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Abstract: Despite the increasing popularity of permanent magnet synchronous machines,
induction motors (IM) are still the most frequently used electrical machines in commercial applications.
Ensuring a failure-free operation of IM motivates research aimed at the development of effective
methods of monitoring and diagnostic of electrical machines. The presented paper deals with
diagnostics of an IM with failure of an inter-turn short-circuit in a stator winding. As this type of
failure commonly does not lead immediately to exclusion of a drive system, an early stage diagnosis of
inter-turn short-circuit enables preventive maintenance and reduce the costs of a whole drive system
failure. In the proposed approach, the early diagnostics of IM with the inter-turn short-circuit is
based on the analysis of an electromagnetic torque waveform. The research is based on an elaborated
numerical field–circuit model of IM. In the presented model, the inter-turn short-circuit in the selected
winding has been accounted for. As the short-circuit between the turns can occur in different locations
in coils of winding, computations were carried out for various quantity of shorted turns in the
winding. The performed analysis of impact of inter-turn short-circuit on torque waveforms allowed
to find the correlation between the quantity of shorted turns and torque ripple level. This correlation
can be used as input into the first layer of an artificial neural network in early and noninvasive
diagnostics of drive systems.

Keywords: finite element method; Fourier transform; induction machine; inter-turn short-circuits;
torque waveforms

1. Introduction

Due to their simple mechanical design, low cost, and robustness, induction machines are most
often used in commercial applications [1–4]. Despite design efforts aimed to increase the reliability of
IM, failures still occur. As the initial stages of failures may not have a direct effect on operation of the
machine their detection is difficult [5–7]. However, they may spread in the interior of the machine
and in consequence may lead to a stoppage of a technological process in a factory [2,8–10]. Therefore,
the diagnostics of electric motors and the detection of failures at their early stage plays an important
role in industrial applications [11,12].

The review of the literature shows that the most often appearing failures of induction motors is
due to damages in a stator circuit [9,11,13,14]. The most common failures in the stator’s circuit concerns
inter-turn short-circuits that account for over 30% of all failures. Inter-turn short-circuits occur as a
consequence of damage to the insulation of a sole coil turn [15]. Damage to the insulation can be
caused by a flow of current with an intensity exceeding rated values, which leads to release of energy
in a form of heat as well as by a mechanical stress. In addition, ubiquitously used frequency converters
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such as inverters that use fast switching PWM also affect faster degradation of the insulation [16,17].
The assessment of the state of the insulation takes place by means of various dielectric measurements
such as that of the dissipation factor, capacitance, or insulation resistance [18]. The most popular
diagnostics methods for testing the insulation condition are as follows; a partial discharge test,
a polarization index calculation, a dissipation factor, and a power factor tip-up [19]. The methods
listed above are based on offline diagnostics and require the experience of a diagnostician as well as a
comprehensive measurement system [16].

There are lot of publications in the literature related to faults occurred in the stator winding of
induction motor. Most of them only apply to an analysis an impact of the inter-turn short-circuit
on current of stator windings. This approach requires analysis of three signals at the same time.
In addition, the impact of a small amount of shorted turns on phase currents for a loaded motor
can be difficult to observe. However, the progressive damage process may affect torque waveforms.
Despite the fact that measuring of the torque waveforms is a very difficult task, the progress in field of
sensors will soon allow such measurements to be made in easy way. Therefore, this article focuses on
presenting the results of simulation tests, which take into account short-circuits that result in torque
waveforms. The analysis was carried out for a motor loaded at an external torque of 0 Nm as well as
15 Nm. These two values correspond to no-load and rated load, respectively. Based on the results of
the analysis, the torque ripple factor was determined.

