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Abstract: Uniaxial compressive strength (UCS) and peak strain (PS) are essential indices for studying
the mechanical properties of coal and rock masses, and they are closely related to mechanical
parameters such as the elastic modulus (E), Poisson’s ratio (υ), cohesion (C) and internal friction
angle (Φ) of coal and rock masses. This study took the No. 2-1 coal seam of Zhaogu No. 2 Mine,
in Henan Province, China, as the research object. An RMT-150B servo testing machine was used to
test all mechanical parameters, including the E, υ, C and Φ of coal and rock masses. Based on the
principle of orthogonal testing, Three Dimensions Fast Lagrangian Analysis of Continua (FLAC3D)
was used to select E, υ, C, Φ, tensile strength (Rm) and dilation angle (Ψ) as initial participation
factors. Using these six parameters and a five-level combination scheme (L25 (56)), the influence of
coal mechanical parameters on UCS and PS was investigated, using the software SPSS for stepwise
regression analysis, and a uniaxial pressure-resistant regression prediction equation was established.
The research showed that, under uniaxial compression conditions, the main parameters controlling
UCS of coal masses are C and Φ; conversely, the main parameters controlling PS are E and C. UCS and
PS exhibit significant linear relationships with these main controlling parameters. Here, a stepwise
regression prediction equation was established through reliability verification analysis using the main
controlling parameters. This prediction method produces very small errors and a good degree of fit,
thus allowing the rapid prediction of UCS. The precision of the stepwise regression model depends
on the number of test samples, which can be increased in the later stages of a design project to further
improve the precision of the projection model.

Keywords: uniaxial compressive strength; peak strain; orthogonal experiment; main controlling
parameters; stepwise regression prediction

1. Introduction

UCS and PS are significant indices in the study of the mechanical properties of coal and rock
masses and have been used widely in the design of underground mining [1–5]. UCS and PS are
closely related to other mechanical parameters of coal and rock masses, including E, υ, C, Φ, Rm and Ψ.
The mechanical parameters of coal masses exhibit considerable spatial variability owing to the effects
of coal-forming geological conditions and structural geology. Diversity in these mechanical parameters
leads to large variation in UCS and PS, which in turn has a considerable effect on the mechanical
response characteristics of coal, including rock burst strength and the degree of deformation of the
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rock mass surrounding roadways [6–12]. Thus, the influence of mechanical parameters on UCS and
PS has been researched and the main parameters controlling the characteristics of coal mass strength
have been determined; accordingly, the rapid and accurate prediction of UCS of coal masses based
on mechanical parameters has been made possible. Such knowledge is of critical importance for the
prevention and control of rock failure.

While exploring the relationship between UCS, PS and mechanical parameters and investigating
the prediction of UCS, predecessors have carried out extensive research based on accumulated
engineering data [13–20]. For instance, He et al. [21] used the fuzzy positive correlation between UCS
and E to establish a correlation between UCS and E for sedimentary rocks with 10 different types of
structure. Yang et al. [22] used the SPSS 19.0 statistical software to establish six separate mathematical
regression models, taking UCS as the dependent variable and E as the independent variable; they also
obtained a variable quadratic nonlinear regression prediction equation. Mahdi et al. [23] indirectly
estimated the reliability of predicting UCS, Brazilian tensile strength (BTS) and E of marlstone using
a single compressive strength method. Considering the randomness and fuzziness inherent in the
determination of rock UCS, Qi et al. [24] obtained 88 groups of test data through uniaxial compression
experiments, taking UCS as the dependent variable and E and natural density as independent variables,
and established a multiple linear regression model. Lin and Xu [25] used linear function, quadratic
function and power function regression models to fit the relationship between UCS and E for coal
measure strata based on differences in lithology, taking E as the independent variable and UCS as
the dependent variable. Hu et al. [26] established a multiple linear regression prediction model
for the UCS and E values of the Pengguan complex, adopting the measured UCS and E values as
dependent variables and rock block density, Schmidt rebound hardness and the geological strength
index as independent variables. Piotr et al. [27] measured three types of Young’s modulus according
to International Society for Rock Mechanics (ISRM) methods in an indoor uniaxial compression
experiment, obtained correlation expressions of the tangent modulus, secant modulus and average
modulus with UCS and evaluated the consistency of three UCS–E mathematical models.

Most previous studies have simply analyzed the correlation between single mechanical parameters
and UCS, and little attention has been paid to the comprehensive correlation among multiple mechanical
parameters, UCS and PS. Additionally, predictions of the UCS of coal seams have rarely been reported.
Accordingly, this study took the No. 2-1 coal seam of Zhaogu No. 2 Mine in Henan Province as the
case study. An RMT-150B servo testing machine was used for the uniaxial compression test, Brazilian
splitting test and triaxial test of coal samples to determine the mechanical parameters. Based on
orthogonal experiment, six mechanical parameters were selected: E, υ, C, Φ, Rm and Ψ. Using these
six factors and a five-level combination scheme (L25 (56)), the influence of coal mechanical parameters
on the uniaxial compression test and peak strain was investigated, with FLAC3D finite difference
software used to simulate each scheme and determine the main control factors affecting the UCS and
PS. SPSS software was used to establish a stepwise regression model for predicting UCS to obtain a
regression equation for predicting UCS when adopting the main control factors and verify the reliability.
To realize the above research contents, mechanical parameters such as UCS, C, Φ and υ of coal samples
were obtained through mechanical tests, so as to facilitate the orthogonal numerical simulation test.
Then, the FLAC3D simulation software was used to establish the numerical model. Based on the study
of the mesh generation, constitutive model and loading rate, the numerical simulation conditions
for the mechanical properties of coal samples were established. At the same time, according to the
principle of orthogonal experiment, the horizontal spacing of six factors and five levels was determined,
the horizontal parameters were listed, and the numerical simulation scheme of orthogonal experiment
was determined. Finally, according to the numerical simulation results, the influence degree of each
mechanical parameter on peak strength and peak strain was analyzed, in order to determine the main
control factors. The stepwise regression prediction model of UCS was established by SPSS software,
and the reliability of the model was verified. The specific technical roadmap is shown in Figure 1.
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Figure 1. Technical workflow.

2. Orthogonal Numerical Simulation Experiments

2.1. Production of Coal Samples

The main coal seam of Zhaogu No. 2 mine is the Permian Shanxi formation No. 2-1 coal seam.
The dip angle of the coal seam is between 2◦ and 6◦, and the average thickness is 6.16 m; this forms a
thick, stable and near-horizontal coal seam. The coal is high quality anthracite with medium ash, low
sulfur, high calorific value and high ash melting point. The coal seam is simple in structure, being
mainly composed of lump coal and partially filled with calcite, some of which contains parting and
mudstone interlayers. The coal seam is characterized by the development of endogenous fissures and
the high strength of its lump coal. The average natural apparent density of the coal seam is 1435 kg/m3.

