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Abstract: With an increasing share of renewable energy resources participating in electricity markets,
there is a growing dependence between renewable power production and clearing prices of spot
markets. Modeling this dependence using bivariate analysis can result in underestimation of market
risks and adverse effects for stakeholders’ risk management. To enable an undistorted risk assessment,
we are using a copula approach to precisely and jointly model electricity prices and infeed volumes of
wind power. We simulate the case of wind farm operators using power purchase agreements (PPAs)
to shift the price risk to an energy trader, who integrates the infeed into its portfolio. The trader’s
portfolio can either be geographically dispersed, or highly localized. Based on its portfolio, the energy
trader can decide to use derivatives such as futures to manage its risk exposure. The trader decides
on future volumes subject to its portfolio’s inherent volatility. With a given risk averse strategy,
a sufficiently diverse portfolio can help reduce the necessity to trade futures and subsequently the
disadvantage of having to pay potential risk premiums.

Keywords: portfolio; portfolio management; risk; risk assessment; energy trading; power purchase
agreements; PPA; copula

1. Introduction

In Germany, as in many other countries, market penetration of volatile renewable electricity
producers has reached a significant level. In accordance to federal government and European Union
goals, the German power sector is set to increase its share of electricity produced by renewable energy
sources (RES) to at least 35% by the end of 2020, at least 65% in 2030, and at least 80% in 2050 [1].
RES in this context are wind, solar, biomass, hydro and niche producers (e.g., geothermal). The share of
RES in the gross electricity consumption reached 31.6% in 2016, double the share compared to 2008 [2].
This puts it on track to reach the stated goal. Because of the volatile nature of renewable production,
the doubling of produced electricity was accompanied with a bigger increase in production capacity of
287%, corresponding to a share of the total production capacity of 52% [3].

The increase in renewable energy generation is primarily driven by expansion of wind and solar
power. This expansion of volatile electricity production has measurable effects on price volatility
and dependencies between renewable infeed and prices [4,5]. A principle component analysis
(PCA) of price variation shows that seasonal factors, which affect renewable generation, are a major
component [6]. A similar approach has been used to assess the role of prices spikes in electricity
markets [7]. The volatility caused by RES expansion poses numerous challenges for actors in the
energy system. Potential investors in new power plants need their assets to generate enough revenue
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to cover fixed costs; policy makers have to ensure that energy demand can (almost) always be satisfied.
These challenges can be tackled in numerous ways. New market designs can help to ensure matching
of supply and demand [8,9], and advanced algorithmic techniques can be used to automate trading in
energy markets [10,11]. Our work falls in the realm of statistical modelling that allows for advanced
forecasting in the highly stochastic energy system.

There is a large body of work in statistical modelling of energy systems and markets, respectively.
Using a GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, [4] shows that
wind power decreases the average price level, but increases volatility. The same relationship is shown
by [12]. This effect is not only present in the German energy system, but has also been demonstrated
for the Texan electricity market [13]. Electricity prices further inhibit statistically significant calendar
effects [14]. While most renewable energy producers are currently shielded from these market effects
by guaranteed infeed tariffs, this system is being phased out gradually in Germany. New plants do not
get guaranteed remuneration for their infeed and old plants are dropping out of the compensation
scheme. As a consequence of the shift from guaranteed infeed tariffs to market-based remuneration,
there is a trend to market-based financing mechanisms for new installations and plants without fixed
compensation. One of these are power purchase agreements (PPAs). Here, the production of a specific
electricity producer is sold to an energy trading company or directly to a consumer. While there is
a large potential for increasing use of PPAs, risk averse energy trading companies have to manage
the acquired risk exposure. The underlying drivers to motivate risk aversion are diverse among
different actors. Asset owners are typically risk averse because they carry the capital costs for new
installations. To securely refinance their investment, they need to hedge against risks from regulation
and technical failure [15]. In liberalized energy markets they also have to hedge against market risks.
A common aspect of this risk for different actors along the energy value chain is the aforementioned
problem of joint price and quantity risk. The seminal paper of [16] describes this problem for farmers
wishing to protect themselves from output uncertainty and unknown market prices. Not only is the
future production of a volatile (e.g., wind) portfolio unknown, the revenue from this production is
also unclear. The adverse relationship of production and prices, i.e., lower prices in situations with
high production and vice versa, exposes market actors to a higher risk than the two individual risk
factors [17,18]. This also makes it risky to perform a simple volume hedge, where the hedged quantity
is the expected production volume. Due to the dependence structure, this strategy would leave the
market actor exposed to disregarded risk aspects.

Owners of RES regularly conclude agreements with market access providers, who offer them so
PPAs in the form of “fixed-for-fluctuating-agreements”, where the owner receives a fixed price for the
future production and thus remains solely with the volumetric risk [19]. As the production volume is
driven by weather phenomena, it can be assessed by project developers without in-depth knowledge of
energy markets. Companies offering “fixed-for-fluctuating-agreements” or power purchase agreements
(PPAs) are paying the producer fixed rates, while facing both unknown production volumes and market
prices in the future. They are therefore motivated to hedge against both price and volumetric risks
using different instruments. As prices and generation are both stochastic and cross-correlated, this is a
complex task. A hedging decision which does not take the stochastic relationship of quantities and
price into account risks undervaluing the situations with the highest negative impact on revenue.