Based on a review of the latest developments in the field of electric motor diagnostics, two main
approaches can be favored. The first approach is based on analytical calculations, while the second
approach uses numerical methods, e.g., the finite element method or the finite difference method [20].
The most frequently used diagnostic signals include motor phase current waveforms, vibroacoustic
signals, axial flux or supply voltage waveforms [21,22]. The above-mentioned diagnostic signals are
widely used in diagnostics of many motors failures, especially mechanical damages such as a shaft
misalignment or bearing failures. Nevertheless, as mentioned in the previous paragraph, failures in the
electrical circuit, such as inter-turn short-circuits in their early stage, do not have a significant impact on
the waveforms of the above-mentioned diagnostic quantities. Therefore, the torque waveforms of the
machine can be used for early diagnostics of stator winding of electric motors, despite the difficulties
associated with obtaining as the diagnostic signal [23].

Many papers describe approaches that do not consider the impact of short-circuits in the stator
circuit on the torque waveforms, or they are based on the short-circuit modeling using either analytical
calculations. In the presented paper, the authors propose the analysis of the inter-fault short-circuits
using the field–circuit model of the machine. The use of such model allows for comprehensive
analysis of the inter-turn short-circuits, taking into account nonlinear phenomena occurring during
motor operation in an emergency fault condition. On the basis of the developed field–circuit model,
authors managed to determine a torque ripple coefficient for different numbers of shorted turns.

In the following paper, the authors present parameters of the considered motor and the method of
modeling inter-turn short-circuits using a field–circuit model of electromagnetic phenomena. Then,
an analysis of the obtained torque waveforms of a squirrel cage motor for various degrees of stator
winding failures is presented. The paper also presents the influence of the inter-turn short-circuits on
the distribution of the magnetic field in the machine. Finally, the method for determining the torque
ripple coefficient and conclusions are presented.

2. Stator Winding Failure—Inter-Turn Short-Circuit Modeling

Modeling of winding short-circuits on real object requires building a dedicated stator winding
for each case of damage. As the short-circuits can occur in different locations in the coil and can
have different impact on the current or torque waveforms, the number of cases to be studied is high.
To mitigate the discussed disadvantage of experimental-based methods in the proposed approach,
the advanced computer simulation technique based on Finite Element Method (FEM) has been applied.
Development of the precise numerical model of the electromagnetic field inside the IM allows for
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calculation of waveforms of the rotational speed, torque, and for any type of fault. It is also possible to
study different operating states of the machine.

2.1. Method of Modeling Inter-Turn Short-Circuit

When an inter-turn short-circuit occurs in the stator winding, the winding can be divided into
two different sections (Figure 1). The first section regards the shorted part of the winding, while the
second regards the unshorted turns.
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Figure 1. Illustration of the inter-turn short-circuit in the phase A of stator winding.

For better understanding of the presented issue, the individual motor phases are highlighted
by three different colors. For phase A it is red, for phase B green, and for phase C blue. In phase A,
the shorted part of the winding is marked in orange.

The phase windings of the stator can be described by the three lumped parameters: the number of
turns N, the resistance R, and the inductance L. The shorted part of the winding in phase A is described
with NS

AF, RS
AF, and LS

AF, where upper index “S” relates to the stator, lower index “A” relates to the
phase A, and lower index “F” state for faulty, i.e., the unshorted part of winding. While, in the case
of the shorted part, it is NS

AS, RS
AS, and LS

AS, where upper index “S” relates to stator, lower index “A”
relates to phase A, and lower index “S” is the part of the winding with shorted turns.

The damage ratio (k f ) of stator winding can be defined as the ratio of the number of shorted turns
to the nominal number of turns [24], and can be calculated as follows,

k f =
NS
Nph

(1)

where NS is the number of shorted turns and Nph is the nominal number of turns.
In case of damage in stator, the phase A damage ratio can be written as follows,

kS
A =

NS
AS

NS
N

(2)

where NS
AS is the number of shorted turns and NS

N is the nominal number of turns.
The value of resistance RS

AF as well as inductance LS
AF of unshorted part of winding (faulty) can be

expressed based on its nominal values (RS
A, LS

A) then calculated by following formula.

