection problem is depicted in Figure 3 for the stochastic NPV metric,
and in Figure 4 for the stochastic LCOE metric. Tables 7 and 8 report the composition of minimum
risk portfolios.
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Figure 3. Power portfolio opportunity sets under the stochastic NPV metric. The 40-year plant lifetime
scenario: (a) the standard deviation case; (b) the CVaRD case. In the y-axis, NPV stands for expected
NPV. Continuous red lines depict two-asset, gas and coal, portfolio opportunity sets.
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Figure 4. Power portfolio opportunity sets under the stochastic LCOE metric. The 40-year plant
lifetime scenario: (a) the standard deviation case; (b) the CVaRD case. In the y-axis, LCOE stands for
expected LCOE. Continuous red lines depict two-asset, gas and coal, portfolio opportunity sets.

Table 7. The composition of minimum risk portfolios in the 40-year portfolio selection problem.
The two-asset case.

Risk Measure Metric wga wco

std NPV 35% 65%
LCOE 35% 65%

CVaRD NPV 37% 63%
LCOE 38% 62%
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Table 8. The composition of minimum risk portfolios in the 40-year portfolio selection problem.
The three-asset case.

Risk Measure Metric wga wco wnu

std NPV 12% 23% 65%
LCOE 12% 23% 65%

CVaRD NPV 15% 26% 59%
LCOE 16% 25% 59%

Let us examine, first, the portfolio selection problem under the standard deviation risk
measure. Since revenues for baseload generation do not depend on the power portfolio composition,
the stochastic independence between revenues and costs makes efficient portfolio frontiers invariant
with respect to the stochastic metric adopted. In such a case, the portfolio selection problem can be
performed using the stochastic LCOE metrics, as well as the stochastic NPV metric, thus obtaining the
same solution. Minimum risk portfolios, as well as efficient portfolios, i.e., power portfolios belonging
to the efficient frontiers, do not depend on the used metric (stochastic NPV or LCOE). A NPV efficient
portfolio is also a LCOE efficient portfolio, and vice versa. Such a result does not hold if the CVaRD
risk measure is used. However, if the standard deviation of annual revenues is not too high (Σb = 0.10
in this analysis), the efficient frontier invariance is a very good approximation. As shown in Tables 5–8,
the composition of minimum CVaRD portfolios under both metrics are very slightly different. From
this point of view, a cost-based portfolio analysis provides an almost identical solution of that obtained
by performing a NPV-based analysis.

Figures 1–4 show that some efficient portfolios have negative expected NPV values. This means
that for such portfolios the break-even cannot be reached because the expected LCOE is greater than
E
[
P̂b]. For example, all the minimum risk portfolios derived in the thirty-year case have negative

expected NPVs. Table 9 depicts the composition of efficient portfolios with zero expected NPV in the
two-asset portfolio selection problem. Table 10 shows the composition of efficient portfolios with zero
expected NPV in the three-asset case. The composition of zero expected NPV efficient portfolios is the
same under both the standard deviation and the CVaR deviation risk measures. From this point of
view, the proposed methodology can be used as a powerful tool of analysis for planning investments
in new generating technologies paying attention to risk reducing strategies through power sources
diversification, without affecting profitability.

Table 9. The composition of efficient portfolios with zero expected NPV. The two-asset case. The composition
is the same under both the standard deviation and the CVaR deviation risk measures.

Plant Lifetime wga wco

30-year 32% 68%
40-year 21% 79%

Table 10. The composition of efficient portfolios with zero expected NPV. The three-asset case.
The composition is the same under both the standard deviation and the CVaR deviation risk measures.

Plant Lifetime wga wco wnu

30-year 40% 48% 12%
40-year 40% 33% 27%

Including CO2 Costs

The inclusion of CO2 stochastic costs introduces a further source of risk into the analysis. In this
section, the impact that stochastic carbon costs may have on the portfolio selection problem is
investigated. To this end, it is assumed that CO2 stochastic costs do not influence revenues. The effects
of CO2 costs on electricity market price are very difficult to forecast, and this possibility is not



Energies 2020, 13, 3677 14 of 18

considered here. CO2 costs may impact, in fact, not only on the electricity price level but also on its
volatility, thus determining correlation between revenues and costs. However, if such effects are small
on the long-run, the results discussed in this section provide a good approximation.