To ensure the reliability of the test data, four sampling boreholes were arranged in the track
roadway of the 1105 working face in the No. 11 panel area of Zhaogu No. 2 coal mine. The coal
samples were numbered on site and wrapped with cling film to prevent weathering. Coal samples
were carried by specialized personnel. According to the testing requirements of the International
Society for Rock Mechanics (ISRM), the coal samples underwent preliminary processing into fourteen
standard specimens of diameter 50 mm and height 100 mm, of which three specimens were further
processed into cylinders of diameter 50 mm and height 30 mm. The prepared coal samples were then
used for the uniaxial compression test, Brazilian splitting test and triaxial compression test to obtain
values for E, υ, C, Φ and Rm, as shown in Figure 2.
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Figure 2. Coal samples as prepared for experiment.

2.2. Mechanical Testing and Parameter Acquisition for Coal Samples

2.2.1. Introduction of RMT-150B Servo Tester

An RMT-150B rock mechanics multifunctional testing machine system was selected as the test
loading equipment, as shown in Figure 3. The test machine was equipped with four types of sensors,
namely stroke, stress, displacement and pressure, with fourteen sensors installed in total. The stroke
sensor is used to monitor the stroke of the vertical hydraulic cylinder. The stress sensor is used to
monitor the stress exerted by the vertical and horizontal hydraulic cylinders on the sample being
tested. The displacement sensor is used to monitor the axial and lateral deformation of the specimen.
The pressure sensor is used to monitor the pressure in the triaxial compression. The above sensors have
the advantages of high precision and good stability, but human error or poor daily management and
maintenance can lead to errors in the test results. Therefore, to avoid such errors, the testing machine
is maintained by laboratory management personnel, and coal sample mechanical testing is performed
by an experienced operator to obtain accurate and reliable test data.
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2.2.2. Mechanical Parameter Acquisition

Two test samples were damaged during processing and could not be used. Therefore, mechanical
tests were carried out on the remaining twelve specimens: four specimens underwent uniaxial
compression testing, three underwent the Brazilian splitting test and five underwent triaxial
compression testing. The number of specimens tested is lower than the minimum suggested by ISRM
to obtain reliable parameter estimates for the mechanical properties of rock. However, the mechanical
parameters provide a reference data for the orthogonal test and the variation of the mechanical
parameters has little influence on the results of orthogonal tests. Taking uniaxial compression testing as
an example, a prepared specimen was placed on the pressure plate below the testing machine, and the
axial and lateral displacement sensors were installed and adjusted, as shown in Figure 4.



Energies 2020, 13, 3640 5 of 26
Energies 2020, 13, x FOR PEER REVIEW 5 of 28 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

Figure 4. Specimen loading diagram: 1O upper bearing plate; 2O axial displacement sensor gripper;
3O transverse displacement sensor; 4O transverse displacement sensor mounting seat; 5O axial

displacement sensor; 6O sample; 7O sensor mounting plate; 8O lower bearing plate; 9O bearing seat

Energies 2020, 13, x FOR PEER REVIEW 5 of 27 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

locating pin;

Energies 2020, 13, x FOR PEER REVIEW 5 of 27 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

adjustment plate;

Energies 2020, 13, x FOR PEER REVIEW 5 of 27 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

foundation support;

Energies 2020, 13, x FOR PEER REVIEW 5 of 27 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

baseboard; and

Energies 2020, 13, x FOR PEER REVIEW 5 of 27 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

located block.

Displacement control was adopted for the uniaxial compression test, with a loading rate of
0.02 mm/s, and loading was carried out under computer control until the specimen was damaged,
as shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing,
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s.
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded
by the computer, as shown in Figure 6.

Energies 2020, 13, x FOR PEER REVIEW 5 of 28 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 

Figure 5. Failure pattern of coal samples.

Energies 2020, 13, x FOR PEER REVIEW 5 of 28 

 

 
Figure 4. Specimen loading diagram: ① upper bearing plate; ② axial displacement sensor 
gripper; ③ transverse displacement sensor; ④ transverse displacement sensor mounting 
seat; ⑤ axial displacement sensor; ⑥ sample; ⑦ sensor mounting plate; ⑧ lower bearing 
plate; ⑨ bearing seat ⑩ locating pin; ⑪ adjustment plate; ⑫ foundation support; ⑬ 
baseboard; and ⑭ located block.  

Displacement control was adopted for the uniaxial compression test, with a loading rate of 0.02 
mm/s, and loading was carried out under computer control until the specimen was damaged, as 
shown in Figure 5. The Brazilian splitting test was controlled by the stroke, with a loading rate of 
0.005 m/min. A conventional triaxial compression test was adopted for triaxial compression testing, 
that is, σ1 > σ2 = σ3, and the confining pressures were 2, 5, 10, 15 and 20 MPa. Displacement control 
was adopted for the triaxial testing. First, confining pressure was added in a static and horizontal 
manner, with a loading rate of confining pressure of 0.1 MPa/s. Then, axial pressure was added until 
the predetermined confining pressure value was reached, and the axial loading rate was 0.005 mm/s. 
The mechanical parameters and the stress–strain curve of the coal sample were automatically recorded 
by the computer, as shown in Figure 6. 

 
Figure 5. Failure pattern of coal samples. 

 
Figure 6. Experimental curve of mechanics.



Energies 2020, 13, 3640 6 of 26

The specific mechanical parameters are shown in Table 1, in which the C and Φ were calculated
by the five tests of the Mohr–Coulomb strength criterion. To ensure an adequate simulation of
the numerical test and facilitate the orthogonal calculation, the mean values of some parameters
were reduced.

Table 1. Mechanical parameters of coal samples.

Test E (GPa) υ UCS (MPa) C (MPa) Φ (◦) Ψ (◦) Rm (MPa)

Uniaxial
compression test

3.20 0.35 20.6 / / / /

2.60 0.22 18.7 / / / /

2.19 0.33 15.7 / / / /

3.22 0.30 25.4 / / / /

Brazilian splitting
test

/ / / / / / 1.23

/ / / / / / 0.12

/ / / / / / 0.81

Triaxial test

/ / /

10.88 40.5

/ /

/ / / / /

/ / / / /

/ / / / /

/ / / / /

Average 2.81 0.30 20.1 10.88 40.5 /

Adjusted parameter 2.81 0.30 20.1 5.88 30 8 0.72

It is difficult to obtain an accurate Ψ through mechanical experiments, so Hoek and Brown [28]
suggested that constant Ψ = Φ/4, Φ/8 and 0 should be used to describe the ideal post-peak behavior of
rock masses, namely elasto-brittle, strain softening and ideal elastic–plastic deformation. Based on
the mechanical test results of coal samples, this study determined that the Ψ is a constant value,
Ψ = Φ/4. According to the classical plasticity theory, the Mohr–Coulomb strength criterion and the
non-associated flow rule, it is assumed that the variation of material parameters is related to the
softening parameters (plastic shear strain) [29–31]. Among them, the determination of FLAC3D
numerical simulation softening parameters and material weakening method refer to the calculation
formula in the literature [32] and the table command flow of FLAC3D numerical simulation is used to
weaken the relevant parameters of strain softening (including C, Φ and Ψ).