Financial risks (not only in energy markets) are often quantified by the Value-at-Risk (VaR) metric.
It describes the highest possible loss of a return distribution with a (1− p) confidence, where p is the
exogenously defined risk level [20]. Typical VaR levels are 5% (e.g., [21]) or 1% (e.g., [22]). An extension
is Conditional Value-at-Risk (CVaR), which conditions VaR on information before a specific point
in time [23]. A second measure common to risk management is Expected Shortfall (ES). It is the
expected value of the Value-at-Risk at the (1− p) confidence level. Expected Shortfall is better suited
to conceptualize the risk for fat-tailed return distributions, because it reflects the resulting higher
likelihood of extreme values in its value [24].
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To optimize its market position, an energy trader has to model the dependence structure of
production and prices accounting for its complexity, especially with regard to the joint distribution’s
tails. This work focuses on modeling this aspect with regard to the wholesale electricity market, as
participation of volatile renewable energy sources in other markets (e.g., regulation) is uncommon
in Germany. A mathematical tool to do so are copulas (see, e.g., [24]). Copulas disentangle the
dependence structure of multiple variables from their marginal distributions. They are regularly used in
applications of mathematical finance and economics, but gained interest in energy research in the past
years [25,26]. With the combination of fitted marginal models and copulas, market prices and infeed
volumes under a joint distribution can be simulated. The resulting values can be used to optimize
the hedging decision using different hedging instruments and to reduce the risk an energy trading
company faces. The process of the market position optimization is similar to the work of [19], who
used the approach in an analysis of the Danish energy market. Using German data, we develop a
better understanding of the relationship of wind power infeed and prices in this market. The final
risk model assumes futures prices that equal the expected wholesale price, i.e., it assumes efficient
(financial) markets. Doing so is common practice (see, e.g., [18,19,21]). This approach enables a focus
on the variance effects of different hedging instruments, rather than expected revenue, for dealing with
the price risk.

The remainder of this paper is structured as follows. First, data and the distribution function
estimation process are presented. Then, the estimated distribution functions are used to bootstrap
a simulation of joint infeed and price realizations. Using this simulation, different portfolios are
optimized with regard to the remaining variance in revenues. The estimation and simulation procedure
can be summarized by the following steps:

1. Apply outlier model to price data;
2. Apply logit-transform to infeed data;
3. Estimate seasonal models;
4. Estimate autoregressive and moving average components and variance terms;
5. Estimate suitable distributions for the standardized residuals;
6. Estimate suitable copula.

With the fitted model, Monte Carlo simulations can be performed:

1. Draw random samples from copula;
2. Re-transform these to price and infeed values for a chosen time-period;
3. Estimate values of hedging instruments for different portfolios;
4. Minimize variance of revenue distribution over different quantities of hedging contracts for

different portfolios.

Using this approach, we show that a copula based variance minimizing hedge can reduce
Conditional Value-at-Risk (CVaR) of a wind power portfolio significantly and improve with regard
to expected shortfall (ES) compared to a simpler volume hedge (based on the expected production).
Further, we build a variance reduced portfolio and show that needed hedging volumes are lower
for both volume hedge und variance minimizing hedge. Our contribution is thus two-fold.
First, we provide a statistical analysis of the complex joint relationship of wind power infeed and
electricity prices in the German market. Second, we develop an initial set of tools for risk management
of volatile portfolios in electricity markets with high RES penetration.
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2. Data

The historical price data and wind infeed (min-max normalized) can be seen in Figure 1. Price data
is based on German day-ahead clearing prices of EPEX SPOT (https://www.epexspot.com/en).
While there are other marketplaces for electricity, and a large volume of over-the-counter (OTC)
trading outside energy exchanges, the day-ahead auction is the exchange-based marketplace with
highest liquidity in Germany. The original resolution of our data is EUR/MWh. While seemingly
counter-intuitive for the analysis of volatility, it is common practice to aggregate the data to daily values.
The main reason is that the day-ahead auction clears for all hourly slots of the next day simultaneously.
Because of this, the prices of the day-ahead auction do not constitute a sequential series [27–29].
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Figure 1. German wind infeed and Day Ahead spot prices from 2017 until spring 2019. Infeed is scaled
as a factor of total available capacity. Periods of common high volatility are recognizable.

Part of the wind portfolio of Next Kraftwerke (https://www.next-kraftwerke.com/) constitutes
the data source for wind power infeed. The portfolio is preprocessed such that data of 46 wind
power plants for a time span of 820 days between January 2017 and March 2019 is available. It has
a linear correlation coefficient of 0.9532 with the total German wind power infeed, meaning it is
highly representative for the German geographic properties. The infeed is processed using two
transformations. As it has an upward trend due to increasing installed capacity, it is standardized as a
factor of the total installed capacity. Then, a logistic transformation is applied to the standardized time
series. This is due to the fact that boundaries are problematic when modeling the mean and variance
models [19]. Before fitting the models, the mean value is subtracted from the time series of wind and
prices, i.e., they are centered.

Figure 2 shows the joint distribution of the infeed factor (as average across the portfolio) and
the spot prices as well as the joint distribution of the transformed time series. A clear dependency is
visible. The descriptive statistics in Table 1 confirm the visual analysis.

https://www.epexspot.com/en
https://www.next-kraftwerke.com/
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Figure 2. Empirical distribution of wind infeed and electricity wholesale day-ahead prices. (a) Original
infeed and price data; (b) Infeed and prices after transformation with the marginal models (see also
Section 3).

Table 1. Descriptive statistics for the empirical infeed and price time-series from 2017–2019.