Carbon prices, Pca
n (the suffix ‘ca’ stands for ‘carbon’), expressed in nominal dollars per ton of

CO2, are assumed to evolve in time following a GBM of the type,

Pca
n = exp

(
βca

0 + βca
1 n − 1

2
Σ2

can + Σcawca
n
)
, (35)

where wca
n is a Wiener process independent from fossil and nuclear fuel price processes. Two volatility

scenarios are considered corresponding to Σca = 0.1 and Σca = 0.2. Such values are chosen in order
to depict, respectively, a low volatility scenario and a high volatility scenario. The parameter βca

0 is
determined assuming an initial CO2 price equal to 30 $2018 per ton, i.e.,

exp
(

βca
0
)
= Aca, (36)

where Aca = 30 $2018. To determine βca
1 , it is assumed that CO2 expected prices increase at the inflation

rate, i.e.,
βca

1 = π. (37)

The contribution of CO2 costs to the stochastic NPV is computed pointwise at the end of each year.
CO2 costs increase LCOE expected values and reduce NPV expected values. Investments in gas

fired power plants show a positive expected NPV also in the presence of CO2 costs. Table 11 reports
NPV and LCOE expected values for a thirty-year plant lifetime.

Table 11. Expected NPV and LCOE values.

Metric Gas Coal Nuclear

NPV 6.8 −32.6 −26.5
LCOE 53.2 92.6 86.5

The inclusion of stochastic CO2 costs increases financial risk. Figure 5 depicts portfolio opportunity
sets under the stochastic NPV metric. Frontiers are drawn for both the three-asset (gas, coal, and nuclear
power) and the two-asset (gas and coal) portfolio selection problem on a thirty-year time horizon,
using the standard deviation as risk measure. Computations are performed assuming that the volatility
of CO2 prices is equal to σca = 0.1 (left panel), and σca = 0.2 (right panel) on an annual basis.
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Figure 5. Power portfolio opportunity sets under the stochastic NPV metric: (a) the σca = 0.1 case;
(b) the σca = 0.2 case. In the y-axis, NPV stands for expected NPV. Continuous red lines depict
two-asset, gas and coal, portfolio opportunity sets.

Figure 6 shows power portfolio opportunity sets under the stochastic LCOE metric using the
standard deviation as a risk measure.
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Figure 6. Power portfolio opportunity sets under the stochastic LCOE metric: (a) the σca = 0.1 case;
(b) the σca = 0.2 case. In the y-axis, LCOE stands for expected LCOE. Continuous red lines depict
two-asset, gas and coal, portfolio opportunity sets.

The inclusion of CO2 stochastic costs makes coal generation the riskiest investment option in both
the CO2 price volatility scenarios σca = 0.1 and σca = 0.2. As shown in Figures 5 and 6, this happens
under both the stochastic NPV metric and the stochastic LCOE metric. If power prices and CO2

costs are assumed to be independent, the efficient portfolio frontier is invariant with respect to the
stochastic metric used. Efficient portfolios under the stochastic NPV metric are efficient also under
the stochastic LCOE metric, and vice versa. Tables 12 and 13 report, respectively, the composition of
minimum variance portfolios for the two-asset and for the three-asset portfolio selection problem in
both volatility scenarios. As expected, the composition of the minimum variance portfolio is the same.

Table 12. The composition of minimum variance portfolios: The two-asset case.

σca Metric wga wco

0.1 NPV 86% 14%
0.1 LCOE 86% 14%
0.2 NPV 100% 0%
0.2 LCOE 100% 0%

Table 13. The composition of minimum variance portfolios: The three-asset case.

σca Metric wga wco wnu

0.1 NPV 8% 1% 91%
0.1 LCOE 8% 1% 91%
0.2 NPV 4% 0% 96%
0.2 LCOE 4% 0% 96%

Let us examine the impact of CO2 price volatility on the portfolio selection problem. First,
the two-asset case is discussed. In the presence of stochastic CO2 costs, the coal component of
the minimum variance portfolio reduces as the CO2 price volatility increases. When σca = 0.2,
the minimum variance portfolio is fully composed by the natural gas generation asset. As a
consequence of the coal component reduction, all minimum variance portfolios show positive expected
NPVs. In the three-asset portfolio selection problem, the inclusion of CO2 costs reduces both the
gas and the coal components and increases the nuclear share of power generation of the minimum
variance portfolio. In this case, when σca = 0.2, the minimum variance portfolio is composed by only
two generation assets, namely the natural gas and the nuclear power generation assets. However,
minimum variance portfolios show negative expected NPVs. In both CO2 price volatility scenarios,
the zero NPV efficient portfolio is characterized by a natural gas share of about 80% and a nuclear
share of about 20%.