2.3. Numerical Simulation Test

2.3.1. Establishment of Numerical Model

The FLAC3D numerical simulation software, as an extension of a finite difference program, can
analyze the mechanical properties and plastic flow failure of rock and soil masses and can characterize
well the nonlinear mechanical response characteristics of rock and soil [33,34].Therefore, in this study,
the cylinder model (diameter 50 mm × height 100 mm) and the cuboid model (length 50 mm × width
50 mm × height 100 mm) were established by using FLAC3D finite difference software. Displacement
loads at a constant rate were applied to the top and bottom of the model, and no boundary conditions
were applied around it, as shown in Figure 7.

A coal sample is an anisotropic inhomogeneous body with voids and developed joints; therefore,
the numerical model was simplified as an isotropic homogeneous body, while the time units of
load applications used were different. The mechanical experiment units were mm/s or mm/min,
and the FLAC3D units were mm/step. The loading rate of mechanical testing was directly applied
to the numerical model, and the results of the numerical simulation were quite different from
those of mechanical testing. This is because the specimen for gap, joint development of anisotropic



Energies 2020, 13, 3640 7 of 26

heterogeneous body and the numerical simulation process model are simplified to ideal isotropic
homogeneous body and there are no other deformations except for elastic deformation, such as crack
closure and joint development. Therefore, the loading rate in mechanical testing could not be directly
used in the numerical simulation. It is necessary to determine a reasonable model shape, a constitutive
model, and a loading rate based on theoretical analysis and many numerical simulations. There was
a heavy workload of numerical simulations, so in this paper we do not list them in detail but only
analyze the typical results of each condition.
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2.3.2. Constitutive Model Selection

The constitutive relation is used to represent the mechanical properties of materials in numerical
simulation testing, and mechanical response characteristics vary considerably between different
constitutive models. Therefore, it is important to select a constitutive model to study the mechanical
characteristics of coal accurately. At present, strain-softening models and Mohr–Coulomb models are
typically used in mechanical testing of coal/rock masses with FLAC3D [35–38].

The Mohr–Coulomb model is the conventional model used to represent compression-shear failure
in soils and rocks. The failure envelope for this model corresponds to a Mohr–Coulomb criterion
(shear yield function) with tension cutoff (tension yield function) [39]. Once the stress reaches the peak
strength, the strength of rock will rapidly decrease as the deformation continues to increase; this is
called “strain softening” [40]. Therefore, a numerical simulation test can not only reflect the elastic
stage and yield failure of rock but also characterize the mechanical properties of rock after the peak.
The strain-softening model allows representation of nonlinear material softening behavior based on
prescribed variations of the Mohr–Coulomb model properties [39]. In FLAC3D, the strain softening
model in the elastic stage is exactly the same as the Mohr–Coulomb model [41]. The difference,
however, lies in the possibility that the C, Φ, Ψ and Rm may soften after the onset of plastic yield. In the
Mohr–Coulomb model, those properties are assumed to remain constant [39]. The yield function, flow
rule and stress correction of the strain softening model are consistent with those of the Mohr–Coulomb
model [42].

The shear yield function of the strain softening model is:

f s = σ1 − σ3Nϕ + 2c
√

Nϕ (1)

Here, σ1 and σ3 represent the maximum and minimum principal stresses, respectively; C is
cohesion; ϕ is the internal friction angle; and Nϕ is defined as follows.

Nϕ = (1 + sinϕ)/(1− sinϕ) (2)
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In the case of shear failure, according to the orthogonal flow law, the stress of shear failure can be
modified as follows: 

σN
1 = σI

1 − λ
s
(
α1 − α2Nψ

)
σN

2 = σI
2 − α2λs

(
1−Nψ

)
σN

3 = σI
3 − λ

s
(
α2 − α1Nψ

) (3)

Here, σ2 is the intermediate principal stress; σ1 and σ3 represent the maximum and minimum
principal stresses, respectively; α1 and α2 are material constants defined in terms of the shear modulus
and the bulk modulus, respectively; λt is the undetermined plasticity coefficient; superscripts N and
I represent the new and old stress states of the element, respectively; Ψ is dilation angle; and Nψ is
defined as follows:

Nψ = (1 + sinψ)/(1− sinψ) (4)

It can be seen from the stress–strain curve (Figure 6) obtained from the mechanical test of the coal
sample that at the initial stage of loading, the axial strain of the coal sample increased rapidly due to
the rapid closure of internal voids or micro cracks. With increasing applied load, the load was less than
the yield strength, and the stress–strain curve essentially increased in a straight line, which showed
that only reversible elastic deformation occurred in the specimen and that no plastic failure occurred.
With a continuously increasing applied load, when the applied load approached the yield strength, the
stress–strain curve began to show a concave shape, the specimen began to crack, and then it underwent
irreversible plastic deformation. When the applied load reached the yield strength, the plastic failure
range expanded rapidly, but the specimen retained a certain bearing capacity. However, the bearing
capacity gradually decreased with increasing strain, showing a significant strain softening phenomenon.
When the strain reached a certain value, the stress–strain curve rapidly decreased, which was mainly
caused by the brittleness of the coal sample. Based on the above analysis, the strain softening model
can better simulate the mechanical properties of coal samples.

In the process of numerical simulation, to solve the problem of weakening parameters such as C
and Φ in the strain softening stage, the formula in [32] can be used:

Nψε
p
1 + 2εp

3 = 0 (5)

η = ε
p
1 − ε

p
3 (6)

K(η) =


Kp −

Kp−K1
η1

η 0 ≤ η ≤ η1

K1 −
K1−K2
η2−η1

(η− η1) η1 ≤ η ≤ η2

· · · · · ·

Kn−1 −
Kn−1−Kr
η∗−ηn−1

(η− ηn−1) ηn−1 ≤ η ≤ η∗

(7)

where εp
1 is the axial plastic main strain; εp

3 is the lateral plastic main strain; η is the softening coefficient;
K represents C and Φ; p represents peak mechanical parameters; r represents residual mechanical
parameters; η1, η2, . . . , ηn−1 are the softening parameter at the end of stages 1, 2, . . . , n − 1; and η* is
the softening parameter when the discharge reaches the residual state.

Combined with the results of the mechanical test shown in Table 1, the softening coefficients (η) of
mechanical parameters at different stages can be obtained by Formulae (4)–(7), as shown in Table 2.

Table 2. Variation of coal sample strength parameters at different stages.