RS
AF =

(
1− kS

A

)
RS

A

LS
AF =

(
1− kS

A

)2
LS

A

(3)

In the same way, the lumped parameters of the shorted part can be described as

RS
AS =

(
kS

A

)
RS

A

LS
AS =

(
kS

A

)2
LS

A

(4)
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After rotor parameters were referred to the stator side, a system of voltage equations with
representation of the squirrel cage is the three phase system. For the circuit of stator and rotor,
the system of equations can be written in the following matrix form,

US = iSRS + LSS d
dt

(
iS

)
+ d

dt

(
L′SRi′S

)
U′R = i′RR′R + L′RR d

dt

(
i′R

)
+ d

dt

(
L′SRi′R

) (5)

where vectors of phase voltages and currents are as follows,

US =


US

AF

US
AS

US
B

US
C


, U′R =

NR
B

NS
N


UR

A

UR
B

UR
C

, iS =


iSAF

iSAS

iSB
iSC


, i′R =

NR
B

NS
N


iRA
iRB
iRC

 (6)

where NR
B is the nominal number of bars in rotor.

The parameters of machine like stator winding inductance and resistance can be written in the
following matrix form:

RS =


RS

AF −RS
AS 0 0

−RS
AS RS

AS 0 0

0 0 RS
B 0

0 0 0 RS
C


, R′R =

NS
N

NR
B


RR

A 0 0

0 RR
B 0

0 0 RR
C

 (7)

where RS
AF, RS

AS, RS
B , and RS

C are the resistances of the stator winding, and RR
A, RR

B , and RR
C are the

resistances of the rotor winding.

LSS =



LS
AF −

(
LS

AS + MAFAS
)

MAFB + MASB MAFC + MASC

−

(
LS

AS + MAFAS
)

LS
AS −MASB −MASC

MAFB −MASB LS
B MBC

MAFC −MASC MBC LS
C


. (8)

L′SR =
NS

N

NR
B


MSR

AF cos(θ) MSR
AF cos(θ+ 2π/3) MSR

AF cos(θ− 2π/3)

−MSR
AS cos(θ+ γAS) −MSR

AS cos(θ+ γAS + 2π/3) −MSR
AS cos(θ+ γAS − 2π/3)

MSR
B cos(θ− 2π/3) MSR

B cos(θ) MSR
B cos(θ+ 2π/3)

MSR
C cos(θ+ 2π/3) MSR

C cos(θ− 2π/3) MSR
C cos(θ)


(9)

where LS
AF, LS

AS, LS
B, and LS

C are the self-inductances of winding, MSR is the mutual inductance between
stator and rotor, θ is the angle of rotor position, and γ is the angle between shorted coil and stator
winding coil.

The rotor resistance RR can be expressed as a sum of the rotor bar resistance RR
bar and the end ring

resistance RR
ring,

RR
A = RR

B = RR
C = RR =

1
p

(
RR

bar + RR
ring

)
(10)

Equations of stator and rotor must be supplemented by mechanical equilibrium equation. The
equation of mechanical equilibrium is expressed in the following form,

J
dω
dt

= Te − TL. (11)
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where Te =
[
iS

]T ∂L′SR

∂Θ iR is the electromagnetic torque, TL is the load torque, ω is the angular speed,
and J is the inertia moment of moving mass.

To calculate the values of winding inductance in Equations (3)–(11), i.e., the healthy part and the
faulty one, it is preferable to use a field model of machine. In this approach, the inductance values are
calculated based on the magnetic field distribution. The calculations are realized in two steps. In the
first step, the linkage fluxes with phase windings were calculated. In the second step, the inductances
were calculated on the basis of linkage fluxes and the phase currents.

2.2. Field–Circuit Model of the Induction Motor

The field–circuit model of machine includes the field equations, which describe the electromagnetic
field distribution, as well as the circuit equations, which describe the windings connections and the
supply system. The magnetic field distribution using magnetic vector potential A may be described by
following equation,

∇× (ν∇×A) = J
J = −σ

(
d
dt A +∇V

) (12)

where ν is the magnetic reluctivity, J is the current density vector, σ is the conductivity, and V is the
electric scalar potential.