Measure Infeed Factor Prices (EUR/MWh)

Mean 0.1545 39.5089
Std. Error 0.1109 15.0836

Spearman’s ρ̂ −0.4525
Kendall’s τ̂ −0.3121
Linear Corr. −0.5132

Outliers and Seasonality

There are extreme spikes in electricity prices with a variety of methods to correct or replace these
values [7,27,30]. Although extreme prices are correct data points, reflecting actual (if rare) economic
regimes (cf. [31]), it is reasonable and common practice to treat the data when estimating stochastic
models on it. This is because they disproportionately skew the time series [27,30]. This is especially
true for hourly data that is more volatile than daily data, and also holds for the aggregated time series.

A simple method to treat extreme values is the fixed price threshold, where the time series
is truncated subject to an upper and a lower bound. This method, amongst other similar ones,
risks capturing either too few or too many outliers when dealing with data over a long time span.
This due to the fact that electricity prices show strong mean variations of several years. An approach
to tackle this issue is to remove the trend from the price data using a moving average before applying
a filter to the residuals. Because the data not only varies in its mean but also in its variance, a variable
price threshold of at least three standard deviations can be used. With some model extensions, this
filter can be run iteratively until no more outliers are detected [30]. As the infeed is standardized on
a [0, 1]-interval, no extreme values are present in the data. The preprocessing and choice of infeed
data ensures that sufficiently long time spans with complete infeed data are available for all regarded
power plants and no methods for interpolation of results are necessary.

An idiosyncratic aspect of electricity prices is their strong seasonal variation. To account for
seasonality, we decompose the electricity price into three distinct components, a short-term and a
long-term seasonal component (STSC and LTSC), and a stochastic component Xt. Thus, the random
variable PDA

t representing the day-ahead price can be described as follows.
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PDA
t = f s

t + f l
t + Xt (1)

The LTSC f l
t is defined as a sinusoidal with a yearly period.

f l
t = a0 + a1 · sin

[
2π

(
t

365.25

)]
+ a2 · cos

[
2π

(
t

365.25

)]
(2)

Parameters a1 and a2 determine phase and amplitude of the sinusoidal, whereas a0 determines
mean. The denominator 365.25 is due to the fact that daily data is used.

The STSC f s
t , representing daily patterns, is not modeled as a sinusoidal with higher frequency,

but using a least squares dummy variable approach. This is due to the fact that daily electricity
consumption (and hence, price) patterns do not follow a smooth trend, but are subject to distinct
difference between days, e.g., Sunday and Monday. Hence, daily dummy variables are assigned to
each day of the week.

f s
t =

TW

∑
i=1

dd
i · Dd

i (3)

The days of the week are defined by Dd
i , with the Dd

1 being Monday. TW denotes the length of one week
in days, i.e., TW = 7. dd

i denotes the parameter for day i. For instance, dd
1 = 1 means that the short-term

seasonal component for Mondays equals 1. Note that the random infeed quantity Qt at time t can be modeled
similarly to PDA

t , however, there is no STSC as wind power does not follow a weekly pattern.

3. Estimation Procedure

The preprocessed data is used to estimate both marginal and joint distribution models. The widely
used choice for the estimation of the marginal distribution are ARMA-GARCH models, which model
the conditional mean and variance of the variables [4,6,19,24]. ARMA models describe stationary
stochastic processes through autoregressive and moving-average terms. The autoregressive term uses
p lags of the dependent variable and the moving-average term q lags of the error term. The errors εt

are assumed to be independent and identically distributed (iid) and εt ∼ F (0, σ2), where F is usually
the Normal distribution. The ARMA process for a random variable Xt is

Xt = c +
p

∑
i=1

ϕiXt−i +
q

∑
j=1

θjεt−j + εt, (4)

where ϕi and θj are the coefficients of the respective lag orders i and j. The GARCH extension replaces
the error term with another autoregressive function to account for heteroskedasticity in the errors. It is
also defined with a lag order of p and q and can be written as

εt = vt · σt, (5)

σ2
t = α0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jσ
2
t−j, (6)

where αi and β j are the coefficients of the respective lag orders i and j. The parameters are restricted to
ensure stationarity, with α0 > 0, αi ≥ 0, β j ≥ 0, and ∑ αi + ∑ β j < 1 [32]. Usually, vt ∼ N (0, 1) for all t.
The normality condition can be relaxed, so that vt|Ft−1 ∼ F (0, 1) [21]. This not only permits more
general parametric distributions for the error term, its distribution is also conditioned on its past.
The conditioning on Ft−1 includes past information not only from the variable in question but from all
variables. In many cases, when there is no cross-dependency, this can be restricted to the respective
variable while still ensuring that all models are conditioned using the same information [24]. While the
mean and variance models are coupled through the error term, they can be estimated separately, with
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the residuals of the ARMA model serving as input for the GARCH model [27]. This adds modeling
flexibility and eases convergence. The lag order of the ARMA and GARCH models can be identified
by comparing the Bayesian Information Criteria (BIC) or Akaike Information Criteria (AIC). The more
widely used (e.g., [21,24]) BIC is defined as

BIC = −2 logL+ d log n,

where L denotes the likelihood function. BIC penalizes model complextiy depending on model size
(number of lag parameters) d and sample size n to avoid overfitting [27]. The model with the lowest
BIC is considered best. After successfully estimating a model for both mean and variance, standardized
residuals can be obtained. These are then used to estimate the copula. Also, a suitable distribution is
fitted on the residuals to re-transform the samples obtained from the copula [24].