C/MPa Φ/◦ η

Cumulative plastic strain 0 5.88 30 0

Cumulative plastic strain 0.008 5.76 28.06 0.0133

Cumulative plastic strain 0.015 1.42 26.24 0.0250
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2.3.3. Model Shape Selection

In general, uniaxial compression test specimen shapes include cylinders (50 mm × 100 mm) and
cuboids (50 mm × 50 mm × 100 mm). In this experiment, two models of cylinder and cuboid were
established. The model adopted the weakened mechanical parameters in Table 1. The loading rates at
the top and bottom were both 1.9 × 10−5 mm/step. The stress–strain curve of the numerical model is
shown in Figure 8.
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From the numerical simulation results, it can be seen that the cylinder model and the cuboid model
underwent the same changes in the elastic stage, but their mechanical properties were quite different
after the peak. The weakening process of the cylinder model was slow after the peak. However,
the strength of the cuboid model after the peak rapidly decreased after the initial slow fluctuations,
which accurately simulated the brittle failure of the coal body, and was consistent with the mechanical
testing results of the coal sample, as shown in Figure 6. In addition, the yield strength of the cylinder
model was 16.5 MPa and that of cuboid model was 24.4 MPa. The numerical model is homogeneous
while coal samples are heterogeneous, with joints and voids; therefore, it is normal for the yield
strength of the numerical simulation to be slightly higher than that of the mechanical experiment.
Therefore, the cuboid model was selected for the orthogonal numerical simulation test.

2.3.4. Mesh Number of Model Element Body Is Determined

In FLAC3D software, the strain softening model is used to determine the degree of softening of the
specimen parameters through the accumulated plastic strain after the peak, reflecting the mechanical
properties of the specimen after the peak. The size of the model grid has an important influence on the
development of plastic failure in test samples. If the grid size is too large, it can indirectly enhance the
strength of the test sample, making it harder to damage it. If the grid size is too small, it is too sensitive
to loads and the specimen is weak and easy to damage. In this study, three grid sizes were designed:
Scheme A, grid size 5 mm long × 5 mm wide × 2 mm high, with 5000 grids divided for test samples;
Scheme B, grid size 2.5 mm long × 2.5 mm wide × 2 mm high, with 20,000 grids divided for test
samples; and Scheme C, grid size 1 mm long × 1 mm wide × 2 mm high, with 125,000 grids divided
for test samples. The stress–strain curves of different mesh sizes obtained by numerical simulation are
shown in Figure 9.

According to the comparison of Figures 6 and 9, the post-peak failure processes of the different
schemes were quite different. In Scheme A, the post-peak softening modulus of the sample was small
and could not accurately simulate the brittleness of the post-peak failure of coal samples. The post-peak
softening modulus of Schemes B and C was relatively large, which could simulate the brittleness
characteristics of coal samples. However, when comparing these two schemes, the stress–strain curve
of Scheme B rapidly decreased following a short fluctuation, while Scheme C decreased directly and
rapidly after the peak. Scheme B was more consistent with the mechanical properties of coal samples
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(Figure 6). Therefore, Scheme B was selected for this simulation: the grid size was 2.5 mm long ×
2.5 mm wide × 2 mm high, and 20,000 grids were divided for test samples.
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2.3.5. Loading Rate Determination

The results show that different loading rates exerted a great influence on the strength and failure
modes of rock mass. It has been shown that the peak strength of rock increases with increasing loading
rate [43]. Through mechanical testing, it has been shown that the peak strength of a coal sample first
increases and then decreases with the increase in loading rate [44]. Through Particle Flow Code (PFC)
numerical simulation testing, it was found that the UCS of coal samples increases with increased
loading rate, and that the failure mode changes from X-shaped, V-shaped or Y-shaped to a single
macroscopic fracture surface [45]. In addition, the unit used for the acceleration rate in mechanical
testing and numerical simulation loading is different. The unit of mechanical testing is mm/s or
mm/min, and the unit of FLAC3D is mm/step. Therefore, the loading rate of mechanical test cannot
be directly applied to numerical simulation. To make the simulation test results more accurate and
constant with the mechanical properties of coal samples, it is necessary to discuss the reasonable value
of the acceleration rate. The loading rates were 1.9 × 10−4, 1.9 × 10−5, 1.9 × 10−6 and 1.9 × 10−7 mm/step,
and the remaining numerical simulation conditions remained consistent. The stress–strain curves of
the numerical models with different loading rate conditions were recorded, as shown in Figure 10.
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It can be known from the stress–strain curves of different loading rates, from the yield
strength, when the loading rate V = 1.9 × 10−4 mm/step, the yield strength is 27.3 MPa. Compared
with the mechanical test results in Table 1, the deviation rate is 35.82%. When the loading rate
V = 1.9 × 10−5 mm/step, the yield strength is 24.4 MPa and the deviation rate is 21.39%. When the
loading rate V = 1.9 × 10−6 mm/step, the yield strength is 23.8 MPa and the deviation rate is 18.41%.
When the loading rate V = 1.9 × 10−7 mm/step, the yield strength is 24.0 MPa and the deviation rate is
19.4%. Therefore, when the loading rate was low, the yield strength tended to be stable. When the
loading rate was more than 1.9 × 10−5 mm/step, the yield strength of the numerical model rapidly
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increased with the loading rate. Due to the low loading rate, the load of the model was similar to the
static load, and the internal damage and plastic damage of the model had sufficient time to develop,
thus the yield strength was low and the difference was small. With an increase in loading rate, the plastic
failure time decreased, the degree of damage in the model decreased and the strength continuously
increased [44]. From the mechanical performance curve, when the loading rate V = 1.9 × 10−4 mm/step,
after the model reaches the yield strength, the axial stress gradually decreases with the increase of axial
strain. When the loading speeds were V = 1.9 × 10−5 and 1.9 × 10−7 mm/step, when the model reached
the yield strength, as the strain increased, the stress decreased, slowly at first and then rapidly. When
the loading speed was V = 1.9 × 10−6 mm/step, the axial stress rapidly decreased and the brittleness
increased after the model reached the yield strength. Compared with the stress–strain curve of the
coal sample in Figure 6, the stress–strain curve and the mechanical properties of the loading rate
V = 1.9 × 10−5 and 1.9 × 10−7 mm/step were more consistent with the mechanical test results of the
coal sample. However, when the loading rate was V = 1.9 × 10−7 mm/step, the simulation time of a
single model was significantly longer than for a rate of 1.9 × 10−5 mm/step. Based on the comparative
analysis of the four loading rates, the selected loading rate of orthogonal numerical simulation test is
1.9 × 10−5 mm/step.