Basically, in the case of voltage-excited fields in devices with nonlinear elements (stator and rotor
cores), currents in windings are not known in advance. Therefore, the value of current density vector
J is not known. Therefore, the electric equations of the device windings should also be considered.
A set of equations can be written as Equation (5). Moreover, these equations are coupled through the
electromagnetic torque to the equation of motion (11).

3. Selected Results of the Torque Calculation

The field–circuit model of IM presented above was used to calculate torque waveforms.
The field–circuit motor model has been developed in the Ansys Maxwell environment. The structure
of the magnetic circuit and applied FE mesh is shown in Figure 2a, while the applied electric circuit,
considering the inter-turn short-circuit, is presented in Figure 2b. Using the developed model, the torque
waveforms of the IM were calculated for different values of kS

A. Calculations were carried out for a
general purpose squirrel IM. Its rated parameters are shown in Table 1.
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Figure 2. Field–circuit model of induction machine: (a) magnetic circuit and (b) electric circuit.

Table 1. Rated parameters of the motor.

Parameter Value

Mechanical power 2.2 kW
Supply voltage 380 V

Efficiency 82%
Speed 1410 rpm
Torque 15 Nm

Frequency 50 Hz
Core loss 37 W

Stator slots 36
Rotor slots 24

The calculations take into account that the magnetic circuit is nonlinear, i.e., in the model, there is
assigned a nonlinear magnetization characteristic to domains representing the stator and rotor cores.
The rotor cage is made of aluminum. The supply phase voltages are sinusoidal and displaced by the
angle of 2

3π. In every phase winding there are four coils, and the number of turns in every phase is 220
and the number of turns per phase is 220. Taking in to account the documentation of the presented
motor, the field model of the machine was developed. Calculations were performed for the number of
shorted turns from 0 to 55. The machine failure level was adjusted by changing the parameter NS

AS.
In the rest of article, we will use the designation Nf instead of NS

AS.

3.1. Magnetic Field Distribution

Due to long computation time of calculation of 3D magnetic field distribution, further research
was performed using simplified 2D model of the machine. Mesh parameters of the FEM model are
shown in Table 2.

Table 2. Mesh parameters of the FEM model.

Num
Elements

Min Edge
Length

Max Edge
Length

RMS Edge
Length

Min Elem.
Area

Max Elem.
Area

Mean Elem.
Area

Band 627 0.000125 0.0019747 0.000854215 1.48933 × 10−8 1.59494 × 10−7 6.82612 × 10−8

Shaft 96 0.00312145 0.00613875 0.00458931 5.9426 × 10−6 1.46274 × 10−5 8.32385 × 10−6

Outer Region 1737 0.000125 0.00589417 0.00216509 2.24777 × 10−8 4.85527 × 10−6 1.0943 × 10−6

Stator 2161 0.000408465 0.00614834 0.00327034 2.03949 × 10−7 1.50488 × 10−5 3.89616 × 10−6

Coil 33 0.000897214 0.00340384 0.00239494 9.34699 × 10−7 3.15461 × 10−6 2.03934 × 10−6

Rotor 6300 0.000273126 0.00582202 0.00140777 4.81107 × 10−8 1.03163 × 10−5 7.93901 × 10−7

Bar 453 0.000273126 0.000699128 0.000498602 4.60133 × 10−8 1.81518 × 10−7 1.06182 × 10−7

Bar_Separate 499 0.000273126 0.000699128 0.000473352 4.60133 × 10−8 1.81518 × 10−7 9.6394 × 10−8

Coil Shorted 7 0.0008 0.002 0.00118964 4 × 10−7 1 × 10−6 5.71429 × 10−7
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The distributions of magnetic flux lines and density in the cross section of the magnetic circuit of
the machine in the case of (a) Nf = 1 turn and (b) Nf = 40 turns are shown in Figure 3a,b, respectively.
It can be observed that at time 0.01 s after switching on the power supply, the angle of rotor position is
equal to 1.347 deg in case of Nf = 1 turn, and the angle of rotor position is equal to 0.677 deg in case of
Nf = 40 turns.
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Figure 3. Magnetic field distributions at time equal to 10ms, load torque TL=TN, and number of shorted
turns: (a) Nf = 1 and (b) Nf = 40.

