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Abstract: Structural performance of renewable energy device platforms is central to their power
generation in a reliable and competitive manner. However, there is a gap in research in the
conceptual and experimental stages of such devices at lower technological readiness levels in
terms of understanding of their structural responses. Uncertainties around knowledge related to
damage conditions of such structures are under-researched and experimental investigations into the
monitoring of performance of such structures are significantly needed. This research addresses this
need and investigates various damage conditions in a scaled catenary moored spar platform in an
ocean wave basin, exposed to typical wave conditions for the west coast of Ireland. A comparison
of the monitored structural responses was carried out with respect to the undamaged experimental
model. It was observed that while free decay tests were not useful to distinguish between various
damage levels, a characterisation of the distribution of the responses can be relevant in identifying
damages or significant structural changes. The work contributes to the much-needed experimental
evidence base around structural health monitoring of renewable energy device platforms.

Keywords: spar platform; mooring; damage; structural health monitoring; uncertainty; renewable
energy; ocean wave basin

1. Introduction

Safe and efficient performance of offshore renewable energy devices can be linked to the exposure
scenarios they face over lifetime [1–3]. It is thus important to understand the structural responses
of such devices [4–6] due to these exposure scenarios. While this importance is well acknowledged,
there is no straightforward way to achieve it. Variabilities and uncertainties of the exposure conditions
over their lifetime [7], along with the evolution of technological readiness present several challenges [8].
While natural exposure conditions and their variabilities cannot be changed, the understanding of the
structural responses during the evolution of technological readiness can be improved significantly.

Renewable energy devices typically go through a number of technological readiness levels at
smaller scales before they are tested in the ocean at full scale. Several interpretations and decisions
regarding their structural responses are thus taken through the analyses of scaled testing in ocean
wave basins and flumes. While some guidelines around such scaling exist [9], it is not straightforward
to scale up ocean wave basin responses to full scale structures, nor is it easy to model every aspect of
the structure numerically. In addition, there remain the challenge of stochasticity present in ocean
waves [10].
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A particular challenge in relation to the lifetime responses of these offshore renewable energy
device platforms is the understanding of damage. The term platform used in this paper refers to the
physical structure to which a device is connected. Offshore renewable energy is a rapidly bourgeoning
field, and while a wide range of designs are available, the focus has been primarily on producing as
high energy as possible per unit structural [11]. This has led the platforms to be extremely flexible and
they often behave nonlinearly during their normal operational phase [12]. While damage analysis is
acknowledged as an important part of design of such structures for actual deployment, their nature and
consequences are still defined in a limited way. Existing numerical studies have tried to address some
of these issues [13–17], but there is a significant paucity of literature in relation to existing experimental
evidence based around this topic.

A scaled tripod [18] analysis on fatigue damage focuses on statistical techniques of detection.
Experiments on damaged ship beam [19], loading for tidal turbines [20] and monitoring of responses of
renewable energy platforms or its control [21–23] are present, but there is no damage-specific variability
study to the best of the knowledge of the authors. Experimental studies of damage responses and
the variability of such responses of offshore renewable energy platforms can lead to guidelines and
recommendations for scaled testing, and lifetime risks can be better understood at lower technological
readiness levels. It would also address some of the epistemic uncertainty that exists around the
responses to damages over operational lifetime [24–27]. Such experiments would also eventually be
used to calibrate numerical simulations against extreme value responses [28]. Scaled experiments
on damage can provide better monitoring markers [29,30] and allow taking informed decisions on
the technological progress of devices, thereby avoiding investment in structurally less favourable
designs, irrespective of their potential for harnessing energy. Such testing can also be helpful when
new materials [31], designs [32] or operations [33] are proposed.