3.1. Goodness of Fit

The goodness of fit (GoF) of ARMA and GARCH models can be evaluated by plotting the (partial)
autocorrelation functions ((P)ACF) of the model’s residuals. If the model is fitted well, no significant
autocorrelation should remain. This can be tested using the Ljung-Box Q-test of serial independence.
The test statistic is given by

Q = n(n + 2)
h

∑
k=1

ρ̂2
k

n− k
. (7)

Here, n is the sample size, p̂2
k the sample autocorrelation at lag k, and h the maximum length for

which the test is being performed [33]. Under H0, the data is independently distributed. Thus, the test
should not reject for the mean and variance model. Two widely used tests exist to evaluate the goodness
of fit for the distributions which were estimated from the residuals. These are the Kolmogorov-Smirnov
(KS) and Cramer-von-Mises (CvM) tests. Both are performed on the values of the residuals’ empirical
CDF and test the similarity with a known (specified) distribution, where both are the same under H0:

KSi = max
t

∣∣∣U f
t − Ût

∣∣∣ (8)

CvMi =
T

∑
t=1

(
U f

t − Ût

)2
(9)

Ût is obtained using the empirical CDF and U f
t using the fitted parametric distribution. As KS and CvM

tests are also available to evaluate the GoF of the copula model, subscript i denotes the applicability to
the individual models.

3.2. Copula Model

Copulas are used to model the dependence structure of random variables [34]. Whereas, e.g.,
multivariate normal distributions require all variables and their dependency to have a normal
distribution, copulas allow modeling separate marginal distributions of multiple random variables
and their dependence. This allows for high flexibility in choosing a suitable distribution and simplifies
the estimation procedure, as it can be done in stages [24]. Copulas are common in risk management
and econometric applications [35–38]. A d-dimensional copula is a cumulative distribution function
on d uniform marginals [39].

C : [0, 1]d :→ [0, 1].

Then, with C(u) = C(u1, . . . , ud), three properties define a copula: 1) C(u) is non-decreasing in
every component ui. 2) The marginal in component i can be obtained with uj = 1 for all j 6= i because of
its uniform distribution C(1, . . . , 1, ui, 1, . . . , 1) = ui. 3) When ai ≤ bi, P(U1 ∈ [a1, b1], . . . , Ud ∈ [ad, bd])



Energies 2020, 13, 3578 8 of 19

is always non-negative. Assuming differentiability of the marginal distributions, the copula can be
written as (see, e.g., [24])

C(u) = F(F−1
1 (u1), . . . , F−1

d )). (10)

Extensions of copula theory with regard to conditional distributions exist [40] and have been
applied to energy modelling [21]. Consider for the bivariate case two random variables X ≡ (X1,t, X2,t)

′

with a joint conditional distribution function F(·|Ft−1) and respective conditional marginal distribution
functions Fi(·|Ft−1), i = 1, 2. Then, a conditional copula C(·|Ft−1) with two dimensions exists,
such that

F((x1, x2)|Ft−1) = C(F1(x1|Ft−1), F2(x2|Ft−1)|Ft−1). (11)

Note that both the marginal models and the copula are conditioned on the past. If the marginals
are continuous, the copula C is unique.

Ut|Ft−1 ∼ C(·|Ft−1) (12)

with Ut ≡ (U1,t, U2,t)
′. Each Ui,t ∼ U[0, 1] has the probability integral transform variable

Ui,t ≡ Fi(Xi,t|Ft−1), i = 1, 2.

The two main families of copulas are called Elliptical and Archimedean. Elliptical copulas
are based on elliptical distributions, the two best-known of which are the Gaussian (normal) and
Student’s t distribution. They are distinct in that the linear correlation fully describes their dependence
structure (in contrast to other copula families, where this is false) [39]. In contrast to Elliptical copulas,
Archimedean copulas are explicitly defined with so-called generator functions φ. They interpolate
between dependence structures like independence and comonotonicity, typically using a free parameter
θ. The general generator function is continuous and strictly decreasing: φ : [0, 1] :→ [0, ∞], with
φ(1) = 0. In the bivariate case, the copula then has the form

C(u1, u2) = φ−1(φ(u1) + φ(u2)). (13)

Five different copula types have been fitted for the residuals. See Table 2 for their respective
formulations. Which copula type is suitable for modeling can be evaluated using measures of
dependence and goodness of fit tests.

Table 2. Investigated copula types and mathematical formulations.

Class Copula Formulation Parameters

Elliptical Gaussian Cρ(u1, u2) = ΦΣ(Φ−1(u1), Φ−1(u2)) Correlation ρ, correlation matrix
Σ, standard normal CDF Φ

Student t Cv,Σ(u1, u2) = tv,Σ(t−1(u1), t−1(u2)) Correlation matrix Σ, tv the
CDF of the one-dimensional tv
distribution with v d.f., tv,Σ the
CDF of the multivariate tv,Σ
distribution.

Archimedean Gumbel Cθ(u1, u2) = exp
[
−((−ln(u1))

θ + (−ln(u2))
θ)

1
θ

]
θ

Clayton Cθ(u1, u2) =
(

max{u−θ
1 + u−θ

2 − 1, 0}
)− 1

θ
θ

Frank Cθ(u1, u2) = − 1
θ ln
(

1 + (e−θu1−1)·(e−θu2−1)
e−θ−1

)
θ

Goodness of Fit

Model specification and goodness of fit (GoF) tests can be seen as complementary. GoF tests can
be limited in their explanatory power and be too weak or too strict to conclude a models suitability.