2.4. Orthogonal Experimental Method and Experimental Scheme

2.4.1. Orthogonal Experimental Method

The orthogonal experimental method involves an overall design, comprehensive comparison and
statistical analysis of a test carried out in an orthogonal table. It also includes representative test points
selected from a large set of test data; these test points go through testing, comprehensive comparison
and summary analysis via the orthogonal table. The specific design process is shown in Figure 11.
The whole process of the experiment ensures that different levels of each parameter are considered the
same number of times in the scheme and that different combinations of any two parameters occur the
same number of times. Therefore, the uniformity and rationality of multiple parameters at different
levels can be guaranteed, as can the reliability and representativeness of test results. Additionally,
the number of tests conducted can be reduced significantly without affecting the feasibility of the test
results. Thus, ideal test results can be achieved based on fewer representative test points, the sensitivity
of each parameter to the test results can be determined and optimal test results can be obtained with
the minimum number of tests [46].
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2.4.2. Orthogonal Experimental Research Level and Scheme Design

Based on the mechanical properties and constitutive relations of the coal samples, the six mechanical
parameters (E, υ, C, Φ, Rm and Ψ) measured in Table 1 were taken as the initial participating factors of
the orthogonal experiment. Based on the results of previous studies considering the horizontal spacing
of different parameters in orthogonal experiments [47,48], it was determined that each participating
parameter in this experiment has 5 typical levels, with horizontal spacings of 1 GPa, 0.02, 2 MPa, 2◦,
0.5 MPa and 1◦ for E, υ, C, Φ, Rm and Ψ, respectively. The specific parameters adopted are presented
in Table 3.
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Table 3. Research level of orthogonal numerical simulation experimental parameters.

A B C D E F

E (GPa) υ C (MPa) Φ (◦) Rm (MPa) Ψ (◦)

1 2.81 0.30 5.88 30 0.72 8
2 3.81 0.32 7.88 32 1.22 9
3 4.81 0.34 9.88 34 1.72 10
4 5.81 0.36 11.88 36 2.22 11
5 6.81 0.38 13.88 38 2.72 12

According to the orthogonal experiment design, a permutation combination scheme with six
parameters at five levels and twenty-five orthogonal numerical simulation schemes (L25 (56)) was
selected. The primary purpose of this experiment was to study the influence of the selected mechanical
parameters on UCS and PS. The main controlling parameters were determined; UCS was monitored
and PS was recorded for different parameters and multiple levels in the numerical simulation test,
as shown in Table 4.

Table 4. Orthogonal numerical simulation experimental schemes.

Experimental
Scheme

Mechanical Parameters Simulation Results

E (GPa) υ C (MPa) Φ (◦) Rm (MPa) Ψ (◦) UCS (MPa) PS (10−3)

1 2.81 0.30 5.88 30 0.72 8 20.1 3.61
2 2.81 0.32 7.88 32 1.22 9 27.9 4.88
3 2.81 0.34 9.88 34 1.72 10 36.1 5.99
4 2.81 0.36 11.88 36 2.22 11 44.9 7.65
5 2.81 0.38 13.88 38 2.72 12 54.4 9.06
6 3.81 0.30 7.88 34 2.22 12 29.2 3.78
7 3.81 0.32 9.88 36 2.72 8 37.7 4.95
8 3.81 0.34 11.88 38 0.72 9 47.0 6.06
9 3.81 0.36 13.88 30 1.22 10 46.9 6.01

10 3.81 0.38 5.88 32 1.72 11 20.9 2.78
11 4.81 0.30 9.88 38 1.22 11 39.5 4.14
12 4.81 0.32 11.88 30 1.72 12 40.6 4.23
13 4.81 0.34 13.88 32 2.22 8 49.0 5.03
14 4.81 0.36 5.88 34 2.72 9 21.9 2.34
15 4.81 0.38 7.88 36 0.72 10 30.2 3.15
16 5.81 0.30 11.88 32 2.72 10 42.3 3.75
17 5.81 0.32 13.88 34 0.72 11 51.2 4.36
18 5.81 0.34 5.88 36 1.22 12 22.9 2.09
19 5.81 0.36 7.88 38 1.72 8 31.5 2.75
20 5.81 0.38 9.88 30 2.22 9 40.5 3.47
21 6.81 0.30 13.88 36 1.72 9 53.3 3.95
22 6.81 0.32 5.88 38 2.22 10 23.9 1.85
23 6.81 0.34 7.88 30 2.72 11 27.2 2.05
24 6.81 0.36 9.88 32 0.72 12 35.2 2.67
25 6.81 0.38 11.88 34 1.22 8 43.8 3.20

3. Effect of Mechanical Parameters on UCS and PS

3.1. Influence Analysis of Mechanical Parameters on UCS

The range index was introduced to analyze the influence of mechanical parameters on UCS,
based on orthogonality and the comprehensive comparability of the orthogonal experiment, both for
additional analysis and to allow comprehensive comparability of the results with the orthogonal
experiment. Range is used to express the variation in statistical data and to represent the difference
between maximum and minimum values in the calculated mean UCS for a fixed value of one of the
six parameters used in the orthogonal analysis. The size of the range reflects the degree of influence
each parameter has under different levels of change; thus, it determines the degree of influence each
parameter has on UCS and reveals how UCS varies with different parameters. The mean value and
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range of UCS for different values of various parameters were calculated from Table 4, as shown in
Table 5.

Table 5. Average and range for different values of each parameter.

UCS (MPa)
A B C D E F

E (GPa) υ C (MPa) Φ (◦) Rm (MPa) Ψ (◦)

Average 1 36.68 36.88 21.94 35.06 36.74 36.42
Average 2 36.34 36.26 29.20 35.06 36.20 38.12
Average 3 36.24 36.44 37.80 36.44 36.48 35.88
Average 4 37.68 36.08 43.72 37.80 37.50 36.74
Average 5 36.68 37.96 50.96 39.26 36.70 36.46

Range 1.44 1.88 29.02 4.20 1.30 2.24

As illustrated in Table 4, the ranges of E, υ, Rm, Ψ and Φ are 1.44, 1.88, 1.30, 2.24 and 4.20,
respectively. In contrast, the range of C is 29.02. Thus, these results show that C has the greatest
influence on UCS, followed by Φ, while E, υ, Rm and Ψ have relatively little influence on UCS.

To more intuitively demonstrate the influence of each parameter on UCS, curve diagrams were
produced to illustrate changes in horizontal compressive strength with changes in the average value
(Table 5) of the corresponding compressive strength for each parameter in Table 4. To facilitate
comparative analysis of the degree of influence of each parameter on UCS, the ordinate range of the six
parameters included in the curve diagrams was determined to be 20~52 MPa, and close-up plots were
produced for the parameters with relatively small amplitude changes, as shown in Figure 12.
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The following can be inferred based on the information presented in Table 5 and Figure 12.

(1) When E increases from 2.81 to 6.81 GPa, the change in UCS is minimal and the stress value
fluctuates within the range 36~37 MPa. Therefore, the influence of the elastic modulus on UCS is
small. According to the smaller range between axis limits, a nonlinear relationship exists between
E and UCS. With increasing E, compressive strength first decreases before increasing and then
decreasing again; however, the fluctuation range is small, indicating that there is a relatively
stable critical range of UCS for different values of E, as shown in Figure 12a.

(2) With increasing υ, UCS exhibits a fluctuating curve. In the early stage, when υ increases from
0.30 to 0.36, UCS exhibits a decrease followed by an increase and a subsequent decrease, although
the maximum change range is only 0.8 MPa. Conversely, in the later stage, when υ increases from
0.36 to 0.38, the compressive strength increases from 36.08 to 37.96 MPa; this increase of 1.88 MPa
is relatively pronounced. Thus, when υ is small, changes in UCS are comparatively small and
UCS is not sensitive to changes in Poisson’s ratio; conversely, when υ is comparatively large,
the sensitivity of UCS to changes in υ increases, as shown in Figure 12b.