This paper addresses a gap in the literature regarding experimental evidence based on damage
responses for offshore renewable energy device platforms by carrying out targeted tests and analyses
on a spar-type platform in an ocean wave basin for a range of damage scenarios. The term damage
is considered from a wide sense of interpretation and is linked to aspects that potentially affect the
structure from a mechanical point of view in terms of stability and potential collapse, with significant
consequences around safety and operations. Fixed monopiles [11] can be particularly susceptible to
scour and the change in natural frequencies can be relevant [34]. However, there are challenges in
terms of the variability of these natural frequencies as damage markers due to environmental and tidal
effects [35]. Experimental validation of such monopiles will thus depend, amongst other aspects, on the
fundamental understanding of how soil models and the interaction between soil and structure can be
scaled up. For floating turbines, on the other hand, instability and collapse are of significant relevance.
The loss of one of the tension legs or mooring lines [32,33] are already established in developing a
technology to be an important aspect to consider and has been numerically investigated for various
damage levels [36]. In this regard, especially for spar-type solutions, the effect of instability from
unwanted and uneven distribution of moment of inertia is another problem. A comparison between
a spar-buoy and a semi-submersible platform [37] indicates that the spar-buoy’s responses will be
significantly affected by such changes. An experimental investigation into such variations in inertia
and related tilt can be brought about by adding small masses to the experimental platforms and also by
varying the uniformity of ballasting. Mass and inertia imbalance may be due to localised damage and
consequent flooding, potentially compromising safety [38]. Localised flooding and related stability
analyses have been considered before in design [39]. While a semi-submersible solution would be
more susceptible to such cases, for a range of smaller-scale models, the addition of mass can provide
first indications around some of the flooding effects. Essentially, irrespective of a design example,
flooding due to technical or operational problems with the ballast system or otherwise can lead to
such unwanted structural responses [40]. It is then important to consider such changes to relevant
load combinations, as still water loading can also contribute to impact on the overall safety [41]. Thus,
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the consideration of such damage conditions and their representations are linked to accidental and
damage-loading conditions.

The experimental results in this paper address this imbalance of mass and moment of inertia,
along with the loss of mooring lines. The work not only creates an initial benchmark around such
damage investigations but also generates the possibility of carrying out extensive studies around
scaled testing for estimating lifetime performance for renewable energy device platforms in the
future. Such investigations have the potential to reduce both capital expenditure at a design stage and
operational expenditure during the service life, thereby leading to more competitive levelized costs
of energy [42]. Studies like the one presented in this paper are thus fundamental in experimentally
understanding uncertainties and its reduction for the renewable energy sector.

The significance of this work can be interpreted from three aspects: First, despite the rapid
evolution of offshore wind turbines and other renewable energy devices, the decisions around the
development of such technology will have to be made through scaled tests in wave basins and
flumes. This work emphasises and contributes to the needs of assimilating the damage scenarios
and its detection, along with the challenges and limitations of such detection in these scaled tests.
It is expected that future work along this direction will eventually create a benchmark not only for
damage detection, but for creating a protocol for reproducing damage at a scaled level. Secondly, this
work investigates various approaches and markers for the detection of damage by investigating the
dynamic response signatures in both time and frequency domains at a fundamental level. While a
vast literature exists overall in the field of damage detection of various structures, eventually their
purpose is in amplifying fundamental differences observed in time and frequency domains between
damaged and undamaged scenarios to create a consistent and robust marker. To this effect, this paper
provides a first estimate of the types of changes that can be expected due to certain damages and
where their limitations are. These observations will guide future investigations into the development
of both algorithms and markers of damage detection. Finally, the lifetime structural performance of
structures is fundamentally related to the extremes of the distributions of their dynamic responses and
the changes to such extremes can be related to the structural reliability index. This work demonstrates,
from scaled testing and limited measurements, how such changes of the response histograms take place
due to damages in the fitted extremes. This observation will be particularly relevant in developing
reliability and fragility measures of the structure in the future and similar studies can also act as an
input to fatigue analysis models.

2. Experimental Details

To address and understand the variability and uncertainty related to damage conditions in a
floating platform, a range of scaled experiments were carried out on a scaled model of a floating spar
platform in an ocean wave basin under a chosen set of ocean wave test conditions. These experiments
are typical for progress through various technological readiness levels (TRLs).

2.1. Deep Ocean Wave Basin

Tank testing was carried out in the deep ocean wave basin at the Lir National Ocean Test Facility,
Ireland. The tank is 12 m wide and 30 m in length. It has a movable floor with depths up to 3 m and is
fitted with 16 hinge force feedback paddles capable of producing scaled, regular and irregular waves
up to 1.1 m in height.