A similar picture arises also in the case of the CVaR deviation risk measure. Figure 7 shows
power portfolio opportunity sets under the stochastic NPV metric, and Figure 8 shows power portfolio
opportunity sets under the stochastic LCOE metric, in the presence of CO2 stochastic costs.
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Figure 7. Power portfolio opportunity sets under the stochastic NPV metric: (a) the σca = 0.1 case;
(b) the σca = 0.2 case. In the y-axis, NPV stands for expected NPV. Continuous red lines depict
two-asset, gas and coal, portfolio opportunity sets.
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Figure 8. Power portfolio opportunity sets under the stochastic LCOE metric: (a) the σca = 0.1 case;
(b) the σca = 0.2 case. In the y-axis, LCOE stands for expected LCOE. Continuous red lines depict
two-asset, gas and coal, portfolio opportunity sets.

Tables 14 and 15 report the composition of minimum CVaRD portfolios for the two-asset and
for the three-asset portfolio selection problem in both CO2 price volatility scenarios, σca = 0.1 and
σca = 0.2. As in the standard deviation case, the coal component of the minimum CVaRD portfolio
reduces as the CO2 price volatility increases. When σca = 0.2, it is fully composed by the natural gas
generation asset. In this case, too, all minimum CVaRD portfolios show positive expected NPV. In the
three-asset portfolio selection problem, the inclusion of CO2 costs reduces both the gas and the coal
components and increases the nuclear share of power generation of the minimum CVaRD portfolio.
When σca = 0.2, the minimum CVaRD portfolio is composed by only two generation assets, namely
the natural gas and the nuclear power generation assets. However, minimum CVaRD portfolios show
negative expected NPVs. In both CO2 price volatility scenarios, the zero NPV efficient portfolio is
characterized by a natural gas share of about 80% and a nuclear share of about 20%, as in the standard
deviation case.

If CVaRD is assumed as a risk measure, the efficient frontier invariance does not hold, even if
in our case, the efficient frontier under the stochastic NPV metric and the efficient frontier under
the stochastic LCOE metric are almost identical as a consequence of the low value of the standard
deviation of annual revenues.

Table 14. The composition of minimum CVaRD portfolios: The two-asset case.

σca Metric wga wco

0.1 NPV 93% 7%
0.1 LCOE 94% 6%
0.2 NPV 100% 0%
0.2 LCOE 100% 0%
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Table 15. The composition of minimum CVaRD portfolios: The three-asset case.

σca Metric wga wco wnu

0.1 NPV 9% 2% 89%
0.1 LCOE 11% 1% 88%
0.2 NPV 5% 0% 95%
0.2 LCOE 5% 0% 95%

6. Concluding Remarks

The stochastic NPV and the stochastic LCOE are very different evaluation metrics. The first metric
accounts for both revenues from selling electricity in power markets and costs incurred during the
whole lifetime of each plant in the power generating portfolio. By contrast, the stochastic LCOE is a
cost-based metric. If annual revenues are stochastically independent from annual costs, it was shown
that efficient frontiers computed using the standard deviation as risk measure are invariant with
respect to the used metric. This invariance property is broken in the case of the CVaRD risk measure.
However, if the standard deviation of annual revenues is not too high, the invariance of efficient
frontiers is a very good approximation. It is worth to underline that the proposed methodology can
include also correlation between revenues and costs as, for example, a potential correlation between
revenues and natural gas costs, or between revenues and CO2 costs. However, if such correlation is
not too high, the results discussed in this paper hold as a good approximation.

Although the analysis was developed for baseload generation, the proposed methodology can
be easily extended also to peak generation. Not only, it can be extended to include renewable
power generation with and without energy storage systems. In this last case, i.e. in the absence of
storage systems, some hedging mechanism for intermittent renewable generation must be considered.
The hedging can be performed at a power system level [18,30] or at a single electricity company
level [31]. Moreover, it is worthy to remark that, although the empirical analysis was performed
using cost data of new generating technologies, as well as fossil fuel and power prices taken from U.S.
markets, spatiality does not affect this methodology. The proposed approach provides, therefore, a
powerful tool of analysis to investigate the power portfolio selection problem from a very general
and complete perspective. It could offers a quantitative support to electricity companies managers
for planning investments in new generating technologies paying attention to risk reducing strategies
through power sources diversification, without affecting the profitability of their choices.
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