3.2. The Torque Waveforms at Steady State of the Machine

In the first part of the simulation tests, a set of torque waveforms for healthy and unloaded motor
was determined and then simulations for a motor loaded at 15 Nm torque were performed. The time
step was equal to 0.2 ms, that is, the calculations were made 100 times during one supply voltage
period. The waveforms of the obtained torque are shown in Figure 4.
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Figure 4. Torque waveforms of a healthy motor at TL = 0 Nm and TL = 15 Nm.

In the second part of the simulation tests, the torque waveforms were calculated for the following
number of shorted turns; Nf = {1, 2, 3, 10, 20, 30, 40, 50, 55} in phase A of stator winding, again at no
external load as well as at load torque equal to 15 Nm. In the simulations, the motor start-up process
was considered. Figures 5 and 6 show the obtained torque waveforms from the time of switching on
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the supply voltage to the time of reaching the electromechanically steady state. It has been assumed
that this state is reached after 500 ms from the moment of switching on the voltage. The waveforms as
well as peak values of the electromagnetic torque during the first period of start-up process, i.e., from 0
to 40 ms, at no-load and rated load conditions are shown in Figures 7 and 8, and Table 3, respectively.
Additionally, the torque waveforms in a steady state, i.e., 460–580 ms, are presented in Figures 9 and 10.

Table 3. Peak values of the torque during start-up.

Nf TL = 0 Nm TL = 15 Nm

55 90.589 99.471
50 90.365 99.702
40 89.148 99.567
30 87.410 98.583
20 91.727 96.986
10 92.689 95.689
3 91.938 97.009
2 92.076 97.286
1 92.220 97.599
0 92.305 97.974

One of the most important factors for drive systems in case of a machine failure is the peak value
of the machine torque waveform. The simulations show that the peak value of the torque waveforms
for the motor without external load is 92.689 Nm and occurs in case when the motor has 10 shorted
turns in stator winding. This value is 100.41% of the peak torque value for a healthy motor. It can be
concluded that the influence of the shorted turns during the start of machine without external torque
can be neglected.

The highest peak value of torque waveforms for a motor loaded with nominal load torque was
observed at 50 shorted turns and amounts to 99.702, which is 101.76% of the torque value for the motor
without failure. In conclusion it can be stated that the influence of the shorted turns during the start of
the machine at rated torque can be omitted, because the peak value of torque has slightly increased in
the relation to healthy machine.
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3.3. Torque Analysis—Signal Spectrum

During the analysis of stationary torque waveforms of the machine, spectral analysis using Fourier
transform was used. The results of analysis at no external load as well as at load torque equal to 15 Nm
are shown in Figures 11 and 12, respectively. Two ranges of a spectrum limited by a dash-dot line
marked in Figures 11 and 12 were magnified. The spectral analysis limited in frequency is shown in
Figures 13 and 14.

It can be noticed that the inter-turn short-circuit in the stator winding generates the additional
harmonics of the electromagnetic torque of IM. For the no-load test (TL = 0 Nm), the following
harmonics can be found, f (TL = 0 Nm)={24, 97, 195, 435, 535, 635, 970, 1070, 1170}Hz. In case of rated
load torque, the constant value can be observed as well as the following harmonics, f (TL = 15 Nm)={24,
97, 195, 415, 515, 615, 930, 1030, 1130}Hz. Among the set of harmonics, the second and the fourth
harmonics of supply voltage can be observed. These harmonics are well known in the diagnostics of
electrical machines [15].
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Based on the obtained results of spectral analysis, it can be concluded that the occurrence of
failure, like inter-turn short-circuit in stator winding, even for a small number of shorted turns has a
significant impact on the torque waveforms. There are additional torque oscillations in the waveforms.
The significant impact of inter-turn short circuits on the torque ripple allowed the determination of the
coefficient describing the relationship between the level of torque ripple and the level of failure.