Two 22.5 N Load cells (Futek LSB210, Irvine, CA 92618, USA) were attached to the port and
starboard lines, respectively, and one 44.5 N cell was attached to the stern line to measure the changes
in mooring force. A system of four cameras was mounted on a truss system above the tank, and tracked
platform motion on four reflective markers attached to the platform in two different vertical planes
using a calibrated system. Resistive wave probes (1 m long) controlled by a control wave monitor unit
recorded the surface elevation of the water along the tank, one of which was in line with the position
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of the floating spar. The wave probes were calibrated by comparing voltage readings against known
changes in water elevation [43,44].

2.2. Floating Spar Buoy Platform Model

The Froude-scaled [45] floating spar platform (1:36 of full scale) had a mass of 55 kg and consisted
of a cylindrical casing of approximately 250 mm diameter and 1.531 m in height, with a series of
internal weights and ballasts (Figure 1). The choice of this floating spar platform is guided by the
fact that it is a particularly viable and popular form of design of offshore wind [46,47] and due to the
feasibility of developing a scaled model for this platform for testing in the wave basin. The inclusion
of other designs in a similar testing format in the future will significantly augment the understanding
and quantifiable impacts of various forms of damage on their performance over the lifetime.
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2.3. Mooring System Design

The mooring system consisted of three catenary mooring lines. The front two lines were spring-taut,
with a spring constant 6.93 N/m approximating the linear best fit load-displacement curve of the
numerically designed catenary line (Figure 2). The custom-made spring for the experiment had a
constant stiffness of 5.1 N/m.

To prevent the spring from overextending, a string was tied to both ends of the spring at a
length specified by the manufacturer as being within the extension limits. To form the rest of the
mooring line, a mooring chain threaded with steel wire was used, designed to be a geometrically
representative Froude-scaled weight. For a full scale 60 mm diameter mooring chain line of 71.64 kg/m,
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the model-scaled mass per unit length was 55 g/m. Table 1 presents the values in the scaled physical
model for testing.Energies 2020, 13, x FOR PEER REVIEW 5 of 23 
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Table 1. Scaled Mooring Line Mass.

Location Line Length (m) Measured Line Mass (g) Mass per Metre (g/m)

Port 4.4 250 56.8
Starboard 4.4 251 57.0

Stern/Catenary Line 14.6 880 60.3

Average 58.03

2.4. Structural Configurations Representing Damage Effects

The structure was tested in various phases (Phases A–F) to represent different levels and forms of
damage, as presented in Table 2, in the form of structural modifications. The undamaged state (Phase
A) provides a baseline from which the effect of all subsequent structural modifications can be assessed.
Damaged Phases B, C and D change the platform weight and subsequently, the draft. Such conditions
could be experienced if the chambers of the platform were to become partially filled with water due to
some damage to the structure, or unexpected failure of a mooring line causing asymmetrical restraining
forces and subsequent banking of the platform. In Phase B, a 2.5 kg weight is added to the upper port
side of the platform, causing a larger draft and the platform to bank to the left when in still water.
Phase C involves adding an extra weight of 1.25 kg to the upper port side of the platform, causing a
further increase in the draft and greater tilt of the floating platform. Phase D weighed the platform
with an extra 2.5 kg on the upper part of each side of the platform, causing the largest draft of the three
added-weight configurations while the platform remained vertical, in order to investigate the effect
of draft increase without the instability from asymmetry. In Phases E and F, different mooring lines
were severed to analyse the structure’s reaction to a failure, as the Det Norske Veritas (DNV) code
ST-0119 (superseding OS-J103) outlines for accidental limit state design. The severed back mooring
line is the least critical line, as it lies in line with the direction of the oncoming waves, and phase E aims
to discover what effect (if any) the removal of this line will have on the overall response of the platform.
The front two mooring lines are responsible for a higher share resistance against oncoming waves,
and Phase F simulates what would happen if one of these were to fail. As an example, the testing of
the platform in Phase C is presented in Figure 3.
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Table 2. Structural configurations for different test phases representing damage.