(3) C has a considerable influence on UCS for the coal samples, with UCS ranging from 21.94 to
50.96 MPa for different C levels. Based on curve for this specific analysis, the fitting equation
between C and UCS is y = 3.628x + 0.8794, with R2 = 0.9973. There is a clear linear relationship
between C and UCS, with a range of 29.02. Thus, UCS is sensitive to changes in C, increasing
linearly. The results also illustrate that UCS does not converge to a critical range with variation in
C, as shown in Figure 12c.

(4) The influence of Φ on UCS can be divided into two stages: when Φ is less than 32◦, UCS remains
essentially unchanged with increasing Φ; conversely, when Φ is greater than 32◦, UCS increases
rapidly with increasing Φ and there is a significant linear growth relationship between the two
variables. Thus, Φ has a significant impact on UCS and the degree of its influence is relatively
large. Based on a comprehensive consideration of the whole curve, a nonlinear relationship exists
between UCS and Φ: when Φ exceeds 32◦, UCS increases linearly with increasing Φ and UCS
does not have a stable critical range, as shown in Figure 12d.

(5) Based on the relationship between Rm and UCS, changes in the range of UCS with increasing Rm
are very small, with minimum and maximum values of 36.2 and 37.5 MPa, respectively (a range
of only 1.3 MPa). Therefore, Rm has little influence on UCS. There is a significant nonlinear
relationship between the two variables according to the microscopic analysis diagram, as shown
in Figure 12e.

(6) The relationship between Ψ and UCS indicates that, when Ψ is less than 10◦, UCS first increases
from 36.42 to 38.12 MPa and then decreases to 35.88 MPa with increasing Ψ (a range of 2.24 MPa).
Conversely, when Ψ is greater than 10◦, UCS increases from 35.88 to 36.74 MPa and then decreases
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to 36.46 MPa (a range of 0.86 MPa). This indicates that a nonlinear relationship exists between Ψ
and UCS, with the influence of Ψ on UCS being more pronounced for small values of Ψ, as shown
in Figure 12f.

3.2. Influence Analysis of Mechanical Parameters on PS

Along with strength properties, the deformation properties of coal can be considered critical
mechanical properties. The deformation and failure of coal masses often affect both the stability of
rock surrounding roadways and the dynamic strength of the rock mass during the process of coal
mining. Therefore, it is of great importance to be able to control rock surrounding roadways and
prevent dynamic disasters by understanding fully deformation and failure laws and the mechanical
response characteristics of coal.

Based on stress–strain curves, the deformation of coal goes through three stages before reaching
UCS: the compaction stage, the elastic stage and the plastic stage. There is a positive correlation
between the stress and strain of coal masses during this process: the greater the deformation of the coal
mass, the greater the required stress. When the coal mass reaches UCS, the bearing capacity of the coal
mass reaches its maximum; after exceeding UCS, the stress decreases with increasing strain, exhibiting
an obvious strain softening phenomenon, as shown in Figure 13. Therefore, the strain corresponding to
the coal mass peak is the PS, and its magnitude has a vital influence on the mechanical response of the
coal mass when it is damaged. The brittle characteristics of coal failure are dominant for low PS, which
is prone to inducing dynamic disaster; conversely, the plastic characteristics are dominant for higher
PS, which is prone to inducing large-scale deformation of the rock surrounding roadways [49,50].
This demonstrates that PS is one of the major indices able to characterize the mechanical response of
coal masses.
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Based on the orthogonal experiment results presented in Table 4, the mean and range of PS at
different levels of each parameter considered were obtained, as shown in Table 6.

Table 6. Statistics describing the influence of mechanical parameters on PS.

PS (10−3)
A B C D E F

E (GPa) υ C (MPa) Φ (◦) Rm (MPa) Ψ (◦)

Average 1 6.24 3.85 2.53 3.87 3.97 3.91
Average 2 4.77 4.05 3.32 3.82 4.06 4.14
Average 3 3.78 4.24 4.24 3.93 3.94 4.15
Average 4 3.28 4.28 4.98 4.36 4.36 4.20
Average 5 2.74 4.33 5.68 4.78 4.43 4.37

Range 3.50 0.48 3.15 0.96 0.49 0.46
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According to Table 6, the ranges in E and C are 3.50 and 3.15, respectively. It can be seen that E
has the most pronounced influence on PS, followed by C; the ranges of υ, Φ, Rm and Ψ are relatively
small, and their influences on PS are also small. To more intuitively characterize the influence of
various mechanical parameters on PS, curves were plotted to illustrate the relationships between these
parameters and PS and the ordinates of all curves were unified with the same max and min values on
the y-axis. Smaller ranges between axis limits were produced for the parameters with lower sensitivity,
as shown in Figure 14.
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The following inferences can be made based on Table 6 and Figure 14.

(1) Based on the curve in Figure 14a, the relationship between E and PS is approximately linear. When
the other parameters remain constant, PS decreases with increasing E, which is closely related to
the deformation resistance of the object as characterized by E. For large values of E, the deformation
resistance is greater and the deformation is less pronounced; conversely, for smaller values of E,
the deformation resistance is lesser and the deformation is more pronounced.
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(2) PS increases slowly with increasing υ from 0.30 to 0.38; thus, the overall change in PS is small and
the sensitivity of PS to υ can be considered relatively small. A smaller range between axis limits
indicates that PS growth with increasing Poisson’s ratio occurs in two stages: in the first stage, υ
increases from 0.3 to 0.34 and the PS growth rate is 10.13%; in the second stage, υ increases from
0.34 to 0.38 and the PS growth rate is only 2.12%. The growth rate of PS in the second stage is
significantly lower than that in the first stage, although a relatively significant linear relationship
exists between υ and PS in each stage, as shown in Figure 14b.

(3) According to Figure 14c, PS increases linearly from 2.53 to 5.68 (range of 3.15) with increasing C.
Other than E, C can be considered to have the largest influence on PS.

(4) The influence of Φ on PS can also be considered to exhibit two stages. When Φ is less than
34◦, the fluctuation range of PS is very small with increasing Φ and Φ thus has no effect on PS.
Conversely, when Φ is greater than 34◦, PS increases linearly with increasing Φ and the degree of
influence of Φ on PS is greater, as shown in Figure 14d.

(5) The influence of Rm on PS is variable, with no obvious regularity; the range is only 0.49 and Rm

has little influence on PS. However, PS tends broadly to increase with increasing Rm, as shown in
Figure 14e.

(6) Based on the curve plotting PS against Ψ, PS increases from 3.91 to 4.37 as Ψ increases from 8◦ to
12◦. This fluctuation range is small, indicating that the influence of Ψ on PS is small. Although
the main plot indicates a lack of any clear linear relationship between Ψ and PS, the microscopic
analysis diagram indicates that PS increases linearly with increasing Ψ before leveling off, and
then exhibiting a further linear increase with Ψ at higher values of Ψ, as shown in Figure 14f.