3.4. Torque Ripple Factor

As can be seen in Figure 5, as well as in Figure 6, there are ripples in the torque waveforms.
One can observed that the value of the ripples depends on the number of shorted turns. If the motor
operating without additional load is considered, then the average torque value oscillates around zero
for the steady state. In this case, the torque ripples for a steady state can be calculated as follows.

∆T =
Tmax − Tmin

2
(13)

Calculations of the ripple factor were performed after passing the waveforms of torque through
the low-pass filter with the frequency fp = {5000, 2000, 1000, 500, 200} Hz. The characteristics
which define the relationship between the torque ripple, number of the shorted turns, and filter
frequency for the motor without additional external load are shown in Figures 15 and 16. Based on the
obtained characteristics, it can be seen that the torque ripples depend almost linearly on the number of
shorted turns.
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If the motor operates with rated load torque at steady state, the torque ripples can be calculated
as follows.

∆T =
Tmax − Tmin

Tav
100% (14)

Calculations of the ripple factor were performed after passing the waveforms of torque through
the low-pass filter with the frequency fp = {5000, 2000, 1000, 500, 200} Hz. The characteristics which
define the relationship between the torque ripple, number of the shorted turns, and filter frequency for
the motor with external load are shown in Figures 17 and 18. Based on the obtained characteristics,
it can be seen that the torque ripples also depend almost linearly on the number of shorted turns.
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Using the obtained results, a determination coefficient describing the correspondence of
calculations to the linear equation was determined. The developed coefficient can be expressed
as follows,

R2 =

∑n
i=1

(
∆T̂i − ∆T

)2

∑n
i=1

(
∆Ti − ∆T

)2 (15)

where ∆T̂i is the interpolated value of ripples, ∆T is the mean value of ripples, and ∆Ti is the calculated
value of ripples.

The R2 coefficient can take values from 0 to 1. The level of fit of the calculations to the linear
equation was determined for the following ranges; 0.0–0.5: low fit; 0.5–0.6: average fit; 0.6–0.8:
satisfactory fit; 0.8–0.9: fine fit; and 0.9–1.0: excellent fit.

The coefficient of determination for a load torque equal to 0 Nm was 0.9895, where the linear
equation of torque ripple can be described as ∆T = 0.3273 Nf + 1.5847, while the value of the coefficient
for a load torque equal to 15 Nm was 0.9885, where the linear equation is: ∆T = 4.304 Nf + 21.079.
It can be seen that the value of the R2 coefficient take the value in the range of 0.9 to 1.0, which allows
to determine the relationship between the torque ripple and the number of shorted turns as linear.

4. Summary

The appearance of a short circuit between turns results in a division of the winding into two parts.
As a result of the superposition of magnetomotive force of the phase winding and magnetomotive
force of the shorted coil, the magnetic field distribution is the machine becomes asymmetric. One of
the symptoms of the asymmetrical magnetic field is the torque ripples. In order to calculated torque
waveforms, the field–circuit model of induction machine taking into account inter-turn short-circuit in
stator winding was elaborated. In this paper, the results of the spectral analysis of the obtained torque
waveforms were presented and discussed. The torque ripples at steady-state operation were analyzed.
An increasing of torque ripple level was observed according to increasing the number of shorted turns.
Based on the calculations of the pulsation factor for different low-pass filter frequency values, one can
observe that the pulsation factor decreases as the filter frequency decreases. These calculations can be
helpful during designing measurement systems for recording torque waveforms.

Furthermore, based on the obtained results, it can be seen that the relationship between the value
of the torque ripples factor and the number of shorted turns can be treated as linear. This allows the use
of an artificial neural network (ANN) to classify machine failures based on torque ripples factor level.
The results of the spectral analysis of torque waveforms can be used as an input vector to the training
process of artificial neural network used as classifier in online diagnosis of the IM. The response of the
ANN may concern the assessment of the technical condition of the motor.
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