Energies 2020, 13, 3578 9 of 19

Model specification tests are a good way to compare different models but do not always help in
deciding the validity of a chosen model [24]. For fully parametric models, both the distributions
resulting from the marginal models and the copula model are parametric. While this allows to fully
specify a log-likelihood for estimation, the commonly used approach is to estimate a model in stages.
In that case, the marginal models should not exhibit cross-equation restrictions. For nested models (e.g.,
comparing a Gaussian copula with a Student’s t copula) a likelihood ratio test can be used. An even
simpler but very crude method is to rank the model likelihoods (see, e.g., [24]).

The KS and CvM test are two widely used GoF measures to compare an estimated copula with
the empirical results. Their statistics adapted to the copula case are

KSC = max
t

∣∣C(Ut; θ̂T
)
− ĈT(Ut)

∣∣ (14)

CvMC =
T

∑
t=1

{
C
(
Ut; θ̂T

)
− ĈT(Ut)

}2 (15)

and use the empirical copula ĈT which is defined as

ĈT(u) ≡
1
T

T

∑
t=1

n

∏
i=1

1{Ûit ≤ ui}. (16)

As these tests are based on the empirical copula, they only work for constant, i.e., not
time-dependent, copula models [24].

4. Estimation and Simulation Results

4.1. Aggregate Portfolio

4.1.1. Marginal Models

The estimation pipeline for the marginal models and the joint distribution using the copula are
now applied to the portfolio of 46 wind power plants. The best fitting model combination is used to
bootstrap a Monte Carlo simulation of possible scenarios. Table 3 shows the estimation of the marginal
models for both the infeed and prices.

Almost all parameters are significant. The insignificant parameters (marked by italic font) have
all p-values under 0.2. Some typical characteristics of electricity markets are visible in the parameters,
especially daily patterns. While weekdays (except Monday) have almost identical dummy factors,
Saturday and especially Sunday have highly negative dummy parameters, due to the fact that reduced
electricity consumption drives prices down.

The infeed data are logit-transformed and de-meaned. Then, a sinusoidal model is applied to
account for intra-yearly seasonality. After considering the BIC of prospective lag orders, an ARMA(1,1)
model is chosen for the autoregressive process. No significant heteroskedasticity is left in the residuals,
which is confirmed with the Ljung-Box test on the squared residuals. Therefore, no GARCH model
needs to be estimated. The standardized residuals are fitted to a normal distribution, after comparing
the results of the KS and CvM tests to the skew normal distribution. Similar to the infeed, the price
data is also de-meaned. Before applying the seasonal models, outliers are filtered with the approach
described earlier and a threshold of four standard deviations. Subsequently, a sinusoidal long-term
seasonal component and a dummy-based short-term seasonal component with dummies for each
weekday are fitted. While the analysis of ACF/PACF plots makes a seasonal model likely, comparing
the respective BIC values suggest a simple ARMA(2,2) process. Because the residuals show clear signs
of heteroskedasticity, a GARCH(1,1) model is applied to them. A skew Student’s t distribution is then
fitted to the standardized residuals.

After the marginal models are applied, the resulting standardized residual series exhibit a
Spearman’s rank correlation of −0.6534. This can be attributed to the marginal models stripping
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away independent properties inherent to the two time series. Further, it shows that the correlation
of prices and infeed are not (only) due to seasonal effects explaining both price and infeed variations
but due to their direct relationship. This result corresponds to the literature [41]. The residuals are
transformed to uniformly distributed variables using the empirical CDF. With the resulting residuals,
a copula can be estimated.

Table 3. Estimates for model parameters, goodness of fit measures, and distribution of standardized
residuals for infeed and price data. Italic typeset denotes parameters that are not highly significant. d̂d

1
refers to Monday. The LB test subscripts indicate the lag. For the variance model, the squared residuals
are tested.

Modeling Parameter Estimates
Step Logit Infeed Model Price Model

Outliers Removed 5 outliers
LTSC sinusoidal â0 −1.7147 sinusoidal â0 39.5089

â1 0.0830 â1 −5.7448
â2 0.6058 â2 2.2526

STSC daily dummies d̂d
1 1.5066

d̂d
2 3.3147

d̂d
3 3.8743

d̂d
4 3.6809

d̂d
5 3.5756

d̂d
6 −5.1595

d̂d
7 −10.4087

Mean ARMA(1,1) ϕ̂1 0.4624 ARMA(2,2) ϕ̂1 1.35861
ϕ̂2 −0.36321

θ̂1 0.1870 θ̂1 −0.74176
θ̂2 −0.15576

σ̂2 0.6813
LB5 p-val. 0.8880 LB5 p-val. 0.0231
LB10 p-val. 0.8003 LB10 p-val. 0.0722

Variance GARCH(1,1) ω̂ 5.3059
α̂1 0.2599
β̂1 0.7293

LB2
5 p-val. 0.5041 LB2

5 p-val. 0.1131
LB2

10 p-val. 0.4769 LB2
10 p-val. 0.3359

Dist. Normal Skew Student’s t ν̂ 3.7536
λ̂ −0.2615

KS test p-val. 0.4295 KS test p-val. 0.5108
CvM test p-val. 0.9120 CvM test p-val. 0.8338

4.1.2. Copula Model

Different copula specifications and their estimates are shown in Table 4. The Frank and the
Gumbel copula converged to the Independence copula, an unlikely outcome, and are therefore
excluded. The best-performing was the Student’s t copula, although only marginally better than the
Gaussian copula. As was shown in Figure 2b, the residuals of the marginal models for both infeed and
prices show close resemblance to Gaussian characteristic. Still, the Student’s t copula demonstrates
superiority with respect to all relevant GoF measures. It is therefore the most suitable candidate to
bootstrap the simulations.
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Table 4. Estimates, log likelihoods, BIC and p-values of the KS- and CvM tests for different copula
families estimated on standardized residuals. The copula with the lowest BIC is marked bold.