Phase Description

A Original configuration
B Asymmetrically over-weighted +2.5 kg
C Asymmetrically over-weighted +3.75 kg
D Symmetrically over-weighted +5 kg
E Severed back mooring line
F Severed front mooring line
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2.5. Wave Conditions

The spar was tested under a selection of both regular and irregular wave conditions to represent
a range of real sea conditions, typically found at the Atlantic Marine Energy Test Site (AMETS) off

the coast of Belmullet, Co. Mayo, Ireland. Sinusoidal waves were also used to obtain the dynamic
responses of the platform, and the parameters for such waves were selected to represent the range
of wave periods and heights expected at full scale. The Bretschneider spectrum (also known as the
modified Pierson–Moskowitz spectrum) was used for testing, as it most closely models the irregular
wave behaviour in this area with its spectrum S( f ) represented as

S( f ) =
5

16
HS

2 fP4 f−5 exp

−5
4

[
f
fP

]−4 (1)

where f is the frequency, fP is the peak frequency and HS is the significant wave height [48]. A scatterplot,
obtained from data at Berth B in Belmullet between 1 September 2012 and 16 October 2014, was used
to determine a representative set of waves. Figure 4 shows significant wave height (HS) against mean
period (TZ), and the percentage of occurrence of each wave case defined by these two parameters.
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A conversion factor [49] linked the peak period (TP), defining the spectrum in the wave basin,
to the energy period (TE) as

TP = 1.175TE (2)

For Bretschneider spectrum,
TE = 1.206T02 (3)

where T02 is the spectral equivalent to TZ.
This leads to

TP = 1.42T02 = 1.42TZ (4)

The mean period, TZ, identified from the scatterplot, and the relationship between it and the
peak period, TP = 1.42 TZ, are then used to decide the peak of the periods used in testing. The wave
conditions chosen (Table 3) for the tests cover range of the most common wave conditions.

Each irregular Bretschneider wave test was run for 326 s. The first 10 s were still water recording,
followed by the start of the wave paddles which were allowed to run for one minute for the waves to
be established (i.e., reflected waves and input waves all acting on the system). Subsequently, 256 s of
data were recorded for the test, which is the minimum repeat time for the entire time series generated.
At the end, a 60 s period of settling time was allowed for recording after the wave maker stopped.
Figure 5 presents a comparison between the output of the wave paddles with intended surface elevation
values and the surface elevation recorded by the wave probes. The small errors are attributed to
wave reflection within the tank. Figure 6 presents the same comparison in the frequency domain and
an agreement between the two is observed. Incident and reflected waves are not distinguished by
a reflection analysis when analysing platform motion. While in some cases it is preferable to know
the incident wave height and to use this for analysis (e.g., for long vessels), since it has a bearing on
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hydrodynamic analyses, the floating spar platform is relatively small compared to the wavelength for
tests and is governed by the buoyancy force, which is related to the surface elevation at that point.
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Table 3. Selected wave cases at ocean basin testing model scale.

Wave Case Full Scale Model Scale

Tp (s) fp (Hz) Hs (m) Tp (s) ωp (Hz) Hs (m)

Sine 1 4 0.25 0.5 0.667 1.50 0.014
Sine 2 5 0.2 1 0.833 1.20 0.028
Sine 3 6 0.167 1 1.000 1.00 0.028
Sine 4 7 0.143 1.5 1.167 0.86 0.0415
Sine 5 8 0.125 2 1.333 0.75 0.0555
Sine 6 10 0.1 2 1.667 0.60 0.0555

Tp (s) fp (Hz) Hm0(m) Tp (s) ωp (Hz) Hm0(m)

Bret 1 6 0.167 1 1.000 1.00 0.028
Bret 2 7 0.143 3 1.167 0.86 0.083
Bret 3 8.5 0.118 0.5 1.417 0.71 0.014
Bret 4 8.5 0.118 4 1.417 0.71 0.111
Bret 5 10 0.1 5 1.667 0.60 0.139
Bret 6 10 0.1 1 1.667 0.60 0.028
Bret 7 12.5 0.08 6 2.083 0.48 0.167
Bret 8 12.5 0.08 2 2.083 0.48 0.056
Bret 9 14.0 0.071 4 2.333 0.43 0.111

Bret 10 15.5 0.065 6 2.583 0.39 0.167

Each regular wave was run for 200 s with 10 s of still water recording at the beginning, 130 s of
testing and 60 s of settling down time at the end after the wave paddles stopped.