The relationship between C and PS has been plotted for different values of E, as shown in Figure 15.
The influence of C on PS is closely related to E. When E is 2.81 GPa, PS increases from 3.61 to 9.06
(range of 5.45) as C increases from 5.88 to 13.88 MPa; conversely, when E is 6.81 GPa, PS increases
from 1.85 to 3.95 (range of 2.1) for the same range of C. Thus, the influence of C on PS decreases with
increasing E. Overall, C and PS exhibit a linear relationship regardless of the value of E.
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3.3. Influence Analysis of Mechanical Parameters on Critical Failure Strength of Coal Samples

For the whole stress–strain curve, UCS represents the maximum load-bearing capacity of the coal
mass, and PS can be used to describe the deformation characteristics of the coal mass under uniaxial
compression failure. Therefore, both PS and UCS can be used to characterize the critical failure strength
of a coal mass.

Based on analysis of the influence of mechanical parameters on UCS and PS for coal masses,
the degree of influence of the mechanical parameters on UCS decreases in the following order: C > Φ
>Ψ> υ > E > Rm. Conversely, the degree of influence of these parameters on PS decreases in the
following order: E > C > Φ > Rm > υ >Ψ. Thus, these mechanical parameters have different influences
on UCS and PS. To more fully reveal the influence of these parameters on UCS and PS, a normalization
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method was used to map all range data presented in Tables 5 and 6 onto the range 0~1, as shown
in Table 7. The normalization method is to scale the data that need to be processed to a small
specific interval. To facilitate data processing, the data were mapped to a range of 0~1 for processing.
The normalization results are plotted as a histogram for processing and comparison, as shown in
Figure 16.

Table 7. Normalized range of each parameter corresponding to peak stress and peak strain.

E υ C Φ Rm Ψ

Range (UCS) 1.44 1.88 29.02 4.20 1.30 2.24
Range (PS) 3.50 0.48 3.15 0.96 0.49 0.46

Range normalization (UCS) 0.036 0.047 0.724 0.105 0.032 0.056
Range normalization (PS) 0.387 0.053 0.349 0.106 0.054 0.051
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According to this comparative analysis, only C has an important influence on both UCS and PS,
and E has a significant influence only on PS. The parameter Φ has the same influence on UCS as on
PS, and all other mechanical parameters considered have a relatively small influence on both UCS
and PS. The results illustrate that C has the greatest influence on the critical failure strength of coal
masses under compression, and that increased cohesion can improve the critical failure strength of coal
significantly. Thus, it can be inferred that the stability of rock surrounding roadways can be enhanced
effectively by grouting and anchoring to improve C in the rock mass.

4. Stepwise Regression Prediction of UCS

According to the analysis described above, different mechanical parameters have different degrees
of influence on UCS: C has the greatest influence on UCS, followed by Φ, with the influence of other
mechanical parameters being relatively small. Based on this, a regression equation was derived by
establishing a predictive model of UCS using stepwise regression analysis, and the main controlling
parameters were used for rapid prediction of UCS, in order to obtain relatively accurate prediction of
values with fewer variables. The technical workflow for this is shown in Figure 17.
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4.1. Stepwise Regression Equation Analysis of Relevant Explanatory Variables and Regression
Model Establishment

The stepwise regression method is introducing all the independent variables into the regression
model and determining the significance level of each independent variable. Eliminating the
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non-significant independent variables and reducing the number of independent variables are
advantageous to the fast predicting of the changing trend of dependent variables. At the same
time, using the identified significant independent variables to establish the regression equation, the
optimal interpretive parameter set can be obtained.

Firstly, SPSS software was used to introduce all the participating factors into the regression model
one by one. F test is generally used to compare the prediction model to the dataset for each factor and
determine whether there is a significant difference in the correlation between the dependent variable
and the independent variable. At the same time, the Student’s t-test was performed for the factors with
obvious significance. When the significance level of other variables decreases due to the introduction of
new variables, the model will automatically remove the variables with decreased significance, until no
significant variables participate in the regression equation and no insignificant variables are removed
by the equation, thus only the independent variables with significant effect are finally retained. In this
paper, SPSS software was used to determine the independent variables of significance as C and Φ.
Meanwhile, explanatory parameters of correlation regression test were recorded, including Variance
Inflation Factor (VIF) value for multiple linear test, Durbin–Watson (D–W) value for autocorrelation in
the residuals from the statistical regression analysis test, residual normality test and heteroscedasticity
test. The specific parameters are shown in Table 8.

Table 8. Related interpretation parameter sets of stepwise regression analysis.

Non-Standardized
Coefficient

Standardization
Coefficient t p VIF R2 Adjusted

R2 F
B Standard Error Beta

Constant −18.059 3.704 - −4.876 0.000 ** -
0.983 0.981

619.574
(0.000 **)C 3.628 0.104 0.980 34.79 0.000 ** 1.000

Φ 0.557 0.104 0.150 5.342 0.000 ** 1.000

Supplement: dependent variable—UCS. D–W value: 1.829. ** p < 0.01. Thank you for your advice.

In Table 8, the value of the non-standardized coefficient B is the value of the regression coefficient.
B > 0 indicates that the influence of the independent variable on the dependent variable is positive and
significant when p < 0.05, and the standard error indicates the degree of fluctuation of the regression
coefficient. The standardized coefficient is the value of the regression coefficient for the related
independent variable when the constant is 0; the t value is the intermediate variable for calculating the
p value, and the p value is used to test the significance level of the coefficient. The smaller is the p value,
the greater is the significance. R2 indicates the explanatory power of the independent variable with
respect to the dependent variable; that is, it demonstrates the goodness of fit of the regression equation.
The closer R2 is to 1, the more accurate is the model and the better is the fit of the regression equation.
For this regression analysis, R2 = 0.983, which demonstrates that C and Φ can accurately represent
changes in UCS. The adjusted R2 excludes the influence of increases in the independent variable on the
goodness of fit of the model. The model was checked using the F value test (F = 619.574, p < 0.05),
which indicated that the regression model is effective: in the table, the * symbol against the F value
indicates that at least two independent variables have an impact on the dependent variable. The basic
parameters of the model thus meet the relevant standards, based on the analysis of related parameters
considered in the stepwise regression.

To ensure the reliability of regression model, further tests were undertaken to investigate the
correlation of the stepwise regression model, as shown in Figure 18.

(1) Multicollinearity means that the correlation between explanatory variables (independent variables)
in the regression model is too high to be estimated or predicted by the model. If there is a linear
relationship between independent variables, the reliability of the regression parameters will be
affected. The VIF value, also known as the variance expansion coefficient, can be used to measure
the collinear severity of a regression model. Table 8 indicates that the VIF value was 1 for both C
and Φ; this is far less than the standard value of 10 required to determine the collinearity of the



Energies 2020, 13, 3640 20 of 26

model. Therefore, the mechanical parameters of the orthogonal experiment were found to be
independent of each other, the model did not have multiple linear problems and the model was
well constructed.