Name Parameter GoF Test p-val.
Estimates Log L BIC KS CvM

Gaussian ρ̂ −0.6679 −237.1403 7.3958 0.7591 0.7711

Student’s t ρ̂ −0.6816 −256.8243 7.3957 0.9991 0.8036
v̂ 5.4066

Clayton θ̂ −0.2934 −102.8156 7.3968 0.0000 0.0000

The student’s t copula requires symmetric dependency. Therefore, quantile dependence test is
carried out (see Figure 3). The test shows a slight asymmetry in the dependency. The chosen copula is
retained however, because the comparison of different copula families yields worse results for possible
asymmetric copulas. Also, the empirical results are well within the 95% confidence intervals of a
bootstrap simulation of the estimated Student’s t copula (Performed with N = 999).

0.2 0.4 0.6 0.8

Quantile

0.0

0.2

0.4

0.6

0.8

1.0

λ̂

Student’s t

Gaussian

Data

Figure 3. Quantile dependence λ̂ of the estimated copulas, together with corresponding 95% confidence
intervals (depicted as shaded areas).

4.1.3. Simulation and Optimized Hedging

Based on the simulation framework, a routine for determination of the optimal hedging position
is developed. In this scenario, the electricity trader’s goal is to minimize variance of its returns.
As common in power purchase agreements, the trader is obligated to pay a fixed amount Pfixed

t0
per

unit of energy to the producer, no matter the time of feed-in. With this, the daily revenue R f of the
traders’ portfolio can be calculated as

R f (d) = 24c ·
h0+23

∑
t=h0

Qt(PDA
t − Pfixed

t0
). (17)

Here, Qt denotes the (stochastic) infeed at time t, with h0 being the first hour of day d. PDA
t is the

stochastic day-ahead price at time t. c is a capacity factor denoting the size of the portfolio to scale the
revenue. The optimization routine is, however, scale invariant. Prices are aggregated per day, hence
a factor of 24 is included in the expression. Again, this is barely for scaling, but does not affect the
optimization procedure. Balancing risk is excluded in our analysis by assuming that the quantities sold
on the day ahead market reflect the actual infeed, or Qt = Et−1[Qt]. This is done for simplicity and
because the issues arising from explicitly modelling balancing risk would call for a detailed explicit
consideration and would aggravate assessment of the effect of the hedging position.
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Following [19], we are imposing revenue neutral financial instruments. Doing so is common
practice (cf. [18,19,21,42]) and enables a focus on the variance effects of hedging instruments in dealing
with the price risk. The fair value of Pfixed

t0
is then given by

Pfixed
t0

(d) =
EQ

t0

[
∑h0+23

t=h0
QtPDA

t

]
EQ

t0

[
∑h0+23

t=h0
Qt

] . (18)

Q is the risk-neutral measure. Under the rational expectation hypothesis it can be set equal to
the physical measure P, which accounts for the uncertainty arising from using historical data for the
model (cf. [42,43]). Due to their liquidity, we are focusing on daily futures as hedging instruments.
The payoff for one futures contract for day d is

RFuture(d) = 24 ·
h0+23

∑
t=h0

PDA
t − Ft0(d), (19)

with the price of the future at t0 being Ft0(d) [19]. The price of the future can be defined as the
conditional spot price expectation [44,45]. When multiple hedging instruments are used, their payoff
can be calculated as a linear combination of the individual contracts, Rhedging(d) = ∑N

n=1 θnR(n)(d).
The total revenue is then

Rtotal(d) = R f (d) +
N

∑
n=1

θnR(n)(d). (20)

Enabling the optimization of the hedging position based on these calculations requires assumptions
regarding the financial aspects of the given energy market. Under the rational expectation hypothesis,
the expected revenue becomes EQ

t0
[R f ] = 0. It is, however, not realistic [46,47], due to incompleteness

of the electricity market. Still, it is common practice [17,21,43], therefore we proceed the same way.
Further, we are setting the interest rate to zero, allowing for the optimization after simulating from the
dependency model (cf. [19]). Because hedging is assumed to take place at time t0, the optimization
is limited to a static hedge (in contrast to a dynamic hedge, where the hedged quantities can be
dynamically altered after t0.) Furthermore, as [18] concede, the problem of timing, i.e., at which t0 to
perform hedging for a contract covering d, is complicated. This renders excluding it from the problem a
reasonable option. An example of a model which includes the timing decision can be found in [48].

Since applying all assumptions to calculating prices for hedging instruments means that they are
revenue-neutral as well, the optimization problem is reduced to the variance aspect, which can be
formulated as

min
θ

Vart0

[
Rtotal(d)

]
(21)

where n specifies the corresponding hedging instrument out of N different ones. With the
corresponding quantities for each hedging instrument and for an arbitrary portfolio size, the CVaR and
ES of the minimal variance hedge can be evaluated and compared. We are focusing on 2 exemplary
months within our dataset, February and August. Both have different characteristics regarding wind
infeed and price behavior. Portfolio size is normalized to a capacity of 100 MW. Table 5 shows the
results for the total portfolio.
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Table 5. Risk assessment for the overall portfolio with and without hedging. Both hedging methods
reduce variance and CVaR significantly, with the minimal variance hedge outperforming the volume
hedge with respect to expected shortfall.

Simulation February August

Mean price (EUR) 36.88 41.66
Mean infeed factor (%) 24.17 11.29
Mean infeed sum (MWh) 16,242.85 8,399.57

Unhedged case
5% CVaR (EUR) −16,615.11 −8,003.63
1% CVaR (EUR) −45,133.95 −24,039.67

Minimal variance hedge
Mean hedging quantity (MW) −646 −323
Variance reduction (%) 96.24 94.56
5% CVaR reduction (%) 46.19 35.11
5% ES reduction (%) 61.68 54.97
1% CVaR reduction (%) 56.45 47.46
1% ES reduction (%) 71.20 66.39

Volume hedge
Mean hedging quantity (MW) −580 −270
Variance reduction (%) 57.34 51.75
5% CVaR reduction (%) 53.15 48.15
5% ES reduction (%) 47.52 41.05
1% CVaR reduction (%) 50.88 45.34
1% ES reduction (%) 43.03 5.37

It can be seen that both hedging variants, the simple volume hedge and the variance minimization
significantly reduce the CVaR. As is expected, the variance is reduced more strongly for the hedging
method defining this as its goal. Interestingly, CVaR is reduced more strongly using the volume
hedge. However, expected shortfall is reduced more under the variance minimizing hedging scheme.
This means that while a volume hedge reduces the starting point of the revenue distribution’s tail
more, the mass of the tail is reduced further under the variance minimizing hedge.

4.2. Variance Reduced Portfolio

In Section 4, the total, i.e., average, portfolio of NEXT Kraftwerke was subject to the simulation and
optimization routine. Now, we are analyzing a portfolio that is constructed based on the goal of reducing
cross-correlation of revenue streams of the individual power plants. For this, we use a simple greedy
algorithm that picks power plants to add to the portfolio iteratively. It is described in Algorithm 1.

Algorithm 1: Greedy Portfolio Creation.
Data: Revenue data of potential wind power plants, portfolio target size
Result: Variance reduced portfolio
Initialize empty portfolio list;
Calculate cross-correlation of revenues;
Add wind power plants with smallest cross-correlation to portfolio;
while Portfolio smaller than target size do

Calculate cross-correlation of portfolio to remaining wind power plants;
Add wind power plant with smallest cross-correlation to portfolio;

end

The cross-correlation of the infeed and revenue streams from the power plants are depicted in
Figure 4. As can be seen, there is a very high correlation between almost all power plants, both with
respect to infeed and revenue. Power plants 0 and 30 are clear outliers, with their infeed being
practically uncorrelated to the rest of the portfolio. Further, it can be seen that infeed correlation is
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much more homogeneous than revenue correlation. This is due to the fact that (total) wind infeed and
prices are correlated. In our case study we are analyzing a portfolio that reduces the number of wind
power plants from 46 to 10. Doing so, there is a balance between not overemphasizing outliers (such as
plants 0 and 30), but also still being able to see a difference from the overall portfolio. The reduced
portfolio is representative of a geographically more diversified set of wind power plants. The same
estimation and simulation steps as before are applied to the reduced portfolio.
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Figure 4. Cross-correlation of both infeed and revenues for the portfolio of 46 (indexed 0 to 45) wind
power plants. Clear similarities between correlation coefficients can be seen. Wind power plants 0
and 30 are significant outliers in terms of their cross-correlation. (a) Infeed correlation of wind power
plants; (b) Revenue correlation for wind power plants.

4.2.1. Models

The results of the estimation of the marginal and copula models for the variance reduced portfolio
are given in Table 6. As can be seen, both marginal models and copula estimation have significant
similarities compared to the overall portfolio. The Student’s t copula is still best performing with
regard to all defined GoF measures.

Table 6. Fitted marginal model and copula for the variance reduced portfolio together with the quantile
dependence plot of the best performing copula. The resemblance to the overall portfolio is uncanny.

Marginal Model Copula

Model Parameter Estimates Parameter GoF Test p-val.
Step Logit Infeed Model Name Estimates Log Ln BIC KS CvM

LTSC sinusoidal â0 −1.7679 Gaussian ρ̂ −0.6493 −219.5089 7.3959 0.7982 0.7804
â1 0.0814 Student’s t ρ̂ −0.6631 −239.5347 7.3957 0.9941 0.8192
â2 0.5902 v̂ 5.2712

Mean ARMA(1,1) ϕ̂1 0.4667 Clayton θ̂ −0.2713 −91.3227 7.3969 0.0000 0.0000

θ̂1 0.1662

0.2 0.4 0.6 0.8

Quantile
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λ̂
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Data

σ̂2 0.6808
LB5 p 0.9179
LB10 p 0.8028

Variance LB2
5 p 0.4646

LB2
10 p 0.4733

Dist. Std. Normal
KS test p 0.5176
CvM test p 0.9731

4.2.2. Simulation and Optimized Hedging

Using the estimated marginal model for the portfolio infeed and the Student’s t copula the
same variance minimization as with the total portfolio is performed. Result of the procedure are
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given in Table 7. The general findings are similar to the case with the total portfolio. Both hedging
methods reduce variance and CVaR, with the volume hedge yielding a higher reduction in CVaR.
Again, the variance minimizing hedge leads to a higher reduction in expected shortfall, i.e., a thinner
adverse tail of the revenue distribution. Comparing the hedging volumes with the portfolio in Section 4
shows that smaller hedging volumes are decided upon in the optimal hedging positions (for both cases).
In our study, we are resting the calculation of hedging volumes on fair prices of futures, i.e., expected
spot prices. In reality there are examples of positive risk premiums for longer planning horizons [49],
as typical for commodity markets. Reducing the necessity of using financial derivates for any hedging
decision reduces the risk of experiencing adverse effects through the payment of risk premiums.

Table 7. Risk assessment for the variance reduced portfolio with and without hedging. Both hedging
methods reduce variance and CVaR significantly, with the minimal variance hedge outperforming the
volume hedge with respect to expected shortfall. Optimal hedging volumes are reduced compared to
the overall portfolio.

Simulation February August

Mean price (EUR) 37.08 41.60
Mean infeed factor (%) 22.96 10.81
Mean infeed sum (MWh) 15,428.08 8,041.41

Unhedged case
5% CVaR (EUR) −15, 870.79 −7, 672.37
1% CVaR (EUR) −41, 430.96 −22, 549.95

Minimal variance hedge
Mean hedging quantity (MW) −611 −308
Variance reduction (%) 90.4 93.12
5% CVaR reduction (%) 48.13 36.5
5% ES reduction (%) 60.27 55.17
1% CVaR reduction (%) 56.39 46.39
1% ES reduction (%) 69.28 67.11

Volume hedge
Mean hedging quantity (MW) −551 −259
Variance reduction (%) 66.54 46.3
5% CVaR reduction (%) 54.79 49.39
5% ES reduction (%) 49.36 40.83
1% CVaR reduction (%) 51.59 44.44
1% ES reduction (%) 45.08 34.96

5. Discussion

The key contribution of this paper is the modeling the dependence structure of an actual
wind portfolio infeed and German electricity prices with the help of copulas. To enable the
estimation, models for cleaning the data of outliers, estimating deterministic seasonal components,
and autoregressive models for the mean and variance components of the data are specified. With
the standardized residuals of these marginal models, marginal distributions and a suitable copula
model are estimated. Following the estimation of marginal models, distributions, and the dependence
structure, price-infeed pairs could be simulated. On these values, a model was defined to estimate and
optimize the risk arising from the modeled relationship of the variables. This could then be used to
minimize the revenue variance by varying the quantity of different hedging products.

In an empirical example, all modeling steps were applied to infeed data from a large German
virtual power plant operator and price data from the German market. A yearly seasonal model and an
ARMA process was applied to the infeed data, with the residuals conforming to a Normal distribution.
The price data was treated using an outlier model, a yearly and a weekly seasonal model and an
ARMA-GARCH process.

We show that the revenue variance minimizing hedge using monthly futures contracts strongly
reduces the Conditional Value-at-Risk and Expected Shortfall for a market actor facing joint price
and volumetric risk. In this respect, the findings are similar to the study by [19] regarding the
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Danish market. Additionally, the hedge performs better than a simple volume hedge using the same
instrument with regard to expected shortfall. Hence, we conclude that using the minimal revenue
variance hedge with monthly futures can significantly reduce the price risk for a volatile electricity
producer. Further, we show that a diversified portfolio with low cross-correlation in revenue streams
from individual power plants improves risk aspects of the portfolio. Hedging volume can be reduced
both with regard to a volume hedge and with regard to the minimum variance hedge. It can be
therefore seen that value of an individual power plant does not only depend on the windiness of its
location, but also its relationship to the remainder of the portfolio. This is especially true for risk averse
decision-makers.

Some limitations remain. The risk model rests on strong assumptions, e.g., enforcing revenue
neutrality, not all of which are realistic. Comparing the simulated distributions of both infeed and
prices to the empirical ones, there remain differences for the price values. This suggests that there are
further price drivers that are unaccounted for in the marginal model (see Appendix A). The empirical
example limited itself to only one type of hedging instrument, primarily because illiquid markets
preclude an application. Still, accounting for a broader set of derivates, e.g., weather derivates,
would enhance the work. An interesting extension of our work is to include (stochastic) risk premiums
together with an explicit modeling of the decision-makers risk aversion, in order to develop a decision
support system for energy traders seeking to optimize their position.

Despite the limitations, we showed that volatile RES infeed and electricity prices show a complex
relationship that is not fully captured by a simple Gaussian model only specifying correlation.
Providing an initial method to manage risk subject to this relationship, we are motivating more
research on complex risk management in electricity markets with high degree of RES penetration.

6. Materials and Methods

For the technical implementation of the estimation and simulation procedure, the Python
programming language and associated statistical software packages are used in conjunction with
packages for the R programming language.
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Abbreviations

The following abbreviations are used in this manuscript:

AIC AKAIKE Information Criterion
ARMA Autoregressive-Moving Average
BIC Bayesian Information Criterion
CDF Cumulative Distribution Function
CvM Cramer-von-Mises
(C)VaR (Conditional) Value-at-Risk
EPEX SPOT European Power Exchange
ES Expected Shortfall
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GoF Goodness of Fit
iid independent and identically distributed
KS Kolmogorov-Smirnov
LTSC Long-Term Seasonal Component
OTC Over-the-counter
(P)ACF (Partial) Autocorrelation Function
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PCA Principal Component Analysis
PPA(s) Power Purchase Agreement(s)
RES Renewable Energy Sources
STSC Short-Term Seasonal Component

Appendix A

Figure A1 shows that the standardized residuals simulated by the copula fit the data well.
Their density is barely distinguishable from that defined by a kernel density estimation on the empirical
standardized residuals. The deviation is larger when comparing the marginal models with the
simulation. Obviously, there are aspects in price and infeed formation that are not accounted for by
seasonality and ARMA-GARCH models.
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Figure A1. Comparison of the empirical and simulated distributions. (a) Comparison of standardized
residuals of fitted marginal models and results of copula simulation. (b) Comparison of empirical
distributions and re-transformed results of copula simulation.
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