2.6. Data Acquisition

An optical system (Qualisys Tracker Manager, Qualisys AB, Kvarnbergsgatan 2, 411 05 Göteborg,
Sweden) interface collated 3D positional data from the camera system in the wave basin, ensuring
that the reflective markers on the structure were always within range of the cameras. The centre of
gravity was recalculated for each phase of testing during data acquisition. Acceleration response
was derived for each monitored point and responses for the upper mid-point of the spar platform
was considered for analysis in this paper. Measurements from wave probes 1–6, and load cells
1–3 were recorded with Labview. Each sensor was calibrated before testing and checks such as
still water measurements were carried out during testing to ensure that measurements remained
consistent and accurate throughout. Occasional unrealistic peaks were averaged and detrended to
obtain displacements of about a zero mean.

3. Response Characterisation of the Test Platform

The test platform responses were characterised using free decay tests and wave tests in its various
damage phases.

3.1. Estimation of Natural Frequency from Free Decay Tests

Free decay testing for displacement (sway, surge, heave) and rotation (pitch, roll, yaw) was
conducted in still water to characterise the response of the test platform for each structural modification
related to the damage phases. Fast Fourier transform (FFT) was used to pick the dominant frequency as
the natural frequency of the platform. Due to rotational symmetry and main coupling effects, heave and
pitch motions were mainly studied for spar platforms [50–52]. For a spar platform, where the geometry
is the same for both surge and sway motions, it is reasonable to expect them to be representative of
one another. The identified natural frequencies for the heave response are shown in Figure 7 and
the range is observed to be between 0.4225 to 0.4444 Hz. It is observed that the various damage
configurations did not relate to change in a significant change of natural frequencies. The estimated
natural frequencies corresponding to heave, sway, surge and pitch are summarised in Table 4.
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Table 4. Estimated natural frequency of heave, surge, sway and pitch motions.

Phase

Peak Frequencies from FFT (Hz)

Tank Scale Full Scale

Heave Sway Surge Pitch Heave Sway Surge Pitch

A 0.444 0.026 0.029 0.397 0.0740 0.0043 0.0048 0.0662

B 0.434 0.016 0.021 0.368 0.0723 0.0027 0.0035 0.0613

C 0.424 0.023 0.021 0.0596 0.0707 0.0038 0.0035 0.0099

D 0.423 0.021 0.021 0.316 0.0705 0.0035 0.0035 0.0527

E 0.443 0.021 0.012 0.391 0.0738 0.0035 0.0020 0.0652

F 0.442 0.018 0.01 0.368 0.0737 0.0030 0.0017 0.0613

Surge (Figure 8) and sway (Figure 9) both had low frequencies and irregular decay responses,
which is partially explained by the tendency of the spar to rotate slightly as it settled. The sway
direction measured is relative to a fixed axis in the tank and a non-fixed axis on the device itself.
Consequently, sway and surge motions were not individually distinguishable in some data. Despite the
variations and uncertainties from standard testing procedure, the variation of the estimated natural
frequencies was not high considering all phases of testing.
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The natural pitching frequency (Figure 10) for Phase C was considerably lower than all other
phases, and this is due to a secondary forcing from an unsettled water surface. Otherwise, there was
no notable reduction or increase in natural frequencies of any direction of motion among the various
phases of testing.
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Figure 10. FFT of pitch of free decay for all phases of testing.

3.2. Estimation of Damping Ratio from Free Decay Tests

A basic logarithmic decrement approach was used to estimate equivalent viscous damping ratio
of the platform for the various testing phases. Slamming of the waves causes friction damping and
will be significantly higher. Consequently, these estimates only offer a potential comparison among the
various damage phases. As an example, Figure 11 presents free decay responses for heave motion,
while Table 5 presents the estimated averages of the equivalent viscous damping ratios.

The estimation of the equivalent viscous damping ratio for sway and surge motions is more
variable due to the rotational tendency of the platform and thus is not consistent. Distribution of decay
rate of damping for different damage states [53] has been investigated before as a novel way to identify
damage using time domain data. However, with the low estimates of equivalent viscous damping ratio
obtained (1.5% and less, excluding friction damping), it is observed to be unsuitable as a consistent
marker of damage even when free decay tests are consistent.
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Table 5. Heave damping ratio estimates.

Heave Response Phase A Phase B Phase C Phase D Phase E

Average estimated ζ (%) 1.45% 1.50% 1.38% 1.60% 1.29%

4. Results

Statistical measures were computed as a marker to distinguish between various changes affecting
the response of the platform. Such quality control type measures are popular in the structural
health-monitoring literature, but they are also applicable in other domains and with different challenges
of damages and other features of interest [54–56].

4.1. Quantiles of Acceleration Values

The time histories of the acceleration data recorded during wave tests were analysed to identify
any significant changes among the various testing phases.

Figure 12 shows a sample time series for the floating platform for the same wave test (Bret 4) for
different phases (A, B and C) of testing with various quantiles of the responses indicated on the figure.
The changes are summarised for all wave tests and all phases in Figure 13. Relative changes to the
mean and 95th percentile (p95) for each test were calculated with respect to the original undamaged
state (Phase A). As seen in Figure 13, the vast majority of mean acceleration values change by +/−43%.
Phases B, C, D, E and F change between +43% to +1%, +43% to +30%, +2% to −43%, −1% to +93% and
−4% to −29%, respectively.
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Figure 13. Relative changes in response acceleration between phases for Bretschneider wave excitation
in terms of (a) mean values and (b) 95th percentile values.

Results for changes to the 95th percentile values for acceleration are also quite varied. Phases B, C,
D, E and F see changes in p95 acceleration values between +62% to −27%, +1% to −34%, +46% to −44%,
+50% to −4% and −4 to −43%, respectively. It is observed that while various changes of damages do
change the quantiles of acceleration values significantly, calibration is required to make sense of them,
and the excitation wave type is required to be known. It is difficult to distinguish between various
damage causes only from the output response quantiles since different damage effects tend to overlap
each other. Under such circumstances, it is only possible to assess an equivalent effect from a cause,
rather than detecting it. The probabilities of crossing limits of such responses can still be computed
since they can be specified without having to know the reason behind a certain damage or change
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in platform structure and only deal with what response levels are not conducive to serviceability or
safety of the structure. This is of significance since several other built infrastructure sectors [57,58]
exhibit consistent changes in quantiles of responses in their operational conditions.

4.2. Probability Distribution Fits for Acceleration Responses

A probability distribution fit to observed data can often be a meaningful marker [59–61] for
assessing various changes of damage conditions as compared to individual comparison of percentiles.
Multiple distributions were considered for this data in this regard. A gamma distribution [62] was
found an appropriate model for acceleration responses from an experimental model under irregular
wave forcing. The probability density function (PDF) for gamma distribution for a random variable x is

f (x|a, b) =
1

baΓ(a)
xa−1e−

x
b (5)

where a is the scale parameter, b is the shape parameter and Γ() is the gamma function.
Weibull distributions are often a good fit to real engineering data [63] and valued for its adaptability.
A Weibull has been shown to be a good fit for wave height data [64] but with issues related to predicting
the extremes tails. The PDF of the Weibull distribution is

f (x|a, b) =
b
a

(x
a

)b−1
e−(x/a)b

(6)

The general extreme value (GEV) distribution has been ubiquitous in modelling to include
maximum values. Since these are what dictates limit states, this is of interest in a very wide range of
engineering applications [28]. Since it is a generalisation of the Gumbel (encompassing the gamma
distribution), Weibull and Frechet classes of distributions, it comes with more versatility in shape, but
with potentially less definition. The PDF of the GEV is given by

f (x|k,σ,µ) =
( 1
σ

)
exp (−

(
1 + k

(x− µ)
σ

)− 1
k

)(1 +
(x− µ)

σ
)
−1− 1

k
(7)

For

1 + k
(x− µ)

σ
> 0 (8)

where k is the shape parameter, σ is the scale parameter and µ is the location parameter.
The gamma, GEV, and Weibull distribution fits to the measured acceleration responses were

compared in this paper, and Figure 14 provides an example of such a comparison.
The Bayesian information criterion (BIC) is chosen as the measure to assess the goodness of fit of

a distribution. Using the optimised log likelihood value (L), and penalizing for the complexity of the
model i.e., the number of parameters (N), and the number of observations (n), the formula for BIC is

BIC = 2(logL) + (N ∗ logn) (9)

The percentage difference in BIC between models is used as a measure to compare and rank
the distribution fits with the lowest BIC value corresponding to the best fit, which is considered as a
baseline. The other distributions are ranked in terms of BIC percentage differences from this best fit
distribution with the lowest BIC. Table 6 presents the BIC differences for Phase A (undamaged) tests.

While a gamma distribution was most often found to be the best fit, an average across all tests
indicate that a GEV distribution was most consistently able to represent the distribution of the data
for all wave conditions. This was also observed to be true across all damage states and the GEV
distribution for all phases are presented in Figure 15, as an example, for the Bret 8 wave.
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Table 6. Percentage difference of each Bayesian information criterion (BIC) value from best fit BIC
value for different distributions for all Phase A tests.

Phase A BIC Differences (%)

Gamma GEV Weibull

Bret 1 17.696 0 32.668
Bret 2 0 3.854 6.692
Bret 3 19.946 0 26.925
Bret 4 0 2.950 2.756
Bret 5 0 0.250 5.234
Bret 6 22.854 0 46.053
Bret 7 0 1.135 2.056
Bret 8 0 3.828 4.537
Bret 9 0 1.229 2.124

Bret 10 0 1.125 0.699

Average 6.050 1.437 12.974
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The changes to the data distribution across different damage states can be tracked visually to
understand what changes lead to what type of changes in response. This can also be quantified
through the changes of the distribution parameters of shape (k), scale (σ) and location (µ), defining
each fit. A sample of these parameters and their changes between damage states is presented in Table 7.
These parameters can be used to calculate comparative statistics (e.g., mean, variance), which can be
used as further evidence of the goodness of fit of the models when compared to empirical values.

Table 7. Comparison of GEV distribution parameters for all phases for wave case Bret 7 and percentage
change from Phase A.

Bret 7 Shape
k

Scale
σ

Location
µ

Phase A 0.072 0.563 1.054
Phase B 0.051 0.414 0.792

−29% −26% −25%
Phase C 0.042 0.361 0.787

−42% −36% −25%
Phase D −0.017 0.341 0.689

−124% −39% −35%
Phase E 0.022 0.554 1.091

−69% −2% +4%
Phase F 0.146 0.548 1.010

+103% −3% −4%

Table 7 indicates significant changes in the three shape factors defining the distribution for each
phase of testing. The shape factor (k), decreases up to −124% for phases B, C, D, E and increases
by +103% for phase F. There are variations in the scale factor, which decreases by as much as −39%,
and in the location factor where the variation is up to −39%. The shape factor is the most varied
of the parameters and is the most descriptive in terms of changes to the distributions for different
damage states.

The variation in the distribution parameters, when calibrated well, can thus be a better marker to
distinguish between and even characterise the damage states.

4.3. Distribution of Extreme Values

Comparisons similar to the previous sub-sections were carried out on extreme value fits to the
data, using a 95th percentile threshold (Figure 16). Extreme value fits have been observed to be
reflective of changes in damage [28] for idealised mechanical systems. Comparing the difference
between BIC values, the generalised Pareto distribution was observed to be the best fit, followed by the
GEV. The generalised Pareto (GP) distribution uses all available data and not just block maxima like
the GEV. It is characterised by a shape factor (k), also known as the tail index, and a scale parameter (σ).
The threshold parameter (θ) is the value above which the distribution of the maxima is to be fit and
defines the location of the distribution as

y = f(x|k,σ,θ) =
(1
σ

)(
1 + k

(x− θ)
σ

)−1− 1
k

(10)

Table 8 presents the GP distribution parameter values for various phases of testing, and the
percentage difference of this value from Phase A. The shape factor (k) changes most significantly
between phases. From an undamaged state, k decreases for all but phase F of testing, where it increases
by 103.3%.
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Table 8. The generalised Pareto (GP) distribution parameter values for different phases of testing.

Bret 7 Shape K Scale Σ Location µ

Phase A 0.072 0.563 1.054
Phase B 0.051 0.414 0.792

−28.6% −26.4% −24.9%
Phase C 0.042 0.361 0.787

−28.6% −26.4% −24.9%
Phase D −0.017 0.341 0.689

−123.9% −39.4% −34.6%
Phase E 0.022 0.554 1.091

−69.3% −1.6% +3.6%
Phase F 0.146 0.548 1.010

+103.3% −2.6% −4.2%

The changes to the shape of this distribution are described by the shape, scale and location factors
and compared for the various testing phases. A change to the distribution of the maxima, as indicated
by a change to the values of the shape and scale parameters, has the potential to be indicative of an
overall change in state. The value of the location parameter did not vary, as the tails are all located
above the p95 threshold and these were not investigated further. The boxplots in Figure 17 show the
changes to both shape and scale factor values between phases. The values of each boxplot represent
the values from all wave tests carried out at each phase. While a larger sample size will be able to
quantify such changes accurately, the results indicate how a combination of the mean, interquartile
range and tendency of outliers can link to the damage types exhibited in various test phases.
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5. Discussion and Conclusions

The results indicate how the various damage conditions reflect their impact on the dynamic
responses of the floating platforms, but their characterisation requires extensive calibration.
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Nevertheless, the changes and the extent of such changes may be better understood by looking
into the distribution of the responses rather than isolated single point estimates. Scaling aspects
and other uncertainties in models, especially in lower technological readiness levels, will continue
to play a role in terms of uncertainty in the wave basin testing results, but extensive experimental
characterisation and calibration similar to this paper have the potential to create robust markers of
common damage or intervention events in the future. The natural frequencies of the platforms are low
and thus change to their structural conditions due to damage, and other interventions can lead to a
relatively significant change in such natural frequencies and cause increases or decreases in the peak
responses to be more unreliable marker of such changes. In the future, extensive work is required under
controlled levels of damage for different wave conditions so that a dependable and robust marker or
a vector of markers can be created which can consistently reflect the extent of such damage. Such
experiments can also provide better estimates of remaining capacity in terms of safety or serviceability
performance. Research in the direction presented in this paper can thus lead to a significantly better
understanding of lifetime safety of renewable energy device platforms at an early conceptual stage
and lead to reduction in uncertainties around the structural behaviour of the system. Experimental
investigation of damage state is an under-researched area and will be a much required topic in the
future. Since efficient energy generation is related to lifetime structural safety and serviceability
of such structures, it will eventually contribute to a more reliable and competitive generation of
renewable energy. This paper contributed to this gap by investigating the possibilities and limitations
of distinguishing various damage conditions in a spar buoy platform from its dynamic responses
when exposed to Froude-scaled waves typical for the west coast of Ireland in an ocean wave basin.
Scaled testing in an ocean wave basin is the most common method of increasing technological readiness
levels of offshore renewable energy platforms, and the possibilities and limitations of such detection
is thus particularly relevant for understanding their lifetime performance and safety. Five different
structural modifications related to damage conditions were tested with respect to the undamaged
condition in this paper for the spar platform and investigated for their acceleration responses. The work
addresses the paucity in experimental literature investigating the uncertainty and reliability of such
damage responses and their detection, which, in turn, can inform and provide a limit to what can
be reasonably achieved from actual tests, where only the output responses are typically available in
relative detail. The following observations were noted:

1. Free decay tests and estimates of natural frequency and damping ratios from such tests are not
particularly useful to detect the presence of differentiation between the levels of types of damage.

2. Mean and p95 percentiles show changes when there is a significant variation in the structure,
but they do not show a distinct pattern to distinguish types and extents of damage.

3. Best fit distributions on measured histograms of acceleration responses of the structure indicate
significant changes in various damage phases, and the distribution parameters, once calibrated
against the type of damage condition, can be helpful in determining the damage or an effect of a
change that is equivalent to the calibrated damage condition.

4. Extreme value distribution fits to the tails of the measured histograms indicate that changes in
distribution parameters can be calibrated against the damage conditions. A calibrated combination
of the parameters of the distribution fits for the overall and the extremes from the measured
histograms can thus be relevant for characterizing damages.
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