(2) Autocorrelation refers to correlation between the expected values of independent variables that
have no significant influence on the dependent variables, which is determined by the D–W value.
If the D–W value is near 2 (specifically 1.7–2.3), the model is well constructed. The D–W value
of this model is 1.829 and the model construction was demonstrated to be reasonable as there
was no autocorrelation among the independent variables that had no significant influence on the
dependent variables.

(3) The residual term represents the difference between the observed value of each sample and the
value estimated by the model. In general, the normal distribution is used to test the residual term:
if the test residual data conform to the normal distribution, the model can be considered to be
well constructed. Residual normality is used to test the reliability and periodicity of data based
on experimental sample data. The analysis of residual normality is only one of the reliability test
indices to test the stepwise regression model. To judge whether the regression model conforms to
the standard, only the residual items need to meet the normal distribution intuitively. The residual
values of regression analysis data in this paper conform to the normal distribution, indicating
that the stepwise regression model is reasonable, as shown in Figure 19.

(4) The heteroscedasticity was validated by plotting scatter diagram of the independent and
dependent variables with the residual term. The heteroscedasticity can be compared to the
variance: it is the difference in variance between the explaining variable that omitted from the
model and the unimportant explained variable. Accordingly, to determine the heteroscedasticity,
the data can be examined for signs of regularity in the corresponding scattered points. If the
residual is notably increased or decreased with any increase in the independent variable, the
regularity is obvious; then, the model has heteroscedasticity and its construction can be considered
poor. All of the independent and dependent variables considered here were plotted in a scatter
diagram, as shown in Figure 20.
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The scatter diagrams in Figure 20a–g illustrate that the regression analysis data exhibit no regularity.
When the independent variables are varied, the residual items do not exhibit regular increases or
decreases. Therefore, there is no correlation between the residual items and related variables and no
heteroscedasticity, indicating that the model is well constructed.

In summary, the independent variables C and Φ exhibit significant correlations with UCS.
As indicated by the regression coefficients, these two independent variables have a positive relationship
with UCS, which is in line with the results of the orthogonal experiment; the interpretation parameters
are also considered to be optimal. In addition, test parameters such as multicollinearity, autocorrelation,
residual normality and heteroscedasticity are also in line with the corresponding standards. Based on
the principle of stepwise regression analysis, a regression model for UCS, C and Φ was established and
a functional relationship between the main controlling parameters and UCS was determined as follows.

y = β0 + β1x1 + β2x2 (8)

where y is UCS (MPa), x1 is C (MPa), x2 is Φ (in degrees) and the coefficients β1 and β2 indicate the
degree of influence of the main controlling parameters on UCS.

According to the principle of stepwise regression analysis, the standardized coefficient of the
regression model represents primarily the degree of influence of different independent variables on the
dependent variable. It compares the relative importance of all influencing parameters on the dependent
variable after nondimensionalization of the parameters, and the non-standardized coefficient should
be used for actual prediction using the regression model. The final stepwise regression equation is
as follows.

y = 3.628x1 + 0.557x2 − 18.059 (9)

4.2. Reliability Analysis of Stepwise Regression Equation of Coal Compressive Strength

To further verify the accuracy and adaptability of the stepwise regression in Equation (9) to the
prediction of the UCS of coal seams, the mechanical parameters of coal seams such as Zhaolou (ZL),
Baodian (BD), Huaheng (HH), Xinhe (XH) and Dongtan (DT) were used. The second regression
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equation (σc = 11.31 + 4.19x1 − 0.017x1
2, where x1 is the elastic modulus) for predicting the UCS of

the 11-2 coal roof rock in the Huainan mining area was compared and analyzed using the method
previously described in [22]. The calculation results are shown in Table 9.

Table 9. Prediction results of compressive strength of coal seams in different coal mines.

Coal Sample E
(GPa)

C
(MPa)

Φ

(◦)
UCS

(MPa)

Stepwise Regression Quadratic
Regression

Predicted
Value Error Predicted

Value Error

ZL3 coal seam 4.32 6.4 25.2 22.36 19.2 14.13% 29.09 30.1%

BD3 down coal seam 13.93 8.2 30.24 26.63 28.53 7.15% 66.38 149.36%

BD 3 coal seam 14.35 7.0 30 25.91 24.05 7.19% 67.94 162.20%

HH 3 coal seam 7.87 5.4 32.3 18.22 19.67 7.15% 43.23 137.28%

XH 3 coal seam 5.23 5.7 29.3 19.22 18.94 1.45% 32.76 70.44%

DT3 coal seam 3.97 5.64 31.5 19.6 19.95 1.78% 27.68 41.21%

DT 3 up coal seam 3.43 5.52 33 20.82 20.35 2.26% 25.48 22.39%

DT 3 down coal seam 3.8 6.5 33 24.04 23.9 0.57% 26.99 12.26%

According to the compressive strength values of different coal seams, the maximum error of
the prediction results of a stepwise regression equation was seen for Zhaolou coal seam 3 (14.13%);
the other prediction errors were less than 10%. The minimum error, of just 0.57%, was seen for 3down

coal seam of Dongtan coal mine. However, the error of the quadratic regression prediction results
was large: the minimum error was 12.26%, and the maximum error was as high as 162.20%. It can be
seen, therefore, that a secondary regression model of the compressive strength of roof strata is only
suitable for predicting the UCS of coal seams with small elastic modulus, and it has large errors and
poor universality. However, the stepwise regression prediction equation established in this study had
the advantages of small errors, high accuracy and good universality.

5. Conclusions

(1) The degree of influence of mechanical parameters on UCS decreases in the following order:
C > Φ > Ψ > υ > E > Rm. Thus, of these parameters, C has the greatest influence, followed by
Φ. The other mechanical parameters considered have little influence on UCS for coal samples,
and their relationships with UCS exhibit nonlinear characteristics. Thus, the main parameters
controlling UCS are C and Φ.

(2) Different mechanical parameters have different degrees of influence on PS, with degree of influence
decreasing in the following order: E > C > Φ > Rm > υ> Ψ. Thus, E has the greatest influence on PS
(negative linear relationship), followed by C (positive linear relationship). The other mechanical
parameters considered have little influence on PS, and the main parameters controlling PS are E
and C.

(3) The degree of influence of mechanical parameters on peak strength has been determined based
on an orthogonal simulation experiment, with the mechanical parameters without obvious
significance being eliminated by a stepwise regression analysis model. The stepwise regression
equation is a mathematical model with C and Φ as independent variables and UCS as a dependent
variable, and the reliability of the regression prediction equation was verified. The prediction
results have small error, high fitting degree and good adaptability, indicating that the model can
realize the prediction of UCS.

The precision of the stepwise regression model depends on the number of test samples, which
can be increased in the later stages of a design project to further improve the precision of the
projection